
Energy Efficient Video Encoding Using the Tegra K1
Mobile Processor

Kristoffer Robin Stokke, Håkon Kvale Stensland, Carsten Griwodz, Pål Halvorsen

Simula Research Laboratory & University of Oslo, Norway
{krisrst, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT
Energy consumption is an important concern for mobile de-
vices, where the evolution in battery storage capacity has
not followed the power usage requirements of modern hard-
ware. However, innovative and flexible hardware platforms
give developers better means of optimising the energy con-
sumption of their software. For example, the Tegra K1
System-on-Chip (SoC) offers two CPU clusters, GPU of-
floading, frequency scaling and other mechanisms to control
the power and performance of applications. In this demon-
stration, the scenario is live video encoding, and participants
can experiment with power usage and performance using the
Tegra K1’s hardware capabilities. A popular power-saving
approach is a“race to sleep”strategy where the highest CPU
frequency is used while the CPU has work to do, and then
the CPU is put to sleep. Our own experiments indicate that
an energy reduction of 28 % can be achieved by running
the video encoder on the lowest CPU frequency at which
the platform achieves an encoding frame rate equal to the
minimum frame rate of 25 Frames Per Second (FPS).

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Heterogeneous (hy-
brid) systems;
C.1.4 [Parallel Architectures]: Mobile processors;
I.4.0 [General]: Image processing software;
J.2.0 [Physical Sciences and Engineering]: Electronics

General Terms
Experimentation, Measurement

Keywords
Demonstration, video encoding, real-time, energy, power
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).

MMSys’15, Mar 18-20, 2015, Portland, OR, USA
ACM 978-1-4503-3351-1/15/03.
http://dx.doi.org/10.1145/2713168.2713186.

1. INTRODUCTION
Energy consumption is an important aspect for the usabil-

ity of mobile devices, where the evolution in battery technol-
ogy has not kept pace with the increasing power usage of the
devices [4]. This has not gone unnoticed by hardware pro-
ducers, who are developing more power-efficient and flexible
SoC architectures. For example, NVIDIA’s Tegra K1 [6] is a
highly flexible mobile multicore SoC equipped with one low-
performance, low-power CPU cluster, one high-performance,
high power CPU cluster as well as a GPU with 192 CUDA
cores. The platform gives full control of these capabilities
to the developer. For example, heavy, parallel computing
operations can be offloaded to the GPU while executing on
the power efficient CPU cluster to save energy. The chal-
lenge is to understand how these choices impact runtime
performance and energy consumption, and whether any en-
ergy can actually be saved depending on the choices of the
programmer.

In this demonstration, we let the participant tweak the
hardware settings of a Tegra K1 to minimise the energy con-
sumption of live video encoding. The challenge is to meet
a performance requirement of 25 FPS. The participant is
free to adjust the CPU and GPU core frequency, select the
active CPU clusters and control the number of active cores
(see Table 1). The encoder, called Codec 63 (C63), is a
highly simplified MPEG-inspired codec created for teaching
purposes (see Section 2.2 for further details). The effects of
the participant’s hardware settings in terms of the achieved
frame rate, power usage and CPU/GPU frequency are pre-
sented over time on a dedicated laptop. The laptop also
handles live video decoding (see Figure 1). Although C63
cannot compete with the performance of a dedicated hard-
ware encoder, the point is here to study the effects of the

Name Description
CPU Frequency CPU operating frequency.
CPU Cluster Encode using the high-power or low-

power CPU cluster.
CPU Cores Controls the number of active cores

to be used while actively encoding.
GPU Frequency GPU operating frequency.
GPU Offloading Offload nothing, some or all frames

to the GPU.

Table 1: Parameters that can be set by the participant. See
Section 2.2 for further description.



352x288
Live Stream

USB Connector

Jetson­TK1

Encoded Live
Video Stream

Ethernet

Decoding / Interface

M420 YUV

Web Camera

Figure 1: Demonstration set-up.

Tegra K1’s hardware capabilities, and not the efficiency of
the workload.

C63 can easily encode a frame in less than 40 ms, achiev-
ing a frame rate of at least 25 FPS. Although research shows
that a frame rate of 12 FPS may be satisfactory with current
mobile phones’ screen size, we use 25 FPS as the minimum
for the sake of display quality on the decoding computer.
The challenge is for the participant to minimise the con-
sumption of energy while meeting this frame rate require-
ment. For example, when we encoded 300 frames at 25 FPS
in real-time, almost 30% of the energy was saved by min-
imising CPU frequency instead of running the processor on
full speed to maximise the sleep period before the next frame
(a “race to sleep” heuristic, see Figure 2).

1.326 2.3205
CPU Frequency [GHz]

0

5

10

15

20

25

30

35

40

En
er

gy
 [m

W
h]

Energy Consumption

0

5

10

15

20

25

Fr
am

es
 p

er
 S

ec
on

d

FPS

Figure 2: Our own experiments indicate almost 30% energy
saving when minimising CPU frequency such that a target
frame rate of 25 FPS is achieved.

2. SYSTEM OVERVIEW
Our demonstration is composed of three units (see Fig-

ure 1). A web camera is continuously transmitting a raw
video stream to the encoder platform over a USB interface.
The encoder platform is a Jetson-TK1 mobile development
kit [5] featuring a Tegra K1 SoC. The Tegra K1 is contin-
uously encoding the live-stream using the C63 encoder. As
seen in Figure 3, we have also added a power measurement
sensor that can log the energy consumption of the Jetson-
TK1. Finally, the encoded stream is sent to a dedicated
decoding laptop, which fulfils two tasks. First, it decodes
the stream and plays it back live. Second, it displays the
achieved performance- and power-related parameters such
as the power usage, energy per frame and frame rate over
time. The participant may use the decoding laptop to con-
trol the parameters in Table 1. Throughout the rest of this
section, we will explain the system set-up in more detail.

Figure 3: The figure shows our power measurement exten-
sion (INA219, circled) on the Jetson-TK1.

Figure 4: The INA219 measures total platform power usage
over the Jetson’s main power rail.

2.1 Video Encoding Platform
We use a Tegra K1 multiprocessor SoC as our encoding

platform (see Figure 3). This processor is especially inter-
esting in terms of energy consumption, because it provides
many hardware capabilities that can be used for power op-
timisation. The Tegra K1, as well as SoCs with similar ca-
pabilities, have been implemented in real devices such as
NVIDIA’s SHIELD tablet. The Tegra K1’s capabilities are
as follows:

• CPU: Two clusters in “4+1” core configuration[7, 8].

– One high performance, high power (HP) cluster
with four Cortex-A15 ARM cores. Three of the
cores can be individually shut down.

– One low performance, low power (LP) cluster with
a single Cortex-A15 ARM core.

– Hardware-supported migration of OS and appli-
cations between the clusters.

– A 128-bit NEON single instruction, multiple data
(SIMD) instruction set tailored for multimedia
workloads.



– 22 configurable CPU frequencies (between 51 MHz
and 2.32 GHz).

• GPU: 192 programmable CUDA-cores based on the
Kepler-architecture on-chip.

– 15 configurable GPU frequencies (between 72 and
852 MHz).

The participant is free to change the CPU and GPU fre-
quencies, as well as to enable and disable cores and switch
CPU clusters. The relationship between the core frequency
and power is given by the Dynamic Voltage and Frequency
Scaling (DVFS) formula and is especially useful here [2]:

Pcore = αCV 2
corefcore (1)

In Equation 1, α is the core utilisation level, C is the core
switching capacitance, Vcore is the core voltage and fcore is
the core frequency. The DVFS formula shows that higher
performance in terms of processor frequency can be traded
for increased power consumption, allowing fine-grained tun-
ing of power and performance characteristics depending on
application requirements.

The Jetson-TK1 platform is not pre-equipped with any
power measurement sensors. Consequently, we have equipped
our platform with an INA219 power measurement sensor [9]
(see Figures 3 and 4) and developed a Linux kernel module
that provides access to the device through the sysfs filesys-
tem. The INA219 works by measuring the voltage drop,
Usense, over a sense resistor connected in series with the
main power rail of the Jetson-TK1. The electrical resistance
of the sense resistor, Rsense, must be very small to avoid af-
fecting the main circuitry (Rsense << Rjetson). The INA219
amplifies the voltage drop Usense, converts it to the digital
domain, and calculates the board’s current drain Ijetson as
follows:

Ijetson =
Usense

Rsense
(2)

The power consumption, Pjetson, at any time, is given by:

Pjetson = IjetsonUjetson (3)

where Ujetson is the main rail bus voltage potential. The
set-up is similar to that found in PowerScope [3], but more
complex because the INA219 is a small, surface mounted
device that requires a high degree of manual configuration.
There is also no separate logging machine; power logging is
done by the Tegra K1 itself, eliminating as much latency
as possible between the sensor and the Jetson-TK1. The
INA219 itself interfaces over an I2C bus adapter. Reading
directly from the CPU, we achieve a rate of 4000 power
measurement samples per second using this set-up.

2.2 Video Encoding Framework
As workload for our demo we use our own implementation

of the C63 video encoder, which is suitable for parallelisa-
tion using the Jetson-TK1’s hardware capabilities. C63 is
capable of encoding raw YUV 4:2:0, and the encoding oper-
ations are similar to H.264 or Google’s VP8. The operations
are as follows (see Figure 5):

• Motion vector search: The encoder divides the cur-
rent frame into a set of macroblocks, and attempts to
estimate their displacement between frames.

• Motion compensation: The encoder compensates the
current frame by removing information for each mac-
roblock where a motion vector could be found. This
reduces the amount of information that must be stored
(only the vector needs to be stored).

• Discrete Cosine Transform (DCT) and inverse DCT
(iDCT):. The DCT transforms each macroblock to
the frequency domain. The inverse DCT transforms
it back. We use the “Fast-DCT” algorithm [1] on the
CPU.

• Quantisation and de-quantisation: Quantisation re-
duces the value of the highest frequency components
of each macroblock, to which the human eye is less
sensitive to. De-quantisation transforms it back.

• Variable-length coding (VLC): The last step writes each
frame to persistent storage using variable length huff-
man encoding.

The demo implementation attempts to reach a frame rate
of 25 FPS by offloading none, some or all parts of the video
processing to the GPU (“CPU-only”, “GPU-only” or “hy-
brid”). For example, for the hybrid scheme, Y and U frames
are transmitted to and encoded on the GPU, while the V
frame is encoded on the CPU (see Figure 5). Frame writ-
ing is interleaved, such that the next frame starts processing
while the last is currently being written to network. If the
single frame encoding time is below the requirement (for ex-
ample 40 ms for 25 FPS), the frame rate is met, and the
CPU (and GPU) idles. In this case, the encoder sleeps for
the remaining duration. Figure 6 illustrates an example:

Figure 6: An illusation of single-frame encoding under the
“hybrid” processing scheme.

1. The CPU fetches a raw YUV frame from the web cam-
era.

2. The CPU distributes the Y and U frames to the GPU,
starts processing the V frame, and starts writing the
previously encoded frame to the network.

3. The GPU finishes processing before the CPU is done,
and idles.

4. The CPU finishes its processing before the 40 ms dead-
line. The CPU now sleeps for the remaining duration.

5. The cycle continues for the next frame.



Y U V

Input File CPU

Merged
Frame

GPU

Livestream
352x288

To Decoder

Motion
Estimation

Motion
Compensation

DCT

Quantisation Reverse
Quantisation

Reverse
DCT

Reconstructed
Framen-1

Frame
n

Entropy
Encoding
(Huffman)

Motion
Estimation

Motion
Compensation

DCT

Quantisation Reverse
Quantisation

Reverse
DCT

Reconstructed
Framen-1

Frame
n

Entropy
Encoding
(Huffman)

Figure 5: Our implementation of the C63 encoder operating in the “hybrid” processing scheme.

3. DEMONSTRATION
In this demo, we show how the energy consumption and

performance of a video encoder is impacted by hardware and
software configuration. Our demo supports runtime configu-
ration of CPU and GPU core frequency, active CPU cluster,
core shutdown and varying degrees of GPU offloading. The
impact of these reconfigurations, that is power usage, frame
rate, frequency and the decoded live video is displayed live
to the participant as plots over time. Thus, the question is
how energy-efficiently can you live-encode video?

4. REFERENCES
[1] L. V. Agostini, I. S. Silva, and S. Bampi. Pipelined fast

2d dct architecture for jpeg image compression. In
Integrated Circuits and Systems Design, 2001, 14th
Symposium on., pages 226–231. IEEE, 2001.

[2] A. Castagnetti, C. Belleudy, S. Bilavarn, and
M. Auguin. Power consumption modeling for dvfs
exploitation. In Digital System Design: Architectures,
Methods and Tools (DSD), 2010 13th Euromicro
Conference on, pages 579–586. IEEE, 2010.

[3] J. Flinn and M. Satyanarayanan. Powerscope: A tool
for profiling the energy usage of mobile applications. In
Mobile Computing Systems and Applications, 1999.
Proceedings. WMCSA’99. Second IEEE Workshop on,
pages 2–10. IEEE, 1999.

[4] K. Lahiri, S. Dey, D. Panigrahi, and A. Raghunathan.
Battery-driven system design: A new frontier in low

power design. In Proceedings of the 2002 Asia and
South Pacific Design Automation Conference, page 261.
IEEE Computer Society, 2002.

[5] NVIDIA. Jetson-TK1 Embedded Development
Platform., 2014. http://www.nvidia.com/object/jetson-
tk1-embedded-dev-kit.html.

[6] NVIDIA. Tegra K1 Next-Get Mobile Processor., 2014.
http://www.nvidia.com/object/tegra-k1-
processor.html.

[7] NVIDIA. Tegra K1 Whitepaper., 2014.
www.nvidia.com/content/PDF/tegra white -
papers/Tegra-K1-whitepaper-v1.0.pdf.

[8] NVIDIA. Variable SMP., 2014.
www.nvidia.com/content/PDF/tegra white -
papers/Variable-SMP-A-Multi-Core-CPU-Architecture-
for-Low-Power-and-High-Performance.pdf.

[9] Texas Instruments. INA219 Power Rail Monitor., 2014.
http://www.ti.com/product/ina219.


