
Cache-centric Video Recommendation: An Approach to
Improve the Efficiency of YouTube Caches

Dilip Kumar Krishnappa and Michael Zink
University of Massachusetts Amherst

151 Holdsworth Way
Amherst, MA, USA

krishnappa|zink@ecs.umass.edu

Carsten Griwodz and Pål Halvorsen
Simula Research Laboratory

Lysaker, Norway
and University of Oslo

Oslo, Norway
griff|paalh@ifi.uio.no

ABSTRACT
In this paper, we take advantage of the user behavior of re-
questing videos from the related list provided by YouTube
and the user behavior of requesting videos from the top of
this related list to improve the performance of YouTube’s
caches. We recommend a related list reordering approach
which modifies the order of the videos shown on the re-
lated list based on the content in the cache. The main goal
of our reordering approach is to push the contents already
in the cache to the top of the related list and push non-
cached contents towards the bottom, which increases the
likelihood that the already cached content will be chosen
by the viewer. We analyze the benefits of our approach by
an investigation that is based on two traces collected from
an university campus. Our analysis shows that the pro-
posed reordering approach for related list would lead to a
2 to 5 times increase in cache hit rate compared to an ap-
proach without reordering the related list. The increase in
hit rate would lead to a 5.12% to 18.19% reduction in server
load or back-end bandwidth usage. This increase in hit rate
and reduction in back-end bandwidth reduces the latency
in streaming the video requested by the viewer and has the
potential to improve the overall performance of YouTube’s
content distribution system. An analysis of YouTube’s rec-
ommendation system reveals that related lists are created
from a small pool of videos, which increases the potential
for caching content from related lists and reordering based
on the content in the cache.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video

General Terms
Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’13, February 26 – March 1, 2013, Oslo, Norway
Copyright 2013 ACM 978-1-4503-1894-5/13/02 ...$15.00.

Keywords
Caching, YouTube, Recommendation

1. INTRODUCTION
YouTube is the world’s most popular Internet service that

hosts user-generated videos. Each minute 72 hours of new
videos are uploaded to YouTube. Viewers can choose from
hundreds of millions of videos and over 4 billion hours of
videos are watched each month on YouTube. According
to [10], in 2011, YouTube had more than 1 trillion views or
around 140 views for every person on Earth. Consequently,
these numbers lead to a huge amount of network traffic,
and Google (the owner of YouTube) maintains substantial
infrastructure to provide reliable and well-performing video
streaming service. For example, according to [3], on August
27 2012 at 8PM, the United States YouTube traffic made
up more than 60% of the global Internet traffic. Google’s
approach to tackle these challenges is a network of caches
that are globally distributed. With the aid of the caches,
latency on the viewer’s side and overall network utilization
can be reduced.

Unfortunately, effective caching is much harder in the case
of YouTube in comparison to other video streaming services
like Netflix or Hulu. This is caused by several facts. First of
all, services that offer professionally produced content like
movies and TV shows provide an online library on the or-
der of several 10,000s of titles, a number that is much lower
compared to the hundreds of millions of videos offered on
YouTube. Second, the providers of purely professionally
produced content determine when new content will be made
available and, thus, can much better schedule the distribu-
tion of content into caches.

YouTube’s dilemma, in terms of caching, is the fact that
the popularity distribution of videos is a long-tail distribu-
tion. For the large number of videos in YouTube, this means
that every cache that is limited to storing a small portion
of the total number of videos will essentially perceive ac-
cesses to the tail as random choices, impossible to distin-
guish from a uniform distribution. This characteristic has
already been shown in earlier studies. For example, in our
trace-based characterization of YouTube traffic in a campus
network [21], 70% or more of the overall videos are only re-
quested once within 24 hours. In [13], similar results are
obtained by a global analysis of metadata made available by
YouTube. This characteristic leads to the fact that many of
the requested videos will not be available in a cache. This
problem has been officially recognized by YouTube [9], and

Figure 1: This screenshot shows a YouTube video
page and the location of the related video list on
that page.

the current approach is to increase the number of caches
that serve content from the tail and fill these caches through
prefetching.

In this paper, we propose a different caching approach
that makes use of YouTube’s recommendation system to in-
crease the efficiency of its caches, since it is impossible to
predict what a viewer is most likely to watch next. The
general idea is to influence the video selection behavior of
a viewer based on the content of the cache that serves the
viewer. Each YouTube video web page offers a list of rec-
ommended videos, next to the video a viewer has selected
(see Figure 1). In YouTube’s own terms, this is described
as the related video list. Earlier studies [19, 17] have already
shown that users make significant use of the related video
list. This means that, after watching the initially selected
video, the viewer chooses to watch a video that is offered on
the related video list next. Figure 2 shows a comparison of
these result that were derived from five different data sets.
It is important to mention that the results from [19] are ob-
tained from two data sets of global meta information (taken
at different points in time) that is offered by YouTube for
each individual video. The results for [17] are obtained from
two network traces taken at a campus gateway. From these
results, we conjecture that both, on a global and regional
level, ∼ 30% or more of video requests are made by the
viewer by selecting a video from the related video list.

To exploit the fact that viewers frequently choose videos
from the related list, we present an approach in which the
cache modifies the related video list that is sent from the
server through the cache to the client. This related list mod-
ification is based on a stable sort [18] the cache performs on
the list of related videos that uses cache hit as its primary
sorting criteria. The set of cached videos are moved to the
top of the related list, while the set of uncached videos forms
the rest. The order inside each set remains unchanged. The
cache changes the order of the related video list because, as
we show in Section 2.1, it is more likely that a viewer will
select a video from the top of the related video list.

To investigate the feasibility of our approach, we perform
an analysis on the chains created by user behavior in select-
ing YouTube videos from the related list. Chains are created
when a user consecutively selects videos from the related list

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

IMC10 MMSys11 Current

P
e
rc

e
n
ta

g
e
 o

f
T

o
ta

l R
e
q
u
e
st

s

Trace1
Trace2

Figure 2: Percentage of videos selected from related
video list as reported in earlier studies (IMC10 [19],
MMSys11 [17]) and obtained from an analysis of
the trace used in this paper.

until she changes to choose a video by other means (e.g., a
search). We also perform a PlanetLab based study to ana-
lyze the global behavior of loop creation. Loops are created
when a user selects videos from the related list consecutively
until she selects the initial requested video again. This se-
lection is either based on the position of the video on the
related list, or randomly chosen from the related list. Our
results show that YouTube creates its related list from a
small pool of videos which leads to lot of potential to re-
lated list caching and reordering based on the content in the
cache.

In addition, we perform a measurement study from our
campus network to determine the origin of videos that are
requested from the related list. The results of this study
indicate that YouTube uses a three-tier cache hierarchy to
serve videos and that the origin is chosen in a way that
achieves load balancing between the different levels in the
caching hierarchy. Preference to the top videos of the re-
lated list for a requested video is not given. By using our
approach of the related list reordering at the cache, we rec-
ommend changing the behavior of the caching technique to
take advantage of user behavior in selecting a video from the
top order of the related list by serving the videos from the
nearest cache to reduce latency in serving the videos to the
user.

To evaluate the proposed related list reordering approach,
we perform a study based on YouTube traces obtained from
a university campus network. Based on these traces, we
show that first, users indeed choose top ranked videos from
the related video list and second, with our proposed ap-
proach, the cache hit rate increases from about 2 to 5 times
the original hit rate. This increase in cache hit rate due to
reordering of related list reduces the bandwidth consump-
tion on the uplink from the level 1 cache to higher level
caches or the server by 5.12% to 18.19% and reduces the
latency in serving the videos requested to the user.

The remainder of the paper is structured as follows. In
Section 2, we present the data sets we use to analyze our
new caching approach, and analyze the potential influence
of the related list on the viewers video selection. In addition,
we perform a measurement study to determine the origin of
initially requested videos and videos that were chosen from
the related list. Section 3 presents our cache-centric video

Trace file T1 T2
Duration 3 days 3 days
Start date Feb 6th 2012 Jan 8th 2010
Requests 105339 7562
Videos with
”related video”
tag

47986 2495

Table 1: Trace characteristics

recommendation approach and evaluates that approach with
the aid of trace-based simulations. We discuss the results
of our analysis in Section 4, and present related work in
Section 5. Section 6 concludes the paper.

2. THE IMPACT OF VIDEO RECOMMEN-
DATION

YouTube’s related video list, shown in Figure 1, is a way
to influence the decision of viewers on which video to watch
next. When a viewer selects a video, a list of recommended
videos are offered to the viewer on the same web page (in
YouTube jargon defined as “watch page”), and the viewer
may choose a video from that list.

It has been shown in related work that the related video
list actually influences the viewer’s video selection [19, 17].
Such behavior, causing the selection of a video through the
related video list, is also defined as click-through rate. It is
specified as the probability that a user who views item i will
click on item j from its related video list. It is our goal to
investigate if the related video list can be used to improve
video distribution and delivery within YouTube. But before
we try to answer this question, we investigate how related
lists influence what a viewer is watching.

2.1 Data Set Analysis
For the analysis of our proposed cache reordering approach

we analyze two network traces obtained from monitoring
YouTube traffic entering and leaving a campus network. The
monitoring device is a PC with a Data Acquisition and Gen-
eration (DAG) card [1] which can capture Ethernet frames.
The device is located at a campus network gateway, which
allows it to see all traffic to and from the campus network. It
was configured to capture a fixed length header of all HTTP
packets going to and coming from the YouTube domain. The
monitoring period for these traces was 72 hours each, and
the general statistics are shown in Table 1.

In trace T1, 47,986 video requests had the related video
tag out of total 105,339 requests (∼ 45%), which indicates
that this video was selected from a viewer by choosing it
from the related video list. In the case of trace T2, the
numbers are significantly lower since the trace was taken
during winter break when the student population on campus
is much lower, i.e., ∼ 33% of the 7562 requested videos are
selected from the related video list.

To investigate whether users choose videos from the top of
the related video list with higher probability, we further an-
alyze data from these traces to determine the position of the
related video selected by the users. We determine the posi-
tion of a video that was selected by a viewer from the related
video list as follows. We take the related video list for video
A requested by a viewer and check if video B, requested by
the same user, is in video A’s related video list. If so, we

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C
D

F
 o

f
th

e
 R

a
ti
o
 o

f
N

u
m

b
e
r

o
f
V

id
e
o
s
 i
n
 t
h
a
t
P

o
s
it
io

n

Related Video Position

Trace1

Trace2

Figure 3: Position of video selected by users from
related video list for traces T1 and T2.

determine the position of video B in video A’s related video
list. Figure 3 show the results of this analysis for our trace
(Trace T1), as well as the trace data used by Khemmarat et
al. in [17] (Trace T2). Both traces show that about 50% of
the viewers select an entry from the top five related videos.
For the top ten videos, this number increases to over 70%.
This observation confirms our assumption about YouTube
user behavior, that a user (potentially out of laziness) usu-
ally selects videos ranked higher on the related video list
independent of the video content (but we assume also that
the related list is sorted by relevance).

2.2 Chain and Loop Count
To better understand YouTube’s recommendation system,

we first investigated how repeated selections of videos from
the related lists behave. This has let us to define the concept
of chains and loops.

Our definition of the Chain Count and Loop Count is as
follows; Chain Count is the number of consecutive videos
requested by the user from the recommended list until she
requests a new video by other means (e.g., a search). Loop
Count is defined as the number of consecutive videos a viewer
requests from the recommended list before she requests the
same video as the initial one and thereby forms a loop. Fig-
ure 4 provides an example of the definition of both Chain
Count and Loop Count. In the example shown in Figure 4,
both Chain Count and Loop Count is two.

The goal of this section is to gain better insight into the
characteristics of related lists and how they influence the
performance of caching.

2.2.1 Observed Chain Counts
In this section, we provide the results of the chain count

analysis performed for the campus network traces described
in Table 1.

For the chain count analysis, we go through the requests
from each user in our trace to determine the number of con-
secutive requests made by the user from the related list of
the previous video requested. The results from our chain
count analysis on the two traces are summarized in Table 2.
For trace T1, the viewers choose videos from the related list
at least once in 84.76% of the cases, and in 15.24% of the
time, the chain count is larger than one, leading to an av-
erage chain count of 1.195. The maximum chain count seen

Figure 4: Chain and Loop count example. (a) Ex-
ample for a loop of length 2, (b) Example of a chain
with length 2.

Approach Trace T1 Trace T2 Global
Avg. chain count 1.195 2.304 -
Max. chain count 8 21 -
Avg. loop count - - 1.243
Max. loop count - - 19

Table 2: Chain and Loop count analysis results

in trace T1 is 8, i.e., a user selects videos consecutively 8
times from the related list before selecting a video by other
means. For trace T2, the values are a bit higher. In 48.20%
of the cases, the chain count is at least one, and in 51.80%
of the cases, it is more than one, leading to an average chain
count of 2.304. The maximum chain count seen in trace T2
is 21.

The results in this section strengthens our assumption
that the user selects video from the related list. In order
to understand if this assumption stands good on a global
scale, we also perform the loop count analysis on PlanetLab
which is presented in the following section.

2.2.2 Loop Length at Fixed Positions
To investigate the loop count on a global scale we per-

formed a PlanetLab-based measurement. In a first experi-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C
h
a
in

 L
o
o
p
 C

o
u
n
t

Position of the Related Video

US Region
EU Region
SA Region
AS Region

Figure 5: PlanetLab-based loop count measurement
for fixed position selection from related list

ment, 100 videos were accessed from each PlanetLab node.
Then, we followed the chain of related movies by repeatedly
selecting the same position. We did that for each of the po-
sitions 1 through 20. Making these deterministic selections,
we continued to follow the chain until the loop closed and we
arrived at the original video again. For example, if always
the top video is selected from the related list and the initial
request was for video A and this video is selected again after
four rounds, then this case results in a loop count of three.
The results of the experiment are shown in Figure 5.

The experiment was performed with possible regional de-
viations in mind, and the results shown in Figure 5 are sub-
divided by region. As can be seen from the figure, the gen-
eral trend persists throughout the regions, and yields some
unexpected rather surprising results.

It is understood that the related list is constructed from
a search for related videos, and the result is then sorted
by popularity before it is presented to the user. This un-
derstanding implies that videos that appear on lower posi-
tions in the related list are less closely related to the current
video than earlier ones. Considering the large library of
videos held by YouTube, we would expect that the set of
less closely related videos is growing with distance; conse-
quently, following the chain in the less closely (lower) related
position should find a larger number of videos, leading to a
longer loop. According to Figure 5, that is not the case.

Since there could be many reasons for this behavior, we
are trying to get a better understanding why the chain does
not increase for lower related list positions. For that reason,
we investigate the loop length for the case in which related
list positions are randomly chosen.

2.2.3 Loop Length at Random Positions
Section 2.2.2 indicates that the pool of videos from which

related lists are selected is rather small for each position.
To better understand the impact of always choosing from
a fixed position, we perform another experiment which is
based on random positions. We vary the number of maxi-
mum positions that can be selected.

For this measurement, each PlanetLab node initially re-
quests the same video and obtains the recommended list
associated with this video. From this list, a new video is
randomly selected and this procedure is repeated 50 times.
This experiment is repeated four times where the selection
process for videos from the recommended list changes for
each experiment. In the first experiment, only the top 5
videos are randomly selected, in the second experiment the
top 10, and in the third and fourth the top 15 and top 20
are selected, respectively. This procedure results in 50 video
requests per node per experiment, and we use this result to
determine the loop count.

The results from this measurement are shown in Figure 6.
We decided to repeat the experiment with Top 5, 10, 15, and
20 video selection to investigate if different user behavior has
an impact on the chain and loop length. The X-axis in Fig-
ure 6 shows the loop count and Y-axis shows the percentage
of videos with the corresponding loop count in x-axis for Top
5 to Top 20 video selection. As can be seen in Figure 6, the
trend for the loop lengths is relatively similar, independent
of the range of top videos from which the selection is made.

It is noteworthy that the average loop length in case of
random selection from a set of positions is similar to that of
a fixed position, with minor changes for an increased num-

ber of maximum positions to choose from. The likely ex-
planation for this effect is that the related list is mostly
constructed from a limited and closed pool of videos. The
search features that keep videos semantically close to each
other dominate over features that would promote drift to-
wards other videos. This is probably for the benefit of the
user: users selecting from the related list may not be inter-
ested in drift; the small pool prevent a “lost-in-hyperspace”
effect. However, the limited pool size is also advantageous
for the effectiveness of proxy caches. A request entering a
pool through any video is apparently going to promote stay-
ing in the pool, increasing the chance that a chosen related
video is in the cache.

Figures 5 and 6 indicate that YouTube does not assign
the video to positions for some internal purpose. In particu-
lar, it does not seem to be built to make their caching more
efficient. If that was the case, then loop lengths shown in
Figure 5 should be different from loop lengths in Figure 6,
which is not the case. Therefore, we can conclude that we
can reorder the related list without interfering with the orig-
inal goal of the related list.

2.3 Video Origin
Since we are aware of the fact that YouTube is already em-

ploying caches in its video distribution infrastructure (see,
e.g., [9] or [12] for more details), we executed the following
experiment to investigate if a video is served from a close by
cache or not.

Our intention behind this idea is the conjecture that a
larger average RTT for the TCP streaming session means
a larger distance (in hops) between source and client. To
support this conjecture, we performed the following mea-
surement from our campus network. First, we randomly se-
lected 100 videos from trace T1 and retrieved each of the 100
videos while capturing a packet trace by using tcpdump [6].
We then analyzed each of the 100 resulting packet traces
and determined the average RTT of the TCP session that
transmits the actual video data. We then repeated this ex-
periment for the top 20 videos from the related list of each
of the initial 100 videos, resulting in 2000 data points.

Figure 7(a) shows the CDF of the average RTTs for each
of the YouTube video requests as described above. As it
can be seen from the figure, there are three different ranges
of average RTTs (<3ms, between 3ms and 12ms and >12
ms). Mapping these RTT ranges to IP addresses gives us
three different subnet ranges. Thus, we can safely say that,
we see three different cache levels in our experiment and the
CDF plot for the video requests from each of the cache levels
(Cache Level1 is <3ms, Cache Level2 is between 3ms and
12ms and Cache Level3 is >12ms) is shown in Figure 7(b).

As shown in Figure 7(b), the majority for both groups of
videos (initially selected and selected from the related list)
are served from caches that are on level 2 (55% and 52%).
Only ∼ 30% of the video from both groups are served from
a level 1 cache. Further analysis revealed that all sessions
with an average RTT of 3ms or less have a sender IP address
from an address range that is administered by the University
of Massachusetts, while address ranges for the level 2 and 3
caches are administered by Google (the owner of YouTube).

Based on the results presented above, we are now able to
identify which of the videos selected from the related list are
served from a close by cache (level 1) and which are served
from a caches further away (levels 2 and 3). With that

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C
D

F
 o

f
th

e
 N

u
m

b
e
r

o
f
V

id
e
o
 R

e
q
u
e
st

s

Related Video Position

Related Video Requests in Cache Level 1
Related Video Requests in Cache Level 2
Related Video Requests in Cache Level 3

Figure 8: Distribution of position of video in related
list compared to all requests originating from the
related list.

information we determined the distribution of the position
of the requested video in the related list for videos served
from a close by cache and for those served from more distant
sources. This distribution (in form of a CDF) is shown in
Figure 8. The nature of the CDFs shown for both cases is
almost uniform. This is a strong indicator that YouTube is
not giving any preferences, in terms of caching based on the
position of the video in the related list. It rather confirms
the results presented in [12] and [11] that claim YouTube
mainly focuses on load balancing between different cache
levels and not on the goal of moving content as close to the
client as possible.

Knowing that viewers are more likely to select top ranked
videos on the related list, we are interested on researching if
a caching approach that is tailored more towards this viewer
behavior can improve caching efficiency. We present and
investigate such an approach in the following section.

3. LOCAL RECOMMENDATION TO
IMPROVE CACHING

In this section, we present and analyze our related video
list reordering approach to investigate if it can improve the
performance of caching. After introducing the general ap-
proach, we discuss two different approaches of video selection
from reordered related list and present the results for both
approaches obtained through trace-based simulation.

From the results obtained in Section 2.1, we conjecture
that the distribution of user requests on related video po-
sition is innate in the way in which users interact with the
GUI. It should therefore be possible to use the order of the
related video list for our purpose, which is to increase the
cache hit rate.

The basic idea is to perform cache-based reordering, where
the order of videos in the related video list is modified based
on the cache’s content. Figure 9 shows an example of the
cache reordering approach. In this case, the related video list
is sent from the server through the cache to the client. Upon
receipt, the cache modifies the related video list according
to the videos it has currently cached. After modifying the
list, the cache forwards the reordered list to the client.

The reordering maintains the order that the cached videos
have on the original list as well as the order among the un-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
e
rc

e
n
ta

g
e
 o

f
th

e
 N

u
m

b
e
r

o
f
V

id
e
o
s

w
ith

 t
h
a
t
L
o
o
p
 C

o
u
n
t

Loop Count

US Region
EU Region
AS Region
SA Region

(a) Loop count for Top 5 videos

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
e
rc

e
n
ta

g
e
 o

f
th

e
 N

u
m

b
e
r

o
f
V

id
e
o
s

w
ith

 t
h
a
t
L
o
o
p
 C

o
u
n
t

Loop Count

US Region
EU Region
AS Region
SA Region

(b) Loop count for Top 10 videos

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
e
rc

e
n
ta

g
e
 o

f
th

e
 N

u
m

b
e
r

o
f
V

id
e
o
s

w
ith

 t
h
a
t
L
o
o
p
 C

o
u
n
t

Loop Count

US Region
EU Region
AS Region
SA Region

(c) Loop count for Top 15 videos

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
e
rc

e
n
ta

g
e
 o

f
th

e
 N

u
m

b
e
r

o
f
V

id
e
o
s

w
ith

 t
h
a
t
L
o
o
p
 C

o
u
n
t

Loop Count

US Region
EU Region
AS Region
SA Region

(d) Loop count for Top 20 videos

Figure 6: PlanetLab-based loop count measurement for random selection from related list

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F
 o

f t
he

 N
um

be
r

of
 V

id
eo

 R
eq

ue
st

s

RTT (ms)

Initial Video Requests
Related Video Requests

(a) CDF of average RTTs for TCP streaming session

 0

 0.2

 0.4

 0.6

 0.8

 1

0 CacheLevel1 CacheLevel2 CacheLevel3

C
D

F
 o

f t
he

 N
um

be
r

of
 V

id
eo

 R
eq

ue
st

s

YouTube Caches

Initial Video Requests
Related Video Requests

(b) CDF of video requests based on cache levels

Figure 7: Distribution of video delivery based on response times and cache levels.

cached videos. Considering the example shown in Figure 9,
this means, while videos B, C, and D are moved to the top of
the related video list that is transmitted to the client, they
(amongst themselves) keep the order they had in the related
video list the cache originally received from the server.

Implementing the proposed cache-based reordering of the
related video list is straight-forward and will add only a
small amount of overhead on the cache. As shown in Fig-
ure 9, the reordering approach requires the cache to provide
the following two functionalities: a) maintain a list of the
videos that are stored in the cache, and b) a process that
is able to modify the related list. Functionality a) will be
provided by any ordinary cache since it needs to determine

if a client request can be served locally or has to be for-
warded to a server. The additional functionality b) that is
required for cache-based reordering is a simple manipulation
of an HTML page that represents the related video list as,
e.g., shown in Figure 1. Such simple modification of HTML
code should increase the computational load on the cache
insignificantly.

In the following we first analyze how well the videos that
are placed at the top of the related list overlap with the
movies that are present in the cache. To do this, we re-
play the trace that we described in Section 2.1, but with
reordered related lists and reordered video selections. We

Figure 9: Reordering of the related video list by the
cache

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C
D

F
 o

f
th

e
 R

a
ti
o
 o

f
N

u
m

b
e
r

o
f
V

id
e
o
s
 i
n
 t
h
a
t
P

o
s
it
io

n

Related Video Position

Position Centric Trace1

Content Centric Trace1

Position Centric Trace2

Content Centric Trace2

Figure 10: Position of video selected from related
video list after reordering.

call this the content-centric reordering, and describe it in
the following subsection.

3.1 Content Centric
In content centric approach, the video the user requested

in the original trace before reordering the related list is fixed,
i.e., the sequence of videos that are requested is identical
to the original trace. The position of the video that is re-
quested from the modified related list, however, is different
after reordering.

For the example shown in Figure 9, the viewer would se-
lect the video at position four of the related video list re-
ceived from the cache, if the interest is absolutely in video
A’s content and not simply in one of the top listed videos.
(In Section 3.2, we will present a position centric approach
where the selected position stays fixed and, consequently,
the content changes.) The content centric approach leads
to a different probability distribution of the selected related
video list position as shown in Figure 10. The dashed line in
this figure shows the distribution of the positions that were
chosen by a viewer in the case of content centric caching and
a comparison with an unmodified related video list (see Sec-
tion 2.1) as indicated by the solid line shows the difference
in the two probability distributions. The comparison shows

that the content centric approach leads to the selection of
lower ranked videos. This is caused by the fact that non-
cached videos will be pushed down by the cache reordering
scheme in the related video list forwarded to the client. The
probability distribution reflects a content-driven behavior,
where the viewer makes the video selection based on the
content and not the position of the video.

Figure 10 serves as an indication that one of our basic as-
sumptions is correct: users are more likely to select from the
top of the related video list than from an arbitrary position.
It is only an indication, though, verification would require
us to construct related lists ourselves. Theoretically, it re-
mains possible that videos included in the related lists have
very different relevance and that real viewers would select
by content rather than order. We can only disprove this by
anecdotal evidence.

This observation confirms our assumption that the order
of videos in the related list does actually matter, and that an
increase in cache hits can actually be achieved. To find out
just how much improvement we can achieve, we investigate
an approach that we call the position-centric reordering. It
is investigated in the following subsection.

3.2 Position Centric
With the position centric approach, the related video list

position selected by the viewer stays fixed. This clearly
might result in a different content to what the viewer would
have watched would the cache not have modified the related
video list (see Figure 9). In Figure 10, the solid line shows
the distribution of position centric video selection from the
reordered list for both the traces used in our analysis. The
distribution is similar to the one in Figure 3, as we keep the
position of the related video selected by the user same as in
the original request.

Compared to the content centric approach, the position
centric approach introduces two inaccuracies that we cannot
account for without real-world testing. First, with more hits,
the set of cached videos will be more stable, and more videos
will be cached in competition with other content. This leads
to an underestimation of reordering on cache hits in our
study. Second, reordering keeps popular videos at the top
of the related video lists. The high probability of choosing
videos from the top of the list leads the emulated user into
cycles, which most real users would avoid. This leads to an
overestimation of reordering on cache hits in our study.

We used the data from the campus network traces and in-
formation retrieved through the YouTube API [8] to perform
a simulation of the cache-based reordering. We simulate the
caching of videos which were requested in the traces. E.g.,
if we detect a request for Video A in the trace, we log this
video as stored in the cache. Since each YouTube video is
assigned a unique identifier which is included in the video re-
quests in the network trace, we can accurately simulate the
behavior of the cache. Via the YouTube API, we retrieve
the related video list for each video that is requested in the
network traces. Each time we simulate a video request we
simulate the modification of the related list (retrieved via
the API) based on what is stored on the cache. E.g., if a
video in the related list obtained from the YouTube API is
present in the cache, the video is placed at the beginning of
the re-ordered related list and the videos which are not pre-
sented in the cache are pushed downwards. It is important
to note that we do not change the content of the related list

Trace No Reordering Cont. Centric Pos. Centric
T1 6.71% 6.71% 11.83%
T2 4.71% 4.71% 22.90%

Table 3: Comparison of hit ratio

obtained from the YouTube API at all. Only the order of
the videos in the related list is manipulated. We simulate
user behavior where the viewer selects the video from the
same position in the related list as presented to her in the
original trace. In this scenario, the content the user selects
at that position in the re-ordered related list might be dif-
ferent from the original content that was requested in the
trace. For this investigation we use a custom-built simula-
tor implemented in perl. The results from our analysis are
summarized in Table 3.

The simulation of a simple cache that does not perform
reordering of the related video list results in 7055 hits or a
6.71% hit ratio for trace T1 and a 4.71% hit ratio for trace
T2. Simulating a cache that employs the reordering of the
related video list with the position centric scheme results in
12431 hits or a 11.83% hit ratio for trace T1 and 1735 hits
or a 22.90% hit ratio for T2. Although the hit ratio is not
very high, these results shows the potential of this approach
since it significantly increases the hit ratio compared to the
simple caching case that does not modify the related video
list.

Finally, simulating a cache that employs the modification
of the related video list with the content centric scheme re-
sults in 7055 hits or a 6.71% hit ratio for trace T1 and 397
hits or a 4.71% hit ratio for trace T1, which is identical to
the results for the simple caching scheme. This is caused by
the fact that the video is selected that is not at the very top
of the related video list and, thus, not stored on the cache.

4. DISCUSSION
In this section, we discuss the advantages and disadvan-

tages of cache centric video recommendation. We address
the issues of increased cache complexity, server load reduc-
tion, alternative sorting of the related list, and adaptive
video streaming.

4.1 Cost of Recommendation List Reordering
We have shown in Section 3.2 that the cache hit rate is sig-

nificantly increased when the related video list is reordered
according to the cache content (see Table 3 for detailed data
on hit rates), using the access patterns from our campus
network traces. The cost of this process is a more com-
plex cache server. For each request, the server must identify
URLs from YouTube and upon success, the cache must be in-
spected to find whether the requested video is cached or not.
The cost of an additional cache lookup is dependent of the
cache structure and the size, but assuming a lookup struc-
ture based on a plain hash table, the average and worst case
lookup times are O(1+n/k) and O(n) respectively, where n
is the number of elements in the cache and k is the number
of buckets in the hash-table. Adding for example a second
data structure for the bucket list, like a self balanced tree,
the theoretical worst-case time of common hash table oper-
ations can be brought down to O(log m) rather than O(m)
where m is the number of elements in the hash-bucket.

Thus, the reordering comes at the described extra cache
server cost. However, taking into account the very long tail
distribution of videos, the gain in cache hit rate is sub-
stantial compared to the added processing. Additionally,
there are several systems today that already rewrite web-
page content. For example, Opera is currently rewriting
and rearranging the content in web-pages using proxies for
their opera mini browser [5]. Similarly, proxies like Filter-
Proxy [2], Muffin [4] and WebCleaner [7] have the capability
to modify content on the fly. We therefore claim that the
proposed reordering of items in the related list is worth the
additional complexity at the cache since this drawback is
outweighed by the benefit of a significantly increased hit
rate.

4.2 Reduction in Server Load
Another advantage of our related list reordering approach

based on the content in the cache is the reduction in the
server load, and hence, the reduction in back-end band-
width consumption. With the reordering of the related list
and pushing the contents from the bottom of the list to the
top, we take advantage of the user behavior in selecting the
videos from the top of the related video list. With reorder-
ing the list to contain the videos from the cache in the top
of the related list, we reduce the load on the YouTube server
(or higher level caches) proportional to the number of cache
hit gains. From the analysis in Section 3, we show that
with our reordering approach, the cache hits increase using
the T1 trace is from 6.71% to 11.83% which turns into an
approximately doubling of the hit rate. Similarly, the band-
width consumption reduces from 93.29% to 88.17%, which
provide a 5.12% reduction in server load and back-end band-
width reduction from our related list reordering approach.
Similarily, from the analysis of trace T2, we see a cache hit
increase from 4.71% to 22.9% which is almost a five times
increase on the hit rate. From the YouTube server point of
view, this is a server load reduction of 18.19%.

4.3 Local Popularity Based Sorting of Related
List Items

So far, the reordering of the related list does not take dif-
ferences of local popularity of cached videos into account. As
mentioned in Section ??, the related list reordering is based
on a stable sort. This reordering could be further evolved
by slightly modifying the sorting algorithm such that it also
sorts the locally cached videos by their local popularity. Sim-
ilar to the original reordering approach, the locally cached
video would still be pushed to the top of the related list. But
the order in this group of videos would now be ordered by lo-
cal popularity. For example, if video C is more popular than
video B, then video C would be ranked first in the related
video list that is sent to the client. This approach, however,
needs further investigation to study its feasibility. First of
all, the actual differences in popularity for videos that are
stored on the local cache and belong to the related list of a
video have to be determined. We believe that only signif-
icant differences in the popularity of the respective videos
would render this approach feasible.

4.4 Adaptive Video Streaming
Today, many commercial service providers use some kind

of adaptive streaming solution where the bandwidth con-
sumption (and thus video quality) is adapted to the amount

of available resources. At first, this will obviously affect
the caching. However, according to YouTube [9], this fea-
ture is currently only supported for live streaming, which is
not the focus of our work. While YouTube does not sup-
port adaptive streaming for user generated content, it offers
some of this content in alternative formats and resolutions,
and gives the viewer the option in which quality (format)
the video should be streamed. From our point of view, the
same video in a completely different format represents a new
object, which is treated in the same way as a object that
represents different content. Furthermore, we also expect a
convergence towards higher quality data in the cache if the
cache hit ratio is increased as more users then experience a
higher resource availability as it is unnecessary to go all the
way to the YouTube servers or higher level caches. Conse-
quently, in the work presented in the paper, we do not take
into account adaptive video streaming.

Nevertheless, segmented adaptive streaming approaches
will influence the caching results and how to design a caching
policy. Each segment is available in multiple qualities and
the system automatically adapts between qualities. How-
ever, this is out of scope for our current YouTube investiga-
tion, but such a topic is subject for future work.

5. RELATED WORK
The use of proxies and caches has been intensively studied

in related work. In the following, we mention the ones clos-
est to our work. In [13] and [21], trace-driven simulations
were performed to investigate the effectiveness of caching for
YouTube videos. Although the traces for both studies were
different, the results showed that caching can reduce server
and network load significantly. Both studies did not consider
reordering the related video list to increase the efficiency of
the cache.

Besides caching, YouTube’s recommendation system (the
related video list) has also been studied in related work.
In [19], Zhou et al. analyzed two data sets (one directly
crawled from YouTube and the other one a trace from a
campus network) to investigate if the position of a video in
the related list has significant impact on it being selected by
the viewers. The results of this analysis show that a large
percentage of viewers select videos they watch from the re-
lated list (see Figure 2). In follow on work [20], Zhou et
al. perform further analysis of YouTube’s recommendation
system based on global statistics for YouTube videos. The
authors show that the click through rate is proportional to
the position of the video on the related list (the higher the
position of the video on the list, the higher the chance that
it will be selected by the viewer). As in [19], the results con-
firm our assumption on related list usage and support the
position centric approach related list reordering approach.
While the goal of the work presented in [17] was to show
how the prefetching of prefixes from videos on YouTube’s
related list can improve caching, it also shows that the re-
lated list is often used by viewers to select a video (see Fig-
ure 2). In contrast to the work we present in this paper, no
modification of the related list at the cache is proposed.

Cheng et al. [16] measured the YouTube video graph cre-
ated by related video links and found that the graph has
a large clustering co-efficient and exhibits the small world
property. A simulation-based evaluation of a P2P video
sharing systems showed that if users use the related video
list to browse videos, the percentage of source peers that

have the requested video in their cache is high. Cheng and
Liu [15] also proposed a P2P video sharing system to re-
duce YouTube server load and suggested using prefetching
based on YouTube’s related video list at the clients of a P2P
system to provide smooth transition between videos. Their
evaluation was based on emulated user browsing pattern.
The evaluation of their approach showed that it performs
significantly better (55% hit ratio) comparing with a ran-
dom prefetching approach (nearly 0% hitrate).

In [12] and [11], Adhikari et al. uncover the overall ar-
chitecture of the YouTube video distribution system. While
our results presented in Section 2.3 agree with their find-
ings, their work does not investigate which of the videos of
the related list are transmitted from which cache level. In
addition, their work is not concerned with improving the
efficiency of YouTube caches.

Chakareski [14] takes a more general view on recommender
systems (called catalogues in his case) to develop an opti-
mization framework that has the goal to reward providers if
an item selected by a customer can be provided immediately
and penalize them if the provision is delayed. Similar to our
case, the author shows that optimizing for immediate access
to items at the beginning (or top) of a catalogue is beneficial
and optimizes the reward for the provider. The paper does
not reveal how this immediate access can be provided, and
we see our work as complementary part since it addresses
content provision. In addition, our study is based on actual
user behavior obtained from trace data.

To the best of our knowledge the work we present in this
paper is the first that investigates how reordering or infor-
mation provided by a recommendation system based on a
cache’s content can improve its performance.

6. CONCLUSION
Recent works have shown that, YouTube viewers select

their next video request from the related list provided by
YouTube on the watch page of the current video with high
probability. In this paper, we take advantage of this user
behavior to modify the related list provided by YouTube
based on the content already requested by the users in a
gateway network. In our approach, the related list is modi-
fied only in the order of appearance on the user’s webpage,
not the content itself. During the modification, the related
videos present in our cache, which are the videos already
requested by the users, are moved to the top of the list and
subsequently the related videos not cached are moved down
the order. By analyzing a campus network trace filtered for
YouTube traffic, we find that, users generally request videos
from the top half of the related list and hence moving the
related videos already present in our cache makes the ap-
proach more advantageous.

We analyze our approach in a simulation based study on
the network trace captured on a campus gateway. We de-
fine two different approaches of video selection from the re-
ordered related list. Content Centric selection, where the
user selects the same video as he would have originally se-
lected and Position Centric selection, where the user selects
a video from the same position on the related list before re-
ordering, which might change the original content. From our
simulation study, we find that Position Centric selection of
the reordered related list yields a better hit rate than Con-
tent Centric selection, which does not take advantage of the
content in the cache.

We also analyze the YouTube caching strategy for the re-
lated videos of the requested videos. We find that YouTube
does a three-tier caching for all its requests and uses load
balancing techniques to determine the cache from which the
video is served. This shows that YouTube does not give
special preferences to the top order of related videos re-
quested by the users. We recommend that, serving the top
order (presumably Top 5) of the related videos of each re-
quested video from the nearest cache reduces the latency of
the YouTube videos requested by the users.

From the analysis of the caching techniques used by YouTube
and our related list reordering approach, we conclude that
reordering the related list presented to the user based on
the content already requested by the users, yield a better
hit rate of the caches, thereby reducing the bandwidth con-
sumption by multimedia requests and hence the latency in
content delivery. Also, serving the top order of the related
list videos from the nearest cache instead of a load balanc-
ing approach between three-tiers of caching will reduce the
latency in providing the content requested by the user.

7. REFERENCES
[1] Endace DAG Network Monitoring Interface.

http://www.endace.com/.

[2] Filter Proxy.
http://filterproxy.sourceforge.net/.

[3] Google Transparency Report. http://www.google.
com/transparencyreport/traffic/?r=US&l=

YOUTUBE&csd=1345235172273&ced=1346728973645/.

[4] Muffin. http://muffin.doit.org/.

[5] Opera Mobile. http://www.opera.com/mobile/.

[6] tcpdump. http://www.tcpdump.org/.

[7] Web Cleaner.
http://webcleaner.sourceforge.net/).

[8] YouTube API.
https://developers.google.com/youtube/.

[9] YouTube Keynote at MMSys 2012.
https://docs.google.com/presentation/pub?id=

1bMLitOe_fxARBbgcu1v1xaJj89hb_

JGXYse17Xvgwro&start=false&loop=false&delayms=

3000#slide=id.g47538e9_2_210.

[10] YouTube Press Statistics.
http://www.youtube.com/t/press_statistics/.

[11] V. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang.
Vivisecting YouTube: An Active Measurement Study.
In INFOCOM, March 2012.

[12] V. Adhikari, S. Jain, and Z.-L. Zhang. Where Do You
”Tube”? Uncovering YouTube Server Selection
Strategy. In ICCCN, August 2011.

[13] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and
S. Moon. I Tube, You Tube, Everybody Tubes:
Analyzing the World’s Largest User Generated
Content Video System. In IMC, October 2007.

[14] J. Chakareski. Browsing Catalogue Graphs: Content
Caching Supercharged!! In ICIP, September 2011.

[15] X. Cheng and J. Liu. NetTube: Exploring Social
Networks for Peer-to-Peer Short Video Sharing. In
INFOCOM, April 2009.

[16] X. Cheng, J. Liu, and H. Wang. Accelerating YouTube
with Video Correlation. In WSM, November 2009.

[17] S. Khemmarat, R. Zhou, L. Gao, and M. Zink.
Watching User Generated Videos with Prefetching. In
MMSys, February 2011.

[18] D. E. Knuth. The Art of Computer Programming,
volume 3: (2nd ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1998.

[19] R. Zhou, S. Khemmarat, and L. Gao. The Impact of
YouTube Recommendation System on Video Views.
In IMC, November 2010.

[20] R. Zhou, S. Khemmarat, L. Gao, and H. Wang.
Boosting Video Popularity through Recommendation
Systems. In DBSocial, June 2011.

[21] M. Zink, K. Suh, Yu, and J. Kurose. Characteristics of
YouTube Network Traffic at a Campus Network -
Measurements, Models, and Implications. Elsevier
Computer Networks, 2009.

