
Latency reducing TCP modifications for thin-stream interactive
applications

Andreas Petlund, Kristian Evensen, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory

Norway
{apetlund|kristrev|griff|paalh}@simula.no

1 Abstract

A wide range of Internet-based services that use reliable transport protocols display what we call thin-
stream properties. This means that the application sends data with such a low rate that the retransmission
mechanisms of the transport protocol are not fully effective. In time-dependent scenarios, packet loss can
be devastating for the service quality. In order to reduce application-layer latency when packets are lost,
we have implemented modifications to the TCP retransmission mechanisms in the Linux kernel. We have
also implemented a bundling mechanism that introduces redundancy in order to preempt the experience
of packet loss. The enhancements are applied only if the stream is detected as thin. This is accomplished
by defining thresholds for packet size and packets in flight. We have implemented these changes in
the Linux kernel (2.6.23.8), and have tested the modifications on a wide range of different thin-stream
applications. Our results show that applications which use TCP for interactive time-dependent traffic
will experience a reduction in both maximum and average latency, giving the users quicker feedback to
their interactions.

Availability of such mechanisms will give Linux an edge when it comes to providing customizability
for interactive network services. The quickly growing market for Linux gaming may benefit from low-
ered latency. As an example, most of the large MMORPG’s today use TCP (like World of Warcraft [9]
and Age of Conan [10]) and several multimedia applications (like Skype [11]) use TCP fallback if UDP
is blocked.

2 Introduction

Reliable transport protocols that are in widespread use today, like TCP, are primarily designed to support
connections with high throughput efficiently. The aim is to move lots of data from one place to another
as fast as possible (like HTTP, FTP etc.). However, a wide range of networked applications do not
follow this pattern. Important examples include interactive applications where small amounts of data are
transmitted sporadically, e.g., multiplayer online games, audio conferences, and remote terminals. Due to
the highly interactive nature of these applications, they depend on timely delivery of data. For example,
data delivery latency in audio conferences should stay below 150-200 ms to achieve user satisfaction [1],
and online games require latencies in the range of 100-1000 ms, depending on the type of game, to be
able to provide a satisfying experience to the players [7]. Furthermore, when dealing with stock exchange
systems, even low delays in delivery may constitute a large potential economic disadvantage.

To support different requirements for timeliness, distributed interactive applications have historically
been developed for use either with transport protocols that can provide per-stream quality of service
(QoS) guarantees, or with protocols that at least allow the sender to determine the timing of the data
transmission. The QoS protocols for the first approach have not become widely available. The use
of UDP (the protocol that provides for the second approach) has been widely criticized for its lack of

payload size (Bytes) packet interarrival time (ms) avg. bandwidth

application percentiles requirement

(platform) average min max average median min max 1% 99% (pps) (bps)

World of Warcraft 26 6 1228 314 133 0 14855 0 3785 3.185 2046

Anarchy Online 98 8 1333 632 449 7 17032 83 4195 1.582 2168

Age of Conan 80 5 1460 86 57 0 1375 24 386 11.628 12375

BZFlag† 30 4 1448 24 0 0 540 0 151 41.667 31370

Casa (sensor network) 175 93 572 7287 307 305 29898 305 29898 0.137 269

Windows remote desktop 111 8 1417 318 159 1 12254 2 3892 3.145 4497

Skype (2 users)† 236 14 1267 34 40 0 1671 4 80 29.412 69296

SSH text session 48 16 752 323 159 0 76610 32 3616 3.096 2825
† Application using TCP fallback due to UDP being blocked by a firewall.

Table 1: Examples of thin stream packet statistics based on analysis of packet traces.

congestion control mechanisms. Consequently, many distributed interactive applications today are built
to work with TCP, and many applications that use UDP (in spite of said criticism) fall back to using TCP
if, for example, a firewall is blocking UDP traffic. The disadvantage of using TCP is that applications
that generate what we call “thin streams”, can experience severe delays when TCP recovers from loss.
A stream is called “thin” if at least one of the following criteria is fulfilled: a) The packet interarrival
time (IAT) is too high to be able to trigger fast retransmissions. b) The size of most packets is far
below the maximum segment size (MSS). The occasional high delays for thin streams are caused by the
retransmission mechanisms common for reliable transport protocols [2].

Table 1 contains a statistical breakdown of applications with thin-stream properties. It is a selection
from a range of interactive applications that we have analysed in order to better understand the properties
of these streams. Common for all of the presented applications is that the average packet size is small.
The interarrival times show greater variation, but are all high compared to more throughput-intensive
datastreams.

As of today there are several TCP mechanisms implemented in the Linux kernel that affect the la-
tency of thin streams. The most notable is “Nagle’s algorithm” which delays small packets in order to
bundle them together, thus avoiding the transmission of several small packets with relatively short inter-
val. Another mechanism is “delayed ACKs”, which delays the sending of ACKs in order to ACK more
segments with one message. Both of these mechanisms causes unwanted delay for interactive applica-
tions (especially combined), and the vigilant developer will turn them off in the case of an interactive
application using TCP.

We have implemented a set of modifications to TCP in the Linux kernel with the goal of reducing
the data delivery latency for thin stream applications when retransmissions are necessary. In the next
section, we present the basics of our modifications and how they are applied.

3 Thin stream modifications

In this section, we will go into detail on our three TCP modifications. They have all been implemented
and tested in the Linux 2.6.23.8-kernel.

3.1 Removal of exponential backoff

When thin stream applications send out packets with high IAT, most retransmissions are caused by time-
outs (due to the lack of dupACKs). A retransmission timeout invokes exponential backoff, which doubles

the time to wait for the next retransmission. If the number of packets in flight (i.e., unacknowledged pack-
ets) is less than the number required to trigger a fast retransmission, we remove the exponential element
(i.e. do linear timeout intervals). Since streams that gain from this modification are very thin, the in-
crease in bandwidth consumption is very small. The exponential backoff is located in tcp_timer.c and by
modifying the if-test surrounding the update of the retransmission timer, we allow exponential backoff
to occur only if the stream is considered “thick”.

The mechanism can be activated system-wide using the sysctl “net.ipv4.tcp_force_thin_rm_expb”,
and on a per stream basis using the IOCTL “TCP_THIN_RM_EXPB”

3.2 Faster fast retransmit

Instead of waiting several hundred milliseconds for a timeout retransmission and then suffer from ex-
ponential backoff, it is more desirable to trigger a fast retransmission. However, when the IAT is high,
the time it takes to send enough packets to generate three dupACKs will often exceed the retransmission
timeout timer. We have therefore reduced the number of required duplicate acknowledgments to one,
provided that the stream is thin.

To reduce the number of required dupACKs, we have added another test to tcp_time_to_recover()
in tcp_input.c. If the stream is thin, the kernel triggers a fast retransmission after only one dupACK.

The mechanism can be activated system-wide using the sysctl “net.ipv4.tcp_force_thin_dupack”,
and on a per stream basis using the IOCTL “TCP_THIN_DUPACK”

3.3 Redundant Data Bundling

Many thin stream applications send packets that are significantly smaller than the MSS, as shown in table
1. Redundant data-bundling (RDB) is a technique that exploits the small packet size, and redundantly
bundles unacknowledged data into packets that are to be sent (either new or retransmitted). By bundling,
the chance of lost data arriving (and being acknowledged) before a retransmission increases.

Out of the three modifications, RDB is the most complex, and its implementation touches three files:
tcp.c, tcp_output.c and tcp _input.c. In tcp.c, we have modified tcp_sendmsg(), which is the entry point
into the kernel for all packets that are sent using TCP. Provided that certain criteria are met (including
that the new packet size will not exceed the MSS), the unacknowledged data in the previous packet in
the send queue is copied into the one that is to be sent. Similarly, in tcp _retransmit_skb() (which is the
function called when a packet is to be retransmitted) in tcp _output.c, the kernel performs the same check
and copies the unacknowledged data contained in the next packet on the send queue (i.e., the reverse of
what happens upon send).

When an acknowledgment is received, the acknowledged data is removed from all packets containing
it. Because of the bundling, packets can be “partially” acknowledged. To remove only some data, we had
to modify tcp _clean _rtx _queue(), which deals with packets that are acknowledged. Now the function
also removes acknowledged data (i.e., not just entire packets).

One of the challenges that we faced during the development of RDB, was scatter-gather. The early
versions were developed on machines with old hardware that did not support this feature, thus, we did
linear memory copy. RDB now supports network cards with and without scatter-gather. If the feature is
supported, the kernel copies (and removes) pages instead of the actual data.

The RDB mechanism can be activated system-wide using the sysctl “net.ipv4.tcp_force_thin_rdb”,
and on a per stream basis using the IOCTL “TCP_THIN_RDB”

A major concern with RDB is bandwidth consumption. If the IAT is low and packet size small, a
stream will consume large amounts of bandwidth (at least compared to if RDB was switched off). To
avoid this in scenarios where bandwidth consumption is important (e.g., mobile), we support limiting the
maximum bundle packet size. By providing a bundling limit to the sysctl “net.ipv4.tcp_rdb_max_bundle_bytes
”, the kernel will never allow the bundled packets to exceed this size. We are currently looking into
finding a sweet spot between the tradeoffs of bandwidth consumption, IAT, packet size and link charac-
teristics.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

C
D

F
 (

by
te

s)

Latency above minimum observed value (ms)

CDF: BZflag - transport layer - 2% loss, 130ms RTT

TCP with modifications
Regular TCP

(a) Transport layer latency.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

C
D

F
 (

by
te

s)

Latency above minimum observed value (ms)

CDF: BZflag - Application layer - 2% loss, 130ms RTT

TCP with modifications
Regular TCP

(b) Application layer latency.

Figure 1: CDFs of BzFlag latency.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 200 400 600 800 1000 1200 1400

C
D

F
 (

by
te

s)

Latency above minimum observed value (ms)

SSH session replayed: 6 hours - CDF, 2% loss, 130ms RTT

TCP with modifications
Regular TCP

Figure 2: CDF of SSH application layer latency.

4 Experiments and results

Our work on the topic of latency for reliable thin streams to this date is summarized in a series of papers
that discuss the problems that thin streams pose to reliable transport protocol performance, possible ways
to improve on this condition and tests performed to show the effects of the modifications [2, 3, 4, 6, 5].
Here, we will present two typical examples of scenarios where all of the three modifications are tested.

Figure 1 shows the analysis with regard to delivery latency from dumps of BZFlag [8] game traffic.
This game traffic has relatively low interarrival time and very small packets (as shown in table 1). This
makes the potential for latency gain by bundling large. The tests were performed by replaying captured
data from a BZFlag server over a link where we created loss and delay using a network emulator. Figure
1(a) shows the delivery latency on the transport layer. This reflects when each segment actually arrived
at the receiver. We can see that for 2% of the packets, the delay increases abruptly for unmodified TCP
(reflecting the test loss rate). The version implementing the modifications, however, is able to deliver
many more segments at a lower latency. When we consider TCP’s in-order requirement, we get the
graph shown in figure 1(b). The graph takes into account that segments that have arrived must wait for
earlier, delayed segments before being delivered to the application. This creates a delay in the delivery
of as much as 14% of the packets when the loss rate is 2% for unmodified TCP. For the TCP version that
implements the thin-stream modifications, the application delay is nearly identical to the transport layer
delay.

Figure 2 shows the analysis of replayed data from an SSH-session on the same emulated network
(RTT130ms, loss 2%). As shown in table 1, this stream has much higher interarrival time between
packets, and will therefore benefit less from the bundling mechanism. The modified retransmission
schemes, however, improve the retransmission latencies and the maximum latencies.

Unfortunately, our three TCP modifications may also become active when a network bottleneck is

responsible for reducing long-term average throughput to less than 4 packets per RTT, activating the
modifications. In this case, our modifications will visibly violate the fairness principle. RDB hides
many packet losses from the receiver entirely, packet loss will not necessarily result in a reduction of the
send rate, and the stream will consume more bandwidth than one without RDB. There is a fairly narrow
window for this to happen, because TCP will bundle small send buffer anyway when transmission is
blocked, thereby deactivate RDB. Removing exponential backoff and reducing the number of required
dupACKs makes a thin stream (that experiences loss) send additional packets, and this will increase the
number of transmission chances and lead, in this situation, to an increased average throughput, violating
fairness. Determining exactly how bad the violation is is one of our top priorities, however, due to the
thinness of the streams we do not believe it to be that bad.

5 Conclusion

Although there are non-reliable transport protocols available for developers of interactive neworked ap-
plications, many still choose to use TCP. In the Linux kernel, TCP has a lot of customization options,
but most are aimed at maximizing throughput. Support in the Linux kernel for tuning TCP for interac-
tive thin streams will help make Linux a better platform for hosting interactive services. A server could
implement the features, and give its clients the benefit of reduced latency (at least one way). Seen in the
light of the increasing market for Linux gaming, general inclusion of thin-stream features will also give
users the possibility to benefit from the modifications in both directions of the datastream.

References

[1] International Telecommunication Union One-way Transmission Time, ITU-T Recommendation
G.114, 2003.

[2] Griwodz, C., and Halvorsen, P. The fun of using TCP for an MMORPG, In International Workshop
on Network and Operating System Support for Digital Audio and Video (NOSSDAV), May 2006,
ACM Press, pp. 1-7.

[3] K. R. Evensen, A. Petlund, C. Griwodz, and P. Halvorsen Redundant Bundling in TCP to Reduce
Perceived Latency for Time-Dependent Thin Streams, In IEEE Communications Letters 12(4):334
– 336, 2008.

[4] A. Petlund, K. Evensen, C. Griwodz, and P. Halvorsen. TCP mechanisms for improving the user
experience for time-dependent thin-stream applications, In The 33rd Annual IEEE Conference on
Local Computer Networks (LCN), 2008.

[5] A. Petlund, K. Evensen, P. Halvorsen, and C. Griwodz. Improving application layer latency for
reliable thin-stream game traffic, In Netgames, Worchester, Ma. US, 2008, 2008.

[6] A. Petlund, K. R. Evensen, C. Griwodz. TCP Enhancements For Interactive Thin-Stream Applica-
tions, In NOSSDAV 2008 (ISBN: 978-1-60588-157-6/05/2008), 2008.

[7] M. Claypool and K. Claypool. Latency and Player Actions in Online Games, Communications of
the ACM 49, 11, Nov. 2005, 40-45.

[8] http://www.bzflag.org/ - BZFlag website

[9] http://www.worldofwarcraft.com - World of Warcraft website

[10] http://www.ageofconan.com/ - Age of Conan - Hyborian adventures website

[11] http://www.skype.com/ - Skype website

http://www.bzflag.org/
http://www.worldofwarcraft.com
http://www.ageofconan.com/
http://www.skype.com/

	Abstract
	Introduction
	Thin stream modifications
	Removal of exponential backoff
	Faster fast retransmit
	Redundant Data Bundling

	Experiments and results
	Conclusion

