
An Evaluation of Live Adaptive HTTP Segment
Streaming Request Strategies

Tomas Kupka
University of Oslo
tomasku@ifi.uio.no

Pål Halvorsen
University of Oslo

Simula Research Laboratory
paalh@ifi.uio.no

Carsten Griwodz
University of Oslo

Simula Research Laboratory
griff@ifi.uio.no

Abstract—Nowadays, several live and on-demand streaming
solutions use HTTP for signaling and data delivery. A frequently
used technique is to chop a continuous stream into segments,
encode these in multiple qualities and make these available for
download using plain HTTP methods. This approach has become
known as dynamic adaptive segment streaming over HTTP. Its
advantage is that the deployed web infrastructure is easily reused,
even for live segment streaming. In this case, however, it is not
strictly bulk traffic. We show in this paper, that the streaming
source is essentially an on-off source. Furthermore, this paper
analyzes several client-controlled segment request strategies for
live adaptive HTTP segment streaming. We present experimental
results showing the benefits and drawbacks of each strategy with
respect to achieved video quality, smoothness of playback and
end-to-end delay. We show that it matters how clients request
segments. The results indicate strongly that synchronization of
client requests has a negative impact on router queues and leads
to increased packet loss, and should thus be avoided to achieve
a high goodput.

Index Terms—live HTTP streaming, segment request strategy,
Content Delivery Network

I. INTRODUCTION

Streaming over HTTP has become a popular solution for
video delivery over the Internet. It runs on top of TCP, provides
NAT friendliness and is allowed by most firewalls. It has been
shown that video streaming over TCP [1] is possible as long
as congestion is prevented and that HTTP streaming can scale
to millions of users [2].

The general idea of adaptive HTTP segment streaming is
to chop the original stream into segments and upload these
to webservers. The video segments can then be downloaded
like traditional web objects. In the case of live streaming,
the segments are produced periodically, with a new segment
becoming available shortly after it has been recorded and
encoded completely. Furthermore, to cope with varying band-
width, each segment may be encoded in multiple qualities (and
thus bit rates). Bandwidth adaptation is a matter of down-
loading the segment in a different quality. The most promi-
nent approaches today are Microsoft’s Smooth Streaming [3],
Move Networks [2], Adobe’s HTTP Dynamic Streaming [4]
and Apple’s live HTTP streaming [5]. Moreover, it is under
standardization by 3GPP and ISO as DASH [6].

The two major goals for live adaptive HTTP segment
streaming are the maximization of the user perceived quality
and the minimization of the time between video capturing

and video presentation. We call this time the end-to-end (e2e)
delay. It is the propagation delay from the source to the
user’s screen and can vary throughout a streaming session.
It expresses the liveness of the stream.

In HTTP segment streaming, it is a client’s responsibility
to download the next segment before the previous segment
is completely played out. This implies deadlines by which
segments need to be ready. If a segment is not ready, a deadline
miss occurs, and the playback stalls.

This paper builds on our earlier adaptive HTTP streaming
systems [7]–[9]. Here, we investigate segment request strate-
gies that clients can implement. No modifications to the server
side are required. We investigate how client-side strategies
alone affect the sharing of a bandwidth bottleneck and the
resulting video quality and e2e delay. We consider a live video
source and a webserver that handles client requests. We neglect
the time it takes to encode and upload the segments to the
server, because this time cannot be influenced by the request
strategies.

Our scenario represents a building block for a larger dis-
tributed streaming architecture like for example the streaming
from 2010 winter Olympics provided by Smooth Stream-
ing [3]. We show in this paper that our results are also
applicable to content delivery network (CDN) like networks.
Moreover, our results indicate that a good strategy avoids
network congestion by not synchronizing client requests, i.e.,
non-synchronized requests lead to higher video quality and
smaller e2e delay.

II. CLIENT REQUEST STRATEGIES

In this section, we describe our model for live adaptive
HTTP segment streaming and the options of a client-side
request strategy. We also explain why we investigate only a
subset of all possible client-side strategies.

A. The segment streaming model

Figure 1 depicts the essentials of our model. At time ti, a
segment i has been encoded, uploaded and made available.
Like in several commercial systems, the segment playout
duration [8] is constant and equals ti+1 − ti. The letter A
denotes the point in time when a user starts streaming. We
call this time client arrival time.



ti ti+1 ti+2

time
Segment playout duration Segment playout duration

A

Figure 1. The segment streaming model

B. The option set of a strategy

We considered four important options for a segment request
strategy.

1) First request option (Pfr): At client arrival A, the client
requests segment i, which can be the latest available segment
or the next that will become available, i.e., t = 0 or 1 in Figure
1. We do not consider i < 0 because it implies high e2e delays
and i > 1 because it implies high start up latency (the client
needs to wait until the segment becomes available).

2) Playout start option (Pplayout): A client can start the
playout immediately after the first segment is downloaded or
delay the playout. To avoid high e2e delays already in the
design of a request strategy, we limit the playout delay to at
most one segment duration.

3) Next request option (Pnr): A client can request the next
segment at several points in time. We consider two of them.
A client can send the request some time before the download
of the current segment is completed (download-based request)
or send the next request some time ε before the playout of the
currently played out segment ends (playout-based request).

4) Deadline miss handling option (Pmiss): When a
segment is downloaded after the previous segment has been
played out completely (a deadline miss), the client can skip
the first part of the downloaded segment equal to the deadline
miss and keep the current e2e delay or start the playout from
the beginning of the segment extending the e2e delay.

To reduce the complexity and make the results easily
comparable, we decided to use only one quality adaptation
algorithm. Here, the first segment is retrieved at lowest
quality, and the quality of all other segments is based on the
download rate of the previous segment and the time available
until segment’s deadline. To compensate for small bandwidth
variations, the algorithm chooses the quality so that the
download ends some time before the segment’s deadline. We
plan to investigate other algorithms in the future.

C. Reduction of option combinations

Each option (Pfr, Pplayout, Pnr, Pmiss) has two possibil-
ities, resulting in 16 possible combinations. However, some
combinations can be eliminated.

Figure 2 illustrates a case when Pplayout is set to immediate
playout and Pmiss to video skipping. Segment 0 is requested
at r0, and the download is finished at d0. The playout starts
at p0 = d0, and p0 sets all consecutive deadlines (p1, p2,
..) implicitly. The time it takes to download the first segment
which is downloaded at the lowest quality is given by d0 −
r0. We see that d0 − r0 ≈ pi − ti which means that, under

Figure 2. Immediate playout start with video skipping

the same network conditions, the second segment can only
be downloaded at the lowest quality, and the server is going
to be idle between d1 and t2. This applies to all consecutive
segments because Pmiss is set to video skipping. We therefore
ignore combinations where Pmiss is set to video skipping and
Pplayout is set to immediate playout.

By design, every deadline miss leads to an e2e delay longer
than one segment duration, if Pplayout is set to delay the
playout to the next ti and Pmiss is set to e2e delay extension.
Because these options lead to a very high e2e delay, we ignore
combinations that have Pmiss set to e2e delay extension and
Pplayout set to playout delay.

Figure 3. Delayed playout, video skipping and playout based requests

Figure 3 illustrates a scenario where Pnr is based on the
playout time, Pmiss is handled by video skipping, and Pplayout

is delayed until the time next segment becomes available. All
clients that download their first segment between t0 and t1
start their playout at t1. With this, all consecutive deadlines
are fixed at ti, i > 2. All clients request the next segment at
the same time (Pnr), e.g., r1 in Figure 3. Consequently, the
server is idle between t1 and r1. The wastage of resources
is apparent, and therefore, we ignore combinations with these
options.

Out of the 6 remaining strategies, 4 extend the e2e delay
in case of a deadline miss (Pmiss set to e2e delay extension).
2 of these 4 strategies wait with the first request until a new
segment becomes available (Pfr set to delay the first request).
Even though this leads to a very small initial e2e delay, it
leads also to many deadline misses in the beginning of a
streaming session, because the clients essentially synchronize
their requests at ti. This leads to bad performance, as we show
later and the result are many user annoying playback stalls.
We therefore do not further evaluate these two strategies.

We discuss the 4 remaining strategies in the following
section, which we later evaluate with respect to the streaming
performance.

D. e2e delay-extending strategies

The two remaining e2e delay-extending strategies focus on
keeping the e2e delay as small as possible, but do not delay
the first request. We call them Moving e2e Delay Byte Based



Table I
EVALUATED STRATEGIES

Strategy Pfr Pplayout Pnr Pmiss

MoBy immed. immed. download b. extend e2e delay

MoV i immed. immed. playout b. extend e2e delay

CoIn immed. delayed download b. skip video

CoDe delayed delayed download b. skip video

Requests (MoBy) and Moving e2e Delay Playout Based
Requests (MoV i).
MoBy is illustrated in Figure 4. A client requests the

latest segment that is available at the time of its arrival A,
i.e., segment t0 in Figure 4. The playout starts immediately
after the downloaded is finished, p0 = d0. The next segment
request is sent to the server when all but link delay ∗ link
bandwidth bytes of the currently downloaded segment are
fetched. This pipelining of requests ensures that the link is
fully utilized [10]. Please note, that in Figure 4, the next
segment is not available at a time that would allow request
pipelining. Therefore, it is requested later when it becomes
available1.

Figure 4. Strategy MoBy

Figure 5 illustrates the MoV i strategy. The only difference
between MoV i and MoBy is that MoV i sends the next
request when there are p1−p0

2 seconds of playout left. This
leads to a more evenly distributed requests over [ti, ti+1] as
shown in the result section.

Figure 5. Strategy MoV i

E. Constant e2e delay strategies

The last two strategies of the remaining 4 strategies keep
a constant e2e delay of one segment duration throughout a
streaming session. If a deadline is missed, the first part of
the segment equal to the deadline miss is skipped. Both of
these strategies request a segment when it becomes available
and their request synchronization leads, in theory, to even
bandwidth distribution among all clients. We call these two
strategies Constant e2e Delay Immediate Request (CoIn) and
Constant e2e Delay Delayed Request (CoDe).

Strategy CoIn is illustrated in Figure 6. A client first
requests the latest segment on the server at r0 = A. The
next segment is requested at t1. The e2e delay is fixed and

1Segment availability can be checked by consulting a tracker file [8].

equals ti+1 − ti, i.e., a segment that becomes available at ti
is presented at ti+1. This means that the client has ti+1 − ti
seconds to download the next segment.

Figure 6. Strategy CoIn

Figure 7 illustrates strategy CoDe. The difference between
CoIn and CoDe lies in the first request. CoDe delays the first
request until the next segment becomes available, i.e., r1 6= A.
CoDe forces all clients to send their requests at the same time
starting with the first segment (in contrast to CoIn).

Figure 7. Strategy CoDe

All the strategy properties are summarized in Table II. These
properties are only valid when no deadline misses occur.

Table II
STRATEGY SUMMARY (s = SEGMENT DURATION)

Strategy Startup delay e2e delay Available
download time

MoBy d0 − t0 d0 − t0 d0 − t0

MoV i d0 − t0 d0 − t0 ≤ 0.5s

CoIn µ = 0.5× s s s

CoDe µ = 1.5× s s s

III. EMULATION SETUP

Since large-scale real-world experiments require both a lot
of machines and users, we performed experiments in our
lab using an emulated network with real networking stacks.
Our hardware setup is shown in Figure 8. We used Linux
OS (kernel v2.6.32) with cubic TCP congestion control with
SACK and window scaling on. For traffic shaping, we used
the HTB qdisc with a bfifo queue on the egress interfaces
of the client and server machine. The queue size was set
to the well known rule-of-thumb RTT ∗ bandwidth [11].
The queue represented a router queue in our approach. The
client machine emulated requests from clients and the server
machine emulated a webserver2.

Figure 8. Emulation setup

2All data was served from memory to avoid non-networking factors like
disk speed.



For video quality, we used low, medium, high and super
segment qualities with segment sizes of 100KB, 200KB,
300KB and 400KB, respectively. The segment duration was
2 seconds as proposed by [8], [12].

We ran two sets of experiments. The first set, called short
sessions scenario, included 1000 clients, each downloading
15 segments, which equals approximately the duration of a
short news clip. The client interarrival time was modeled as
a Poisson process with 100 ms interarrival time (equals 600
client arrivals per minute). The second set included 300 clients
each downloading 80 segments, which represent an unbounded
live stream. We used the same Poisson process. This set
is called long sessions scenario. To examine the influence
of arrival time, we reran all experiments also with constant
interarrival time of 100 ms.

The server served a peak of about 300 concurrent clients
in both scenarios. The short sessions scenario was limited by
the interarrival time of 100ms and the number of segments per
client. The long sessions scenario was limited by the number
of clients.

We evaluated four bandwidth limitations restricting the
maximal quality clients could download for both scenarios:
40 MB/s, 55 MB/s, 65 MB/s and 80 MB/s. We repeated each
experiment 20 times.

Our results are based on stable system state. We consider the
system to be in a stable state when the number of active clients
is about constant, i.e., client arrival rate equals client departure
rate. For the short sessions scenario, this means examining
segments 30 to 50, and for the long sessions scenario, segment
20 and beyond.

IV. RESULTS AND ANALYSES

We were interested in the interaction of concurrent segment
downloads and its impact on video quality and e2e delay. We
therefore analyzed the goodput (and the corresponding video
quality) of each strategy as well as the parallelism induced by
each strategy.

A. Strategy goodput

Figure 9 and Figure 11 show the collected goodput statistics
for short and long sessions scenarios. Each box plot value3

represents the sum of bytes received by all clients during one
experiment divided by the stream’s duration.

The goodput is, like a regular bulk download, reduced by
the protocol header overhead, and additionally by the time
the client spends waiting until the next segment becomes
available. For short sessions, Figure 134 shows the number of
concurrently active clients over time. We see that the number
of clients drops (clients are idle waiting) towards the end of
each 2 second interval. We further discuss the effects and
consequences in the section on parallelism.

3Minimum, maximum, quartiles, median and outliers are shown. Please
note that in many cases, these overlap in the graphs.

4The same pattern was observed also for long sessions scenario.

The goodput of strategies CoIn and CoDe increases as
more bandwidth becomes available. The reason for this be-
haviour is that these strategies keep a constant e2e delay and so
provide a full segment duration of time for segment download.

Figure 14 and Figure 15 show the improvement in terms
of segment quality. The height of the graph corresponds to
the total number of segments downloaded. The number of
segments of each quality is represented by the grey scale
starting at the top with the lightest color representing the super
quality. The trend is clear, i.e., the more bandwidth the higher
the quality.

Strategies MoBy and MoV i do not follow the same trend
as CoIn and CoDe. MoBy and MoV i increase the goodput
up to the bandwidth limitation of 55MB/s. The goodput
increases slowly or stagnates for higher bandwidths. We can
observe the same for segment quality. Figure 16 and 17
indicates that these two strategies are trading goodput for
smaller e2e delay, i.e., the stream is more ”live”.

It is clear from Figure 14 and especially Figure 15 that
strategy MoV i is able to achieve high quality quickly and
still keep a small e2e delay. The reason lies in parallelism,
which we discuss in the next section.

B. Parallelism and its consequences

Figure 13 shows a representative 20 second snapshot of
the number of concurrently active clients. The strategy that
stands out is MoV i. The maximum number of concurrently
downloading clients is about one third compared to the other
strategies. Yet, as discussed in Section IV-A, MoV i does
not suffer severe quality degradation (and it does not discard
segments).

The mixture of Pnr based on playout and Pplayout set to im-
mediate playout makes MoV i requests distributed according
to client arrival distribution, e.g., the requests are distributed
over each interval. This is an important difference to the other
strategies.

We found that the reason for MoV i’s good overall perfor-
mance is the number of dropped packets by the shaping layer.
Figure 12 shows a representative plot of the number of packets
dropped by the emulated router queue. The queue size is set to
RTT ∗bandwidth and accepts therefore only a certain number
of packets. We observed that synchronized requests overflow
the router queue much more often than requests distributed
over time as is the case for MoV i.

Because the Pnr option of MoV i is based on playout
time, more specifically a client requests the next segment
p1−p0

2 seconds before the playout of the previous segment
ends (Section 2.3), MoV i clients have at most half of the
time available to download a segment compared to CoIn
and CoDe. Yet, they are still able to download the same or
higher quality segments (Figure 14 and 15). Moreover, the
e2e delay is in many cases lower than the segment duration
(Figure 16 and 17). The only time the strategy has a problem
is when there is not enough bandwidth available to sufficiently
distribute client downloads and the downloads start to overlap
too much.



3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(a) MoBy

3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(b) MoVi

3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(c) CoIn

3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(d) CoDe

Figure 9. Short sessions scenario goodput

0 200 400 600 800 1000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Deadline misses ECDF

Deadline miss length [ms]

E
C

D
F

40MB/s

55MB/s

65MB/s

80MB/s

(a) MoBy

0 200 400 600 800 1000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Deadline misses ECDF

Deadline miss length [ms]

E
C

D
F

40MB/s

55MB/s

65MB/s

80MB/s

(b) MoVi

0 200 400 600 800 1000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Deadline misses ECDF

Deadline miss length [ms]
E

C
D

F

40MB/s

55MB/s

65MB/s

80MB/s

(c) CoIn

0 200 400 600 800 1000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Deadline misses ECDF

Deadline miss length [ms]

E
C

D
F

40MB/s

55MB/s

65MB/s

80MB/s

(d) CoDe

Figure 10. Short sessions scenario deadline misses’ empirical distribution function (ECDF)

3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(a) MoBy

3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(b) MoVi

3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(c) CoIn

3
0

4
0

5
0

6
0

7
0

Goodput

Bandwidth limit [MB/s]

G
o
o
d
p
u
t 
[M

B
/s

]

40 55 65 80

(d) CoDe

Figure 11. Long sessions scenario goodput

Figure 18 shows a box plot of segment download speed as
experienced by the clients. The graph includes all bandwidths
experienced by all clients for every segment in every experi-
ment run. Because of the small number of concurrent clients,
MoV i is able to make more out of the available bandwidth.
The other strategies loose more data in competition for space
in the router queue.

If a MoV i client determines that enough time is available
for downloading higher quality segments, it probes by down-
loading a higher quality segment at the next opportunity. It
then experiences more competition because it enters the down-
load slots of other clients, and withdraws immediately if there
is not enough bandwidth. This approach reduces the number
of concurrent clients and thus, the pressure on the router. The
other strategies can never probe. The requests of active clients
are always synchronized. The increased competition leads to
more unpredictable bandwidth distribution among clients and
makes it harder for the clients to estimate available bandwidth

based on the download of the previous segment.
The deadline-miss graphs in Figure 10 (long sessions sce-

nario results are very similar) indicate that the MoV i strategy
is able to estimate the bandwidth as well or better than the
other strategies.

MoBy MoVi CoIn CoDe

%
 d

ro
p
p
e
d
 p

a
c
k
e
ts

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 12. Number of packets dropped by the emulated router queue for
55MB/s bandwidth limitation



40 45 50 55 60

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

MoBy

time [s]

n
u
m

b
e
r 

o
f 
c
lie

n
ts

(a) MoBy

40 45 50 55 60

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

MoVi

time [s]

n
u
m

b
e
r 

o
f 
c
lie

n
ts

(b) MoVi

40 45 50 55 60

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

CoIn

time [s]

n
u
m

b
e
r 

o
f 
c
lie

n
ts

(c) CoIn

40 45 50 55 60

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

CoDe

time [s]

n
u
m

b
e
r 

o
f 
c
lie

n
ts

(d) CoDe

Figure 13. Concurrent downloads in the short sessions scenario (55MB/s)

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
2
0
0
0
0

6
0
0
0
0

1
0
0
0
0
0

(a) MoBy

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
2
0
0
0
0

6
0
0
0
0

1
0
0
0
0
0

(b) MoVi

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
2
0
0
0
0

6
0
0
0
0

1
0
0
0
0
0

(c) CoIn

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
2
0
0
0
0

6
0
0
0
0

1
0
0
0
0
0

(d) CoDe

Figure 14. Short sessions quality distribution of downloaded segments (from super quality at the top to low quality at the bottom)

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
5
0
0
0
0

1
5
0
0
0
0

2
5
0
0
0
0

3
5
0
0
0
0

(a) MoBy

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
5
0
0
0
0

1
5
0
0
0
0

2
5
0
0
0
0

3
5
0
0
0
0

(b) MoVi

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
5
0
0
0
0

1
5
0
0
0
0

2
5
0
0
0
0

3
5
0
0
0
0

(c) CoIn

40MB/s 55MB/s 65MB/s 80MB/s

N
u
m

b
e
r 

o
f 
s
e
g
m

e
n
ts

0
5
0
0
0
0

1
5
0
0
0
0

2
5
0
0
0
0

3
5
0
0
0
0

(d) CoDe

Figure 15. Long sessions quality distribution of downloaded segments (from super quality at the top to low quality at the bottom)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

��	
��
� ���� ������

�
��
�
�
�
��

��
�
�

�� �� �� ��

(a) MoBy

�
�
�
�

�
�
�
�

�
�
�
�

���������

���	
�	� ����� ������

�
��
�
�

��
�
��
�
�

�� �� �� ��

(b) MoVi

Figure 16. Short sessions scenarios e2e delay (note: e2e delay y-axes have
different scale)

C. Deadline misses and the bandwidth fluctuations

There is, theoretically, only one factor that influences the
deadline misses, i.e., bandwidth fluctuation. Under perfect

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

���������

��	
��
� ���� ������

�
��
�
�
�
��

��
�
�

�� �� �� ��

(a) MoBy

�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������

�����	�
� �		
 ������

�
	
�
�
�
	�


�
�
�

�� �� �� ��

(b) MoVi

Figure 17. Long sessions scenarios e2e delay (note: e2e delay y-axes have
different scale)

conditions without bandwidth fluctuations, clients never over-
estimate the bandwidth available, and a deadline miss never
occurs. However, the large number of concurrent streams



40 55 65 80

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Bandwidth limit [MB/s]

B
a
n
d
w

id
th

 [
K

B
/s

]

(a) MoBy

40 55 65 80

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Bandwidth limit [MB/s]

B
a
n
d
w

id
th

 [
K

B
/s

]

(b) MoVi

40 55 65 80

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Bandwidth limit [MB/s]

B
a
n
d
w

id
th

 [
K

B
/s

]

(c) CoIn

40 55 65 80

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Bandwidth limit [MB/s]

B
a
n
d
w

id
th

 [
K

B
/s

]

(d) CoDe

Figure 18. Client segment download rates in the long sessions scenario

combined with TCP congestion control creates fluctuations.
In the case of MoV i, the fluctuations do not have such a
big impact because the number of concurrent clients is small
(Figure 13), and the download bandwidths are high compared
to the other strategies.

The number of deadline misses shown in Figure 10 indicates
that the bandwidth estimation, and therefore also the quality
adaptation, is not always perfect. However, we see that with
more bandwidth available, the number of deadline misses
decreases.

We believe that the reason for deadline miss improvement
is the usage of time safety. The adaptation algorithm chooses
segment quality so that the download ends at least ts seconds
before segment’s deadline. The minimal value of ts is the
time safety. A deadline miss occurs only if the download time
proves to be longer than the estimated download time plus
the time safety. To make the influence of the time safety
on results as small as possible we used a small value of
150ms for all scenarios. However, the number of bytes that
can be downloaded within the time safety increases with
available bandwidth. This way the safety basically grows with
bandwidth, which results in fewer deadline misses as the
bandwidth grows.

D. Influence of client interarrival times distribution

We reran short and long session scenarios with constant
client interarrival times. Our results showed no major differ-
ences. We observed very similar results for segment quality
distribution, number of concurrent clients over time, e2e delay
and deadline misses. Because of space limitations, we do not
show any figures in this section.

V. DISCUSSION

A. And the winner is...

Among the usable strategies we selected for our experiments
in Section II, the question is which is the best? Strategy
CoDe results in good quality and few deadline misses in
low bandwidth experiments. However, the synchronization of
requests (Pfr and Pmiss) also leads to high concurrency which
leads to bandwidth wastage due to congestion, as explained in
the previous section.

Our results show that strategy MoV i leads to much less
concurrency. MoV i is able to more evenly distribute requests

over time due to Pnr based on playout. This results in higher
quality and a smaller e2e delay. Thus, we believe that MoV i
presents the best mix of options and any change of its options
would lead to worse results. We can also generally conclude
that synchronization of requests is not a good idea and should
be avoided.

B. Implications for streaming with buffering

We have shown in this paper that in order to reduce
problems caused by congestion, it is better to distribute client
requests over time. This reduces the number of concurrent
downloads and increases the goodput.

One of the goals of our experiments was to have a small e2e
delay. Nevertheless, our results also apply for live streaming
that uses buffers. Imagine a flash crowd scenario in which
all client requests come almost at the same time. After some
initial time all clients have filled their buffers and start to
synchronize their requests. According to our results if this is
not avoided, a shared router queue is likely to overflow and a
degradation of user experience is to be expected.

C. Server utilization estimation

Estimating server utilization is not a straightforward process
for adaptive HTTP segment streaming. Figure 19 shows a
plot of server bandwidth as it was recorded every 100 ms
throughout one short sessions experiment.

The figure also shows a moving average value of the
bandwidth with a history window of 20 seconds. For about
the first 30 seconds, the average goes up. After that, the client
departure rate reaches the client arrival rate and the average
is almost constant. The total number of active clients only
decrease towards the end of the experiment, therefore, the
average goes down again.

It is interesting to consider if the stable state (and so our
scenario) would also be reached with domain name system
(DNS) load balancing in place. This would only be the case
if clients are not redirected before the stable state is reached.

The maximum of 300 concurrent clients is reached at around
second 30. At that point, the bandwidth utilization is about
50% measured by the moving average. This leads to the
conclusion that our results are also applicable to DNS load
balancing if the utilization threshold for redirection is above
50% (Changing the window size of the moving average could



help, but only if clients can be assumed not to share the same
local DNS server. Nevertheless, the possibility of assigning all
clients to one server exists).

Figure 19. Server bandwidth consumption with average history window of 20
seconds. On the x-axes is the time and on the y-axes the bandwidth. (Strategy
MoBy with 40MB/s bandwidth limit)

VI. IMPLICATIONS FOR MULTI-SERVER SCENARIOS

Here, we discuss implications of our findings for CDNs
based on DNS load balancing. Figure 20 shows the principle
of DNS load balancing CDN. When a client wants to download
a segment, it issues a request to its local DNS server. If the
information is not cached, the request is forwarded to the root
DNS server. The root DNS server redirects the local DNS
server to a CDN provider’s DNS server. This server finds the
best server available and replies with the server’s IP address.
The local DNS server caches and forwards the information to
the client. The client downloads the data from the provided
server.

Content

Root DNS

CDN DNSLocal DNSClient

1.

2.

3.

4.

5.6.

7.

Figure 20. CDN DNS load balancing

A small time to live (TTL) of the DNS cache entry leads to
frequent DNS requests. On the other hand, a large TTL leads
to less load balancing opportunities for the CDN. Therefore,
a compromise between granularity of load balancing and the
DNS server load is required, e.g., Akamai CDN uses a default
value of 20 seconds [13]. In fact, the TTL value is not
enforcible, and providers might choose a higher value in order
to provide faster response times or to reduce the risk of DNS
spoofing [14].

DNS load balancing relies on separate connections for
each web object. However, separate connections are inefficient
in the case of live HTTP segment streaming. To save the
overhead associated with opening a new TCP connection, it
is reasonable for a client to open a persistent TCP connection
to a server and reuse it for all segment requests. Requests are
sent over this connection as segments become available. This
differs from a persistent connection used by web browsers.

Firstly, the connections last longer (a football match takes 90
minutes). Secondly, clients do not download data continuously
(Figure 13). This makes it difficult to estimate the server
load by algorithms that assume that all clients download data
continuously, e.g., moving average. Moreover, the adaptive
part of the streaming leads to jumps in bandwidth requirements
rather than to smooth transitions. These are all reasons that
make it harder for conventional DNS load balancing to make
an accurate decision. An HTTP redirection mechanism in
the data plane could solve this. However, to the best of our
knowledge, this mechanism is not implemented by current
CDNs. The insufficiencies of server-side load balancing for
live adaptive segment streaming can be overcome by client-
side request strategies as described in this paper.

VII. CONCLUSION

Our evaluation of client-side request strategies for live adap-
tive HTTP segment streaming shows that the way the strategy
requests segments from a server can have a considerable
impact on the success of the strategy with respect to bandwidth
utilization and achieved video quality. The chosen strategy
influences not only the video quality and e2e delay, but also
the efficiency of bandwidth usage.

Starting with the assumption that it is desirable for clients to
request video segments from a server that provides live content
as soon as possible after their availability, we examined three
strategies that do this and a fourth that doesn’t. The behavior
of the synchronized strategies leads to synchronous requests
and server responses. The unsynchronized strategy does not
initiate downloads based on segment availability but on the
playtime of earlier segments.

While it was obvious that synchronized requests lead to
competition for bandwidth, we have shown that this competi-
tion leads to a severe amount of bandwidth wastage. Synchro-
nized clients can only base their adaptation decision on average
goodput in a complete segment length, because they can never
avoid competition with other clients. Using strategies that
do not synchronize requests, on the other hand, bandwidth
wastage is avoided because the number of concurrently active
clients is much lower. Clients can probe for higher qualities,
and withdraw when their bandwidth demands increase the
amount of competition and therefore the segment download
time. We have finally considered how these observations could
help scheduling decisions in a multi-server scenario.

In our future work, we plan to evaluate our scenario with
TCPs that detect congestion by packet delay (e.g. Vegas, Com-
pound TCP) and could therefore prevent congestion situations.
Our ultimate goal is to extend our scenario to multiple servers
and look at a possible coexistence of our strategies with other
web traffic.

VIII. ACKNOWLEDGEMENTS

This work has been performed in the context of the iAD
(Information Access Disruptions) centre for Research-based
Innovation funded by Norwegian Research Council, project
number 174867.



REFERENCES

[1] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia streaming
via TCP: an analytic performance study,” in ACM MM, 2004.

[2] “Move Networks,” 2009. [Online]. Available:
http://www.movenetworks.com

[3] “SmoothHD,” 2009. [Online]. Available: http://www.smoothhd.com
[4] “HTTP dynamic streaming on the Adobe Flash plat-

form,” 2010. [Online]. Available: http://www.adobe.com/products/-
httpdynamicstreaming/pdfs/httpdynamicstreaming wp ue.pdf

[5] R. Pantos (ed), “HTTP Live Streaming,” 2009. [Online]. Avail-
able: http://www.ietf.org/internet-drafts/draft-pantos-http-live-streaming-
00.txt

[6] T. Stockhammer, “Dynamic adaptive streaming over HTTP - standards
and design principles,” in ACM MMSys, 2011, pp. 133–144.

[7] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen, “Low overhead
container format for adaptive streaming,” in ACM MMsys, Feb. 2010.

[8] D. Johansen, H. Johansen, T. Aarflot, J. Hurley, Å. Kvalnes, C. Gurrin,
S. Sav, B. Olstad, E. Aaberg, T. Endestad, H. Riiser, C. Griwodz, and

P. Halvorsen, “DAVVI: A prototype for the next generation multimedia
entertainment platform,” in ACM MM, Oct. 2009, pp. 989–990.

[9] K. R. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz,
“Quality-adaptive scheduling for live streaming over multiple access
networks,” in NOSSDAV, 2010, pp. 21–26.

[10] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to replicated
content in the Internet,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp.
455–465, 2002.

[11] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
Comput. Commun. Rev., vol. 34, no. 4, pp. 281–292, 2004.

[12] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Fine-grained scalable
streaming from coarse-grained videos,” in NOSSDAV, Jun. 2009.

[13] A. jan Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,
“Drafting behind Akamai (travelocity-based detouring),” in ACM SIG-
COMM, 2006, pp. 435–446.

[14] A. Hubert and R. van Mook, “Measures to prevent DNS spoofing,”
2007. [Online]. Available: http://tools.ietf.org/html/draft-hubert-dns-
anti-spoofing-00


