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Abstract—Distributed interactive applications may have strin-
gent latency requirements and dynamic user groups. These
applications may benefit from a group communication system,
and to improve the system support for such applications, we
investigate graph algorithms that construct low-latency overlay

networks for application-layer multicast. In particular, we focus
on reducing the diameter and the pair-wise latencies in the
overlay. The overlay construction time is also considered, as it is
often time-dependent in our dynamic target applications.

Here, we have implemented and experimentally analyzed
spanning-tree heuristics and mesh construction heuristics, and
compared their performance and applicability to distributed in-
teractive applications. We found that trees are faster to construct
and save considerable amounts of resources in the network.
Meshes, on the other hand, yield lower pair-wise latencies and

increases the fault tolerance, but at the expense of increased
resource consumption.

I. INTRODUCTION

In recent years, many new types of distributed applications

have appeared. The media types in these applications may

range from text to continuous media such as video streams.

Distributed interactive applications, like interactive virtual

environments and online games, currently have millions of

users and generate more money than the film industry.

Although distributed interactive applications may differ

greatly, they share many of the same requirements. For ex-

ample, groups of users (but not necessary all users) in the

same application must be able to interact, and this interactivity

imposes restrictions on network latency, especially in highly

interactive virtual environments. Further, because (potentially

large) groups of users in virtual environments interact, there is

a need for many-to-many communication mechanisms. Many-

to-many communication, combined with restrictions on net-

work latency, results in requirements on the latency between

any pair of users (pairwise latency).

Furthermore, in many distributed interactive applications,

the user groups are highly dynamic. For example, users in

online games may join and leave groups continuously as they

move around in a virtual environment. Whenever group mem-

bership is determined anew, the many-to-many communication

paths need to be updated. Here, the main challenge is to design

algorithms that create efficient (low latency) event distribution

paths that take into account the physical location of the users.

Today, many distributed interactive applications are cen-

trally managed. Bearing this in mind, we focus on an archi-

tecture with centralized management. A completely centralized

architecture gives the application provider full control. How-

ever, if all the data travels through the server, the latency is

potentially high for users that are located far from the server.

When the latency increases as a result of the distance of the

user from the server, it might be better to allow the data to

travel between the users directly. This will reduce both the

overall latency and the pairwise latency experienced by the

users, i.e., increase the users’ perceived quality. Our goal is

to identify efficient means by which data can flow among the

users while at the same time taking into account the group

dynamics. It is in this context that we are studying group com-

munication algorithms that organize the users in distribution

patterns that have varying properties. We use application layer

multicast to achieve group communication, although many

distributed interactive applications support IPv4 multicast.

Reasons for operating at the application layer are that IPv4

multicast 1) is not supported by all Internet service providers,

2) cannot be used efficiently with TCP (frequently used also

for time dependent applications like games), 3) does not

easily support frequent membership change, 4) cannot prevent

snooping, and 5) has a rather limited address space available.

To avoid these problems, we build overlay networks. Such

overlay networks are built between the users’ computers and

are (inherently) fully meshed. Techniques for estimating link

costs are often applied to overlay meshes, but this is outside

the scope of our paper.

We study a range of new and existing graph algorithms that

organize nodes in overlays while conforming to some opti-

mization goal. Both mesh and tree algorithms are considered,

and due to our interactive time-dependent application scenario,

we concentrate particularly on heuristics that minimize the

pairwise latency in overlays. The maximum pairwise latency

in an overlay is known as the diameter. All the algorithms

are implemented, and the performance is analyzed using

experiments. Our results show that trees can compete with

meshes when it comes to computing low diameter overlays,

however, the average pair-wise distance in meshes is lower.

Furthermore, we show that both mesh and tree heuristics yield

vital properties for use in distributed interactive applications.



II. OVERLAY ALGORITHMS AND APPLICATIONS

In this paper, the targeted applications for our overlay

algorithms are distributed interactive applications. These appli-

cations achieve live interaction between multiple participants

over the Internet.

A. Applications and their requirements

Concrete examples of distributed interactive applications are

multi-player online games, audio/video conferences, and vir-

tual reality applications linked to education and entertainment.

The characteristics of multi-player online game traffic have

been analyzed several times before, and in [3], the latency

requirements were measured to be approximately 100 ms for

first-person shooter games, 500 ms for role-playing games

and 1000 ms for real-time strategy games. In video/audio

conferencing and voice over IP (VoIP) with real-time delivery

of voice data, users start to become dissatisfied when the

latency exceeds 150-200 ms, although 400 ms is acceptable

in most situations [?]. The virtual reality applications have

latency requirements that fall into one or more multi-player

online game categories.

On the basis of these observations, we conclude that com-

munication paths (overlays) should be constructed such that

the maximum pair-wise latency (diameter) falls within the

requirements of a given application.

B. Group communication in the Internet

Group communication in the Internet poses challenges re-

lated to asymmetry, heterogeneity, resource availability and

latency. One way of modelling some of these challenges is

to apply graph theory. In graph theory, a network may be

modelled as a directed or undirected graph. Directed edges

(arcs) allow asymmetric links, while undirected edges are

symmetric. Currently, asymmetric links are the most common

situation for clients in the Internet. However, the symmetric

link assumption of undirected graphs is only considered un-

realistic in highly asymmetric networks, and in applications

that require high bandwidth and low latencies. Current multi-

player online games support few if any such flows of content

or events, rather, the streams are relatively thin [7].

It is possible to use overlay multicast to accomplish content

and event distribution through a network. And, in that respect,

a connected acyclic graph (tree) has several advantages over a

connected cyclic graph (mesh). A tree has small routing tables

and saves network bandwidth. In addition, it has low admin-

istration costs when the membership is dynamic. However,

the pair-wise latencies do increase, and if a non-leaf node is

disconnected from a tree, the tree is also disconnected resulting

in two subtrees. A mesh increases the node failure tolerance of

the graph, because multiple paths to a node exist. Unless some

path routing is applied to a mesh it introduces data redundancy

because some nodes receive two copies of the same data.

Multiple paths are also valuable in cases of fluctuating link

costs and to reduce the pair-wise latencies. Generally, there are

two main directions of mesh and tree (overlay) construction

related to group communication in networks. Overlays that

are constructed for a single source and for multiple sources.

However, unless data redundancy is necessary because of

unstable network nodes and/or links, a mesh is mostly used

in a multiple source scenario.

For multiple source situations, it is vital to reduce the pair-

wise latency, such that every source is within a constant latency

bound of every destination (see section II-A). That is, the

eccentricity of the destinations should be minimized, where

the eccentricity is defined as the maximum pair-wise latency

from a single node. In our group communication scenario,

every node in the network is a source that distributes data.

In situations where all nodes are sources, the overlay should

be constructed as a shared-overlay. For such a shared-overlay

scenario, it is not enough to only consider an overlay viewed

from a single source or a set of sources. Every node is both

a source and a receiver, thus the worst case eccentricity in

a shared-overlay equals the diameter. Therefore, in a shared-

overlay scenario, the diameter is a very important metric.

C. Overlay and algorithm requirements

We have previously investigated a range of spanning tree

problems [19] and Steiner-minimum tree problems [18] that

reduce the diameter of trees. These investigations revealed sev-

eral tree algorithms suitable for distributed interactive applica-

tions. In this paper, the investigation includes a subset of these

tree algorithms and also a range of mesh algorithms. The goal

is still to reduce the diameter of the overlay, but, in addition,

the mesh algorithms should yield reduced eccentricities, and

possess a configurable level of redundancy to allow for fault

and congestion tolerance. Moreover, the complexity and con-

sequently the execution time of the overlay algorithms should

be low in cases of time-dependant construction requirements.

Finally, there should be a bound on the stress, i.e., work-load,

of each node in the overlay. The stress of a given node is linked

to the number of incident edges it has in a graph, which is the

degree of the node.

III. TREE CONSTRUCTION ALGORITHMS

The tree construction algorithms presented here are span-

ning tree algorithms [6] and construct trees that cover all

the vertices in a given input graph. Formally, a spanning tree

algorithm AT takes as input a connected undirected weighted

graph G = (V, E, c), where V is the set of vertices, E is

the set of edges, and c : E → R is the edge cost function.

The spanning tree algorithm AT then constructs a connected

acyclic graph (tree) T = (VT , ET ) on G, where VT = V .

A. Tree heuristics considering the diameter

We focus on spanning tree heuristics that may reduce the

diameter of T . The diameter of T is defined as the longest of

the paths in T among all the pairs of nodes in V . In addition,

we study heuristics that optimize for the total cost, i.e., the

sum of the edge weights in T . Table I provides an overview

of the tree construction heuristics.

One-time tree construction (OTTC) [1] is a O(n3) heuristic

of the bounded diameter minimum spanning tree (BDMST)



Algorithm Meaning Optimization Constraints Complexity Problem Reference

MST Prim’s minimum-spanning tree total cost - O(n2) MST [6]

SPT Dijkstra’s shortest-path tree core/destination cost - O(n2) SPT [6]

md-OTTC Minimum diameter one-time tree construction diameter - O(n3) MDST [19]

OTTC One-time tree construction total cost diameter O(n3) BDMST [1]

RGH Randomized greedy heuristic total cost diameter O(n2) BDMST [15]

mddl-OTTC Minimum diameter degree-limited one-time tree construction diameter degree O(n3) MDDL [19]

dl-OTTC Degree-limited one-time tree construction total cost diameter and degree O(n3) BDDLMST [19]

dl-RGH Degree-limited randomized greedy heuristic total cost diameter and degree O(n2) BDDLMST [19]

dl-SPT Degree-limited Dijkstra’s shortest-path tree core/destination cost degree O(n2) d-SPT [13]

dl-MST Degree-limited Prim’s minimum-spanning tree total cost degree O(n2) d-MST [13]

TABLE I
TREE CONSTRUCTION ALGORITHMS (AT ).

problem [19]. The NP -complete BDMST-problem optimizes

for the total cost while obeying an upper bound diameter

constraint. Formally, a BDMST-algorithm takes as input G
and a bound D > 0. Then, it constructs a minimum weight

spanning tree T on G, where
∑

e∈ET
c(e) (total cost) is

minimized and the diameter of which does not exeed D. OTTC

is a modification of Prim’s minimum spanning tree (MST)

algorithm to accommodate the diameter bound. It maintains

the node eccentricities as the tree is built and (if possible) adds

the minimum weight edges that result in node eccentricities

below the diameter bound.

Randomized greedy heuristic (RGH) [15] is a fast O(n2)
heuristic of the BDMST problem for complete graphs. When

extending the tree, it chooses the next vertex at random and

connects it via the lowest weight edge that maintains the

diameter constraint. The diameter constraint is only maintained

towards the source.

Degree-limited one-time tree construction (dl-OTTC) [19] is

a O(n3) heuristic of the bounded diameter degree limited

(BDDLMST) problem [8]. The NP -complete BDDLMST-

problem is identical to the BDMST-problem only it adds

degree limits on each node. Our dl-OTTC heuristic builds the

tree the same way as OTTC, while obeying the degree limits.

Degree-limited randomized greedy heuristic (dl-RGH) [19] is

a O(n2) heuristic of the BDDLMST problem. Our dl-RGH

heuristic builds the tree the same way as RGH, while obeying

the degree limits.

Minimum diameter one-time tree construction (md-

OTTC) [19] is a O(n3) heuristic of the minimum diameter

spanning tree (MDST) problem [8]. The MDST-problem is

to find a spanning tree of a graph such that the diameter

is minimized. Formally, an MDST-algorithm constructs

a spanning tree T on G such that the maximum weight

shortest path (diameter) p ∈ T ,
∑

e∈p W (e) is minimized.

MDST-algorithms often construct a star-shaped tree, where

the work-load (stress) of the central nodes is high. md-OTTC

is our alteration of the BDMST-heuristic OTTC [1]. Instead of

minimizing the total cost within a diameter bound, md-OTTC

always adds the vertex that minimizes the diameter.

Minimum diameter degree-limited one-time tree construction

(mddl-OTTC) [19] is a O(n3) heuristic of the minimum

diameter spanning tree (MDDL) problem [16]. The NP -

complete MDDL-problem introduces degree limits to solve the

stress issues of the MDST. mddl-OTTC works as md-OTTC

while obeying the degree limits.

B. A tree heuristic considering the shortest path

There exist related spanning tree problems that do not

explicitly consider the diameter, but are cheaper in terms of the

execution time. For example, a shortest-path tree is a source

specific tree in which all nodes have shortest paths to the

source. It was solved by Dijkstra [6] and has a worst-case

time complexity of O(n2).

Degree-limited shortest-path tree (dl-SPT) [13] is a fast O(n2)
heuristic of the degree-limited shortest path tree (d-SPT) prob-

lem. The NP -complete d-SPT problem is to find a spanning

tree from a given source such that the source destination

distance is minimized. Formally, a d-SPT algorithm is given G
and a degree bound d(v) ∈ N for each vertex v ∈ V . Then it

constructs a spanning tree T , starting from a root node s ∈ V ,

where, for each v ∈ V the path p = (v, . . . , s) minimizes∑
pi∈p c(pi), subject to the constraint that dT (v) ≤ d(v).

It is an alteration of Dijkstra’s original SPT algorithm. At

each step it includes the cheapest eligible path connecting

a vertex currently in the (partial) shortest-path tree with one

not yet connected that does not violate the degree constraint.

We showed in [19] that a d-SPT heuristic combined with a

carefully selected center (source) node may be able to compete

with heuristics that consider the diameter.

IV. MESH CONSTRUCTION ALGORITHMS

The mesh construction algorithms presented here construct

a mesh that covers all the vertices in a given input graph.

Formally, a mesh construction algorithm AM takes as input

a connected undirected weighted graph G, and constructs a

connected undirected cyclic graph (mesh) M = (VM , EM ) on

G, where VM = V . Observe that a mesh can be constructed

like M = G. However, in our scenario, G is a fully meshed

application layer graph, therefore, this is not a viable solution

because the total cost of the mesh would be tremendous. The

mesh construction algorithms should rather construct the mesh

using our application requirements, without being bound to the

requirement of constructing a tree.

The mesh construction algorithms that we investigate can

be divided into the three categories: A) Interleaved-trees, B)

Enhanced tree, and C) Edge pruning (removal and addition)

algorithms. For each category, we present algorithms found

in the literature, but also propose new mesh construction

variations based on ideas from these (see table II).



Algorithm Meaning Optimization Input to AM Complexity Category Reference

kIT k-Iterative Tree constructions AT optimization goal G, k, AT O(k ∗ O(AT )) Interleaved trees [21]

kDL k-Diameter Links latency diameter G, k, AT O(n3 + O(AT )) Enhanced-trees -

kLL k-Long Links pair-wise latency G, k, AT O(n2 + O(AT )) Enhanced-trees [20]

kBL k-Best Links minimum cost G, k O(n2) Edge pruning [21]

dl-BL degree limited Best Links pair-wise latency G O(n2) Edge pruning -

aCLO add Core Links Optimized pair-wise latency G, k, O ⊂ V O(n2) Edge pruning [18]

dl-aCLO degree limited add Core Links Optimized pair-wise latency G, k, O ⊂ V O(n2) Edge pruning [18]

TABLE II
MESH CONSTRUCTION ALGORITHMS (AM).

A. Interleaved-trees algorithms

Interleaved-trees algorithms compute multiple connected

trees and merge them into one mesh. The interleaved-trees

algorithms may compute trees sequentially or in parallel.

The sequential approach is round-based, where one tree is

computed and merged with the previous trees in each round,

and the previously chosen tree edges are excluded from the

input graph. In the parallel approach, the trees are computed

concurrently and possibly independantly of each other and

then merged at the end.

The interleaved-trees algorithms may also be referred to as

k-trees algorithms. Formally, a sequential k-trees algorithm

comprises a tree algorithm AT that constructs k trees, where

Ti is the ith tree. For each round i ≥ 1 an input graph Gi =
G−Mi is created, where Mi = T1 ∪ . . .∪Ti, and i ≤ k. The

graph Gi is then input to the tree algorithm AT to produce

Ti+1. Young et al. [21] described such an algorithm called

k-MST, which computes k minimum spanning trees that are

merged into one mesh.

The k-trees algorithms construct meshes that include the

”best” edges given the optimization goal of the tree algorithm.

For example, the k-MST algorithm ensures that the k mini-

mum weight links of every node are included in the graph [21].

A k-trees algorithm does also produce an approximate k-

connected graph. A k-connected graph is a graph in which

the removal of any k− 1 nodes does not disconnect the graph

(a 1-connected graph is a tree). Informally, there are at least

k independent paths from any vertex to any other vertex. A

related graph-theoretic problem is a k-connected minimum

weight subgraph, for which several approximation algorithms

have been proposed [9]. However, these heuristics do not take

degree constraints into account, and do not opt for a reduced

diameter. In this paper, we use the tree-heuristics presented in

section III as the basis for our interleaved-trees algorithms.

k-Iterative Tree-construction(AT ,k) (kIT) takes as input a tree

algorithm AT and computes k trees sequentially from an

input graph and merges them to a mesh. In each round, the

current input graph is updated such that the previously chosen

tree-edges are excluded. For the degree-limited algorithms the

current available degree on each node is reduced according to

the previously chosen tree-edges.

B. Enhanced tree algorithms

Enhanced tree algorithms apply a tree algorithm to an

input graph, and then add single edges to the tree based on

some criteria. Wang et al. [20] described such strategies, and

proposed an overlay protocol called Tmesh, which adds ”short-

cut” edges to a pre-constructed tree.

An enhanced tree algorithm comprises a tree algorithm AT

that produces a tree T , and an edge-selection algorithm that

adds edges to the graph T such that it is transformed into

a mesh M . The number of edges that are added may be a

predefined integer k, or based on some optimization goal,

for example, a mesh-diameter below a given bound D. The

most common edge-selection strategies add edges that reduce

a node’s eccentricity or the mesh’s diameter. Notice that in a

shared-overlay the maximum eccentricity equals the diameter,

such that reducing the maximum eccentricity does in effect

reduce the diameter of the mesh. Therefore, a strategy for

reducing both is to always pick the nodes with the maximum

eccentricity (= diameter) and try to reduce their eccentricity.
There are also edge-selection strategies that aim at reducing

the pair-wise distances in an overlay. The average pair-wise

distance of a node is the sum of the shortest path distances

between it and every other node, divided by the number of

nodes. Both Narada [4] and Tmesh [20] focus on reducing a

node’s pair-wise distance. Reducing the pair-wise distance or

the diameter are very much similar goals. If the diameter is

reduced, the pair-wise distance also reduces, however, if the

pair-wise distance is reduced it does not automatically reduce

the diameter. In a shared-overlay it is more important to reduce

the diameter.

k-Diameter-Links(AT ,k) (kDL) adds k links to an input tree T
and constructs a mesh M . In each round, it tries to reduce the

overlay diameter by adding a shortest-path edge between two

nodes in the current diameter path. Ties are broken arbitrarily.

k-Long-Links(AT ,k) (kLL) adds k links to an input tree T and

constructs a mesh M . In each round, it chooses the node with

the lowest degree and adds the longest shortest-path edge to

an overlay-node. Ties are broken arbitrarily.

C. Edge pruning algorithms

Edge pruning algorithms include strategies that remove

edges from an input graph G based on some goal, and also

algorithms that pick single edges from an input graph and

constructs a mesh M . These two approaches are essentially

different, however, the algorithms share the same goal. Con-

sequently, we call all of them edge pruning algorithms.

The simplest edge pruning algorithm is to add a number

of edges randomly to the mesh. Yoid [5] applies this method,

with the added step of applying a routing protocol atop of the

mesh. In the Narada [4] protocol a node joins a random peer

and then slowly moves to more favorable peers as they are

discovered. Although random edge pruning algorithms are in

use, they are the most naive edge pruning algorithms and we

disregard them from this investigation.
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Fig. 1. A mesh produced by add Core Links Optimized.

k-Best-Links(k) (kBL) is an edge pruning algorithm that lets

each node autonomously add its k minimum weight (best)

edges to the mesh. In kBL, pairs of nodes will independently

include each other into the mesh, such that the resulting mesh

may have only (k ∗ n)/2 edges (at most k ∗ n). Because of

this, kBL has a higher chance of producing a disconnected

graph [21]. This is the main reason that few if any protocols

use kBL as described. We have also tested a degree-limited-

Best-Links (dlBL) edge pruning algorithm, which is a special

case of kBL. In dlBL each node autonomously adds its

minimum-weight edges to the mesh until its degree-limit is

reached. We propose dlBL such that the node-degree is limited

but also exploited to the maximum on each node.

We have also introduced an edge pruning algorithm [18]

that produce meshes that include low weight links and higher

weight longer links to a set of pre-selected core nodes,

selected using a core selection heuristic [19]. Young et al. [21]

have described similar randomized approaches as short-long

strategies. Our algorithm combine kBL with shortest path links

to connect the core nodes to the remaining nodes.

add Core Links Optimized(k) (aCLO) takes as input a graph

G, an integer k ≥ 0, and a set O ⊂ V containing nodes that

is identified by a core selection heuristic. In aCLO each node

in V −O includes its k minimum-weight edges into the mesh,

where k ≥ 0 (exactly like kBL). Then, it builds a full mesh of

shortest paths of the nodes in O. Further, aCLO constructs s =
|V |/|O| disjoint sets Ss = S1 ∪ . . . ∪ Si, where i ≤ s, from

the nodes in V . Finally, for each node o ∈ O it adds edges

to all nodes in set Si. After applying aCL, the mesh forms,

conceptually, a two-layer graph. Figure 1 illustrates a mesh

after using aCLO. We also tested a degree-limited version of

aCLO, that we labelled dl-aCLO.

V. EXPERIMENTS AND RESULTS

The previously introduced problems and observations were

used when we designed the experiments for the overlay

construction algorithms, and chose which metrics to target.

A. Group communication simulator

We implemented all algorithms presented in sections III

and IV in a simulator for application layer multicast. It mimics

group communication in a distributed interactive application

using a central entity to handle the membership management.

We used the BRITE [12] topology generator to generate

Internet-like router networks. The network graph was trans-

lated into an undirected fully-meshed shortest-path graph,

where each router had one client attached to it. All the clients

join and leave groups throughout the simulation, causing

group membership to be dynamic. When a join or leave

request is received by the central entity, it chooses an overlay

Description Parameter

Placement grid 100x100 milli-seconds

Number of nodes in the network 1000
Degree limit 5
Diameter bound 250 milli-seconds

TABLE III
EXPERIMENT CONFIGURATION.

construction algorithm, and with the latest available group

graph given as input, it constructs a new group overlay. If

not otherwise noted, we use the group center heuristic [19]

to select a source node when needed. The group popularity is

distributed according to a Zipf distribution. We here present

results from simulations using networks with 1000 nodes. The

network layout is a square world with sides equal to 100 milli-

seconds. Further experiment parameters are listed in table III.

B. Evaluated target metrics

In this paper, an overlay construction algorithm is consid-

ered good if it can produce overlays with a low diameter, a low

average pair-wise distance, within a reasonable time that does

not add unreasonable cost to the network. For our evaluation

of the overlays and algorithms, we therefore consider four

metrics to be very important: overlay diameter, average pair-

wise distance, algorithm execution time, and total network

cost. In addition, the algorithm should obey degree-limitations

such that the stress on each node in the overlay is bounded.

C. Results from one group size range

In the following, we evaluate the results from our simula-

tions. Our main plot is figure 2, which includes a complete

comparison of the tree and mesh construction algorithms

evaluated towards our target metrics. It includes statistics from

overlays of sizes between 100 and 120. The tree-heuristics are

plotted as interleaved tree algorithms with k = 1.

We observe that the best tree-heuristics achieve a diameter

of around 0.3 seconds, while the degree-limited tree-heuristics

achieve 0.5 seconds. For the degree-unlimited algorithms there

is almost no gain in going from a tree to a mesh. For

the degree-limited algorithms we can see a larger reduction

in the diameter, but even here it is not significant. Among

the enhanced-tree algorithms we see that kDL reduces the

diameter more than kLL. Comparatively, we see that it is only

the mesh algorithms that use MST or dl-MST as input that

reduce the diameter significantly in a mesh (compared to a

tree). The edge pruning algorithms all produce low diameter

meshes, with the exception of kBL(k < 3). We observe similar

trends for the average pair-wise distance (seconds).

When we analyze the total cost of the overlays it is clear that

the mesh algorithms build more costly overlays compared to

the tree construction algorithms. The enhanced-tree algorithms

only slightly increases the total cost of the overlays, due to the

rather small k we used. The edge pruning algorithms kBL and

dl-aCLO also yield a reasonable total cost. We see that the

interleaved tree algorithms kIT(dl-MST,k) and kIT(dl-SPT,k)

construct overlays with a low total cost. However, this is due

to the fact that dl-MST and dl-SPT often fail to construct

degree-limited trees in sparse graphs [18].
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Fig. 2. Comparison of all tree and mesh algorithms.

The edge count is the number of links in an overlay, and

the plots confirm this observation. We see that the edge-count

for the kIT(dl-MST,2) and kIT(dl-SPT,2) overlays are much

lower than the remaining interleaved trees algorithms. The

edge pruning algorithm aCLO clearly adds too many edges

to the overlay. For the interleaved-trees algorithms we can see

that the edge-count increases in certain intervals for each k

increase. The degree-unlimited algorithms merge a new full

tree for each round, whereas, the degree-limited algorithms

are not able to construct a full spanning tree for each round,

in particular when k > 2.

The execution time shows that the degree-limited

interleaved-tree algorithms struggle to find trees when

the k increases. The kDL algorithm is quite time-consuming

when k > 40, however, our implementation may be sub-

optimal for kDL. The fastest algorithms are the edge-pruning

algorithms, which are barely visible in the graphs.

D. Results with varying group sizes

The group size may influence the performance of an overlay

construction algorithm. In figure 3, we plot the diameter,

total cost and overlay edge count for selected algorithms with

group sizes between 10 and 150. We include results from

the interleaved- and enhanced-trees algorithms using the tree

algorithms dl-MST and mddl-OTTC as input.

The diameter achieved is plotted in figure 3(a). We observe

that the reduction in the diameter between mddl-OTTC and

kIT(mddl-OTTC,2), is very small. The other mddl-OTTC

mesh algorithm variations perform very similar. dl-MST is not

plotted but produces a diameter which is 30 % higher than

kIT(dl-MST,2), and for k=3 the reduction is only about 5 %

(not plotted). kLL(dl-MST,80) yields overlays with a lower

diameter than kIT(dl-MST,2) for group sizes < 110, while

kDL(dl-MST,80) achieves about 25 % better throughout our

group size range. We observed very similar trends for the

average pair-wise distance (not plotted).

The hop-diameter achieved by the algorithms is plotted

in figure 3(b). The hop-diameter reduction between mddl-

OTTC and kIT(mddl-OTTC,2) is about 25 %. kDL(mddl-

OTTC,80) does not reduce the hop-diameter much, although it

reduces the diameter quite significantly. kLL(mddl-OTTC,80)

and kLL(dl-MST,80) yield similar hop-diameter with group

sizes < 80, and are both better than kIT(mddl-OTTC,2) in

that group range. For group sizes > 80, kIT(mddl-OTTC,2) is

best, with kLL(mddl-OTTC,80) only slightly higher.



 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 20  40  60  80  100  120  140

d
ia

m
et

er
 (

se
co

n
d
s)

group size

kIT(dl-MST, k=2)
kLL(dl-MST, k=80)

dl-aCLO(2)
kDL(dl-MST, k=80)

mddl-OTTC
kLL(mddl-OTTC, k=80)

kIT(mddl-OTTC, k=2)
kDL(mddl-OTTC, k=80)

(a) Diameter (seconds)

 2

 4

 6

 8

 10

 12

 14

 20  40  60  80  100  120  140

d
ia

m
et

er
 (

h
o
p
s)

group size

dl-ACLO(2)
kIT(dl-MST, k=2)

kDL(dl-MST, k=80)
mddl-OTTC

kDL(mddl-OTTC, k=80)
kLL(mddl-OTTC, k=80)

kIT(mddl-OTTC, k=2)
kLL(dl-MST, k=80)

(b) Diameter (hops)

 0

 50

 100

 150

 200

 250

 300

 20  40  60  80  100  120  140

ed
g
e 

co
u
n
t

group size

kLL(mddl-OTTC, k=80)
kIT(mddl-OTTC, k=2)

kIT(dl-MST, k=2)
kDL(dl-MST, k=80)

dl-ACLO(2)
kDL(mddl-OTTC, k=80)

Overlay Tree

(c) Edge count

 0

 5

 10

 15

 20

 25

 30

 20  40  60  80  100  120  140

to
ta

l 
co

st

group size

kLL(mddl-OTTC, k=80)
kLL(dl-MST, k=80)
kDL(dl-MST, k=80)

kIT(mddl-OTTC, k=2)
kIT(dl-MST, k=2)

kDL(mddl-OTTC, k=80)
dl-ACLO(2)
mddl-OTTC

dl-MST

(d) Total cost

Fig. 3. Comparison of selected overlay construction algorithms.

For the total cost plot in figure 3(d) wee see that the

enhanced-trees algorithm KLL constructs the most expen-

sive overlays. kIT(mddl-OTTC,2) build overlays that are

slightly more expensive than kIT(dl-MST,2). The kDL(mddl-

OTTC,80) is not able to add 80 links to each overlay, therefore

its total cost is lower than expected. Not surprisingly, the trees

constructed by dl-MST and mddl-OTTC are the cheapest.

The edge count in figure 3(c) confirms that kDL(mddl-

OTTC,80) fails to add 80 links, due to the degree-limitation,

but rather only manages to add about 15 links before it gives

up. kDL(dl-MST, 80), on the other hand, has a much higher

success rate in adding links. Close-to-minimum diameter trees

are more star shaped (leafy trees), where inner nodes have

a high degree. Therefore, kDL struggles to add edges to

the diameter path because the degree capacity quickly gets

exhausted.

E. The fine lines of the results

From our results we see that a tree is able to compete with

a mesh when it comes to the latency diameter in an overlay.

However, a mesh does have advantages in the hop-diameter.

The main drawback of meshes is the added cost they incur,

whereas the upside is the added failure tolerance. A tree is

much cheaper, but is more failure prone.

Broadcasting shared events in a tree is cheaper than broad-

casting events in a mesh. The extra bandwidth consumption

in a mesh is not desirable, and may force some packet-routing

on top of the mesh. In such cases it may be just as well to

use a source-based tree for each client.

Among the mesh algorithms that use tree algorithms as

input it is the dl-MST algorithm that has the largest diameter

reduction. Furthermore, the edge pruning algorithm dl-aCLO

produces meshes with a low diameter and total cost, and is

very fast, however, it cannot be configured into a tree structure.

Table IV illustrates our subjective opinions on how to

configure some selected mesh algorithms with the optimal k
value. For each target metric an optimal k value is listed. These

are averaged into the proposed k, which is what we consider

the better way to configure the mesh algorithm. The mesh

algorithm combinations with mddl-OTTC and dl-SPT use very

low k-values, whereas the dl-MST combinations use higher

k-values. The difference between dl-MST, dl-SPT and mddl-

OTTC mesh algorithm combinations is reduced significantly

with these configurations. For example, in the kIT algorithms,

a tree structure is what we consider the most optimal for dl-

SPT and mddl-OTTC.

VI. RELATED WORK

Considerable attention has been given to latency reduction

in distributed interactive applications. Research areas such as

graph theory (network layout), latency estimations, protocol

optimizations (on all layers), group management (distributed

and centralized), and multicast protocols are all necessary for

the further enhancement of distributed interactive applications.
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Mesh Tree k-range

mddl-OTTC [1, 4] 1 2 2 1
kIT dl-SPT [1, 4] 1 2 2 1

dl-MST [1, 4] 1 3 3 2
mddl-OTTC [0, 80] 0 15 15 7

kDL dl-SPT [0, 80] 0 15 15 7
dl-MST [0, 80] 0 80 80 40
mddl-OTTC [0, 80] 0 40 40 20

kLL dl-SPT [0, 80] 0 40 40 20
dl-MST [0, 80] 0 80 80 40

kBL [1, 5] 1 5 5 3
dl-aCLO [0, 5] 0 4 4 2

TABLE IV
PROPOSED k-CONFIGURATIONS FOR A FEW SELECTED ALGORITHMS.

In this paper, our focus has been on comparing centralized

overlay construction algorithms.

Overlay multicast can be divided into two general ap-

proaches. One is peer-to-peer networks [11] that are designed

for file and information sharing in highly dynamic networks,

for example BitTorrent and Gnutella. Most peer-to-peer ap-

plications build overlay networks that ignore the underlying

physical topology, which affects the service because the la-

tency can become very high. The second approach focuses on

improving overlay multicast protocols and offers more robust

group communication [10]. Many overlay multicast protocols

have been proposed, but there remains room for improvement,

especially regarding the construction of overlay networks.

The Yoid project [5] provides an architecture for both space-

and time-based multicast, and NICE [2] arranges group mem-

bers into a hierarchy of layers and proposes arrangement and

data-forwarding schemes. ALMI [14] is a centrally managed

group communication middleware, tailored towards relatively

small multicast groups with many-to-many semantics. Overlay

protocols that use distributed hash tables (DHTs) are appro-

priate for file sharing applications. However, DHT protocols

do not fit to event sharing applications because they do not

consider pair-wise latency requirements.

As this section describes, there is a considerable body

of work on overlay construction algorithms. Studies have

been performed aiming for efficient overlay construction and

maintenance [17]–[21]. However, to the best of our knowledge,

there does not exist a thorough evaluation and comparison of

tree- and mesh-construction algorithms with the aim of con-

structing low-latency overlays. In this paper, we have aimed

to highlight some of the unanswered questions regarding such

algorithms.

VII. CONCLUSIONS AND FUTURE WORK

We have compared a range of tree and mesh construction

algorithms, and evaluated their applicability to distributed

interactive applications. Our investigation focused on quickly

constructing overlays, that had a low diameter and pair-wise

distance. Our results revealed that tree structures are cheaper

than meshes and also yield a competetive diameter when

diameter reducing tree heuristics are used. However, with a

fairly limited number of added links, a tree may be optimized

to be quite a lot better, especially for algorithms such as MST.

Furthermore, our proposed edge pruning algorithm dl-aCLO

proved to exhibit all of our desirable target metrics, except, that

it cannot be configured to build a tree. We plan to continue

our investigation with real-world experiments on PlanetLab.
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