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Abstract. The number of applications with many parallel cooperating
processes is steadily increasing, and developing efficient runtimes for their
execution is an important task. Several frameworks have been developed,
such as MapReduce and Dryad, but developing scheduling mechanisms
that take into account processing and communication requirements is
hard. In this paper, we explore the limits of work stealing scheduler,
which has empirically been shown to perform well, and evaluate load-
balancing based on graph partitioning as an orthogonal approach. All
the algorithms are implemented in our Nornir runtime system, and our
experiments on a multi-core workstation machine show that the main
cause of performance degradation of work stealing is when very little
processing time, which we quantify exactly, is performed per message.
This is the type of workload in which graph partitioning has the potential
to achieve better performance than work-stealing.

1 Introduction

The increase in CPU performance by adding multiple execution units on the
same chip, while maintaining or even lowering sequential performance, has ac-
celerated the importance of parallel applications. However, it is widely recognized
that shared-state concurrency, the prevailing parallel programming paradigm on
workstation-class machines, is hard and non-intuitive to use [1]. Message-passing
concurrency is an alternative to shared-state concurrency, and it has for a long
time been used in distributed computing, and now also in modern parallel pro-
gram frameworks like MapReduce [2], Oivos [3], and Dryad [4]. However, message
passing frameworks also have an increasing importance on multi-core architec-
tures, and such parallel program runtimes are being implemented and ported to
single multi-core machines [5–8].

In this context, we have experimented with different methods of scheduling
applications defined by process graphs, also named process networks, which ex-
plicitly encode parallelism and communication between asynchronously running
processes. Our goal is to find an efficient scheduling framework for these multi-
core parallel program runtimes. Such a framework should support a wide range
of complex applications, possibly using different scheduling mechanisms, and
use available cores while taking into account the underlying processor topology,
process dependencies and message passing characteristics.
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Particularly, in this paper, we have evaluated the work-stealing load-balancing
method [9], and a method based on graph partitioning [10], which balances the
load across CPUs, and reduces the amount of inter-CPU communication as well
as the cost of migrating processes. Both methods are implemented and tested
in Nornir [8], which is our parallel processing runtime for executing parallel
programs expressed as Kahn process networks [11].

It has been theoretically proven that the work-stealing algorithm is optimal
for scheduling fully-strict (also called fork-join) computations [12]. Under this
assumption, a program running on P processors, 1) achieves P -fold speedup in its
parallel part, 2) using at most P times more space than when running on 1 CPU.
These results are also supported by experiments [13, 14]. Saha et al. [14] have
presented a run-time system aimed towards executing fine-grained concurrent
applications. Their simulations show that work-stealing scales well on up to 16
cores, but they have not investigated the impact of parallelism granularity on
application performance. Investigation of this factor is one of the contributions
of this paper.

In our earlier paper [8] we have noted that careful static assignment of pro-
cesses to CPUs can match the performance of work-stealing on finely-granular
parallel applications. Since static assignment is impractical for large process net-
works, we have also evaluated an automatic scheduling method based on graph
partitioning by Devine et al. [10], which balances the load across CPUs, and
reduces the amount of inter-CPU communication as well as the cost of process
migration. The contributions of this paper on this topic are two-fold: 1) show-
ing that graph partitioning can sometimes match work-stealing when workload
is very fine-grained, and 2) an investigation of variation in running time, an
aspect neglected by the authors.

Our main observations are that work stealing works nice for a large set of work-
loads, but orthogonal mechanisms should be available to address the limitations.
For example, if the work granularity is small, a graph partitioning scheme should
be available, as it shows less performance degradation compared to the work-
stealing scheduler. The graph-partitioning scheme succeeds in decreasing the
amount of inter-CPU traffic by a factor of up to 7 in comparison with the work-
stealing scheduler, but this reduction has no influence on the application running
time. Furthermore, applications scheduled with graph-partitioning methods ex-
hibit unpredictable performance, with widely-varying execution times between
consecutive runs.

The rest of this paper is structured as follows: in section 2 we describe the
two load-balancing strategies and compare our work-stealing implementation to
that of Intel’s Threading Building Blocks (TBB),1 which includes an industrial-
strength work-stealing implementation. In section 3 we describe our workloads,
methodology and present the main results, which we summarize and relate to
the findings of Saha et al. [14] in section 4. We conclude in section 5 and discuss
broader issues in appendices.

1 http://www.threadingbuildingblocks.org/

http://www.threadingbuildingblocks.org/
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2 Dynamic Load-Balancing

We shall describe below the work-stealing and graph-partitioning scheduling
methods. We assume an m : n threading model where m user-level processes
are multiplexed over n kernel-level threads, with each thread having its own
run queue of ready processes. The affinity of the threads is set such that they
execute on different CPUs. While this eliminates interference between Nornir’s
threads, they will nevertheless share their assigned CPU with other processes in
the system, subject to standard Linux scheduling policy.2

2.1 Work Stealing

A work-stealing scheduler maintains for each CPU (kernel-level thread) a queue
of ready processes waiting for access to the processor. Then, each thread takes
ready processes from the front of its own queue, and also puts unblocked pro-
cesses at the front of its queue. When the thread’s own run queue is empty, the
thread steals a process from the back of the run-queue of a randomly chosen
thread. The thread loops, yielding the CPU (by calling sched yield) before
starting a new iteration, until it succeeds in either taking a process from its own
queue, or in stealing a process from another thread. All queue manipulations
run in constant-time (O(1)), independently of the number of processes in the
queues.

The reasons for accessing the run queues at different ends are several [15]: 1) it
reduces contention by having stealing threads operate on the opposite end of the
queue than the thread they are stealing from; 2) it works better for parallelized
divide-and-conquer algorithms which typically generate large chunks of work
early, so the older stolen task is likely to further provide more work to the
stealing thread; 3) stealing a process also migrates its future workload, which
helps to increase locality.

The original work-stealing algorithm uses non-blocking algorithms to imple-
ment queue operations [9]. However, we have decided to simplify our scheduler
implementation by protecting each run queue with its own lock. We believed
that this would not impact scalability on our machine, because others [14] have
reported that even a single, centralized queue protected by a single, central lock
does not hurt performance on up to 8 CPUs, which is a decidedly worse situa-
tion for scalability as the number of CPUs grows. Since we use locks to protect
the run queues, and our networks are static, our implementation does not ben-
efit from the first two advantages of accessing the run queues at different ends.
Nevertheless, this helps with increasing locality: since the arrival of a message
unblocks a proces, placing it at the front of the ready queue increases probability
that the required data will remain in the CPU’s caches.

Intel’s TBB is a C++ library which implements many parallel data-structures
and programming patterns. TBB’s internal execution engine is also based on
2 It is difficult to have fully “idle” system because the kernel spawns some threads

for its own purposes. Using POSIX real-time priorities would eliminate most of this
interference, but would not represent a realistic use-case.
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work-stealing, and it uses a non-blocking queue which employs exponential back-
off in case of contention. However, the scheduler is limited to executing only
fully-strict computations, which means that a process must run to completion,
with the only allowed form of blocking being waiting that children processes
exit.3 Thus, the TBB scheduler is not applicable to running unmodified process
networks, where processes can block on message send or receive.

2.2 Graph Partitioning

A graph partitioning algorithm partitions the vertices of a weighted graph into
n disjoint partitions of approximately equal weights, while simultaneously min-
imizing the cut cost.4 This is an NP-hard problem, so heuristic algorithms have
been developed, which find approximate solutions in reasonable time.

We have implemented in Nornir the load-balancing algorithm proposed by
Devine et al. [10]. This is one of the first algorithms that takes into account not
only load-balance and communication costs, but also costs of process migration.
The algorithm observes weights on vertices and edges, which are proportional to
the CPU time used by processes and the traffic volume passing across channels.
Whenever a significant imbalance in the CPU load is detected, the process graph
is repartitioned and the processes are migrated. In our implementation, we have
used the state-of-art PaToH library [16] for graph and hypergraph partitioning.

When rebalancing is about to take place, the process graph is transformed
into an undirected rebalancing graph, with weights on vertices and edges set
such that the partitioning algorithm minimizes the cost function given by the
formula αtcomm + tmig. Here, α is the number of computation steps performed
between two rebalancing operations, tcomm is the time the application spends on
communication, and tmig is time spent on data migration. Here, α represents a
trade-off between good load-balance, small communication and migration costs
and rebalancing overheads; see appendix B for a broader discussion in the context
of our results.

Constructing the rebalancing graph consists of 4 steps (see also figure 1):

1. Vertex and edge weights of the original graph are initialized according to the
collected accounting data.

2. Multiple edges between the same pair of vertices are collapsed into a single
edge with weight α times the sum of weights of the original edges.

3. n new, zero-weight nodes, u1 . . . un, representing the n CPUs, are introduced.
These nodes are fixed to their respective partitions, so the partitioning al-
gorithm will not move them to other partitions.

4. Each node uk is connected by a migration edge to every node vi iff vi is a
task currently running on CPU k. The weight of the migration edge is set
to the cost of migrating data associated with process vi.

3 For example, the reference documentation (document no. 315415-001US, rev. 1.13)
explicitly warns against using the producer-consumer pattern.

4 Sum of weights of edges that cross partitions.
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Fig. 1. An example of transforming a process graph into a rebalancing graph with
α = 1. Current partitions are delimited by ovals and distinguished by nodes of different
colors.

For the initial partitioning phase, performed before the network starts run-
ning, the process graph is transformed into an undirected graph as described
above, but with small differences: 1) unit weights are assigned to channels
and processes, as the actual CPU usage and communication intensities are not
known, and 2) the additional CPU nodes (uk) and migration edges are omitted.
Partitioning this graph gives an initial assignment of processes to CPUs and is
a starting point for future repartitions.

Since our test applications have quickly shifting loads, we have implemented a
heuristic that attempts to detect load imbalance. The heuristic monitors the idle
time τ collectively accumulated by all threads, and invokes the load-balancing
algorithm when the idle time has crossed a preset threshold. When the algorithm
has finished, process and channel accounting data are set to 0, in preparation for
the next load-balancing. When a thread’s own run-queue is empty, it updates the
collective idle time and continues to check the run-queue, yielding (sched yield)
between attempts. Whenever any thread succeeds in dequeuing a process, it sets
the accumulated idle time to 0.

After repartitioning, we avoid bulk migration of processes. It would require
locking of all run-queues, migrating processes to their new threads, and unlock-
ing run-queues. The complexity of this task is linear in the number of processes in
the system, so threads could be delayed for a relatively long time in dispatching
new ready processes, thus decreasing the total throughput. Instead, processes
are only reassigned to their new threads by setting a field in their control block,
but without physically migrating them. Each thread takes ready processes only
from its own queue, and if the process’s run-queue ID (set by the rebalanc-
ing algorithm) matches that of the thread’s, the process is run. Otherwise, the
process is reinserted into the run-queue to which it has been assigned by the
load-balancing algorithm.

3 Comparative Evaluation of Scheduling Methods

We have evaluated the load-balancing methods on several synthetic benchmarks
which we implemented and run on Nornir. The programs have been compiled as
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Fig. 2. Topology of the machine used for experiments. Round nodes are cores, square
nodes are NUMA memory banks. Each CPU has one memory bank and two cores
associated with it.

64-bit with GCC 4.3.2 and maximum optimizations (-m64 -O3 -march=opteron).
Since PaToH is distributed in binary-only form, these flags have no effect on the
efficiency of the graph-partitioning code. The benchmarks have been run on an
otherwise idle 2.6 GHz AMD Opteron machine with 4 dual-core CPUs (see fig-
ure 2), 64 GB of RAM, running linux kernel 2.6.27.3. Each experiment has been
repeated 10 consecutive times, with collection of accounting data turned on.

3.1 Description of Workloads

Figure 3(a) shows a process network implementing an H.264 video-encoder, and
it is only a slight adaptation of the encoder block diagram found in [17]. The
blocks use an artificial workload consisting of loops which consume the amount
of CPU time which would be used by a real codec on average. To gather this
data, we have profiled x264, an open-source H.264 encoder, with the cachegrind
tool and mapped the results to the process graph. Each of P, MC and ME stages
has been parallelized as shown in figure 3(b) because they are together using over
50% of the processing time. The number of workers in each of the parallelized
stages varies across the set {128, 256, 512}.

k-means is an iterative algorithm used for partitioning a given set of points
in multidimensional space into k groups; it is used in data mining and pattern
recognition. To provide a non-trivial load, we have implemented the MapReduce
topology as a process network (see Figure 3(c)), and subsequently implemented
the Map and Reduce functions to perform the k-means algorithm. The number
of processes in each stage has been set to 128, and the workload consists of
300000 randomly-generated integer points contained in the cube [0, 1000)3 to be
grouped into 120 clusters.

The two random networks (see figure 3(e) for an example) are randomly
generated directed graphs, possibly containing cycles. To assign work to each
process, the workload is determined by the formula nT/d, where n is the num-
ber of messages sent by the source, T is a constant that equals ∼ 1 second of
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Fig. 3. Process networks used for benchmarking

CPU-time, and d is the work division factor. In effect, each message sent by
the source (a single integer) carries w = T/d seconds of CPU time. The work-
load w is distributed in the network (starting from the source process) with
each process reading ni messages from all of its in-edges. Once all messages



Limits of Work-Stealing Scheduling 287

are read, they are added together to become the t units of CPU-time the pro-
cess is to consume before distributing t to its no forward out-edges. Then, if a
process has a back-edge, a message is sent/received, depending on the edge di-
rection, along that channel. As such, the workload w distributed from the source
process will equal the workload w collected by the sink process. Messages sent
along back-edges do not contribute to the network’s workload; their purpose
is solely to generate more complex synchronization patterns. We have used two
networks: RND-A has 239 nodes, 364 edges and no cycles; RND-B has 213 nodes,
333 edges and 13 cycles. The work division factor has been varied over the set
{1, 10, . . . , 10000, 20000, . . . , 90000}.

In the ring benchmark, n processes, 0 . . . n−1, are created and connected into
a ring topology (see figure 3(f)); in our benchmark we have used n = m = 1000.
Process 0 sends an initial and measures the time it takes to make m round-
trips, while other processes just forward messages and do no other processing
otherwise.

The scatter/gather network has a single central process (p0) connected to
n worker processes (see Figure 3(d)). The central process scatters m messages
to the workers, each performing a set amount of work w for each message. When
complete, a message is sent from the worker process to the central process, and
the procedure is repeated for a given number of iterations. This topology cor-
responds to the communication patterns that emerge when several MapReduce
instances are executed such that the result of the previous MapReduce operation
is fed as the input to the next. We have fixed n = 50 and varied the work amount
w ∈ {1000, 10000, 20000, . . . , 105}.

3.2 Methodology

We use real (wall-clock) time to present benchmark results because we deem
that it is the most representative metric since it accurately reflects the real time
needed for task completion, which is what the end-users are most interested in.
We have also measured system and user times (getrusage), but do not use them
to present our results because 1) they do not reflect the reduced running time
with multiple CPUs, and 2) resource usage does not take into account sleep time,
which nevertheless may have significant impact on the task completion time.

In the Kahn process network formalism, processes can use only blocking reads
and can wait on message arrival only on a single channel at a time. However,
to obtain more general results, we have carefully designed the benchmark pro-
grams so that they execute correctly even when run-time deadlock detection and
resolution is disabled. This is an otherwise key ingredient of a KPN run-time
implementation [8], but it would make our observations less general as it would
incur overheads not present in most applications.

The benchmarks have been run using 1, 2, 4, 6, and 8 CPUs under the work-
stealing (WS) and graph-partitioning policies (GP). For the GP policy, we have
varied the idle-time parameter τ (see section 2.2) from 32 to 256 in steps of 8.
This has generated a large amount of raw benchmark data which cannot be fully
presented in the limited space. We shall thus focus on two aspects: running time
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and amount of local and remote communication, i.e., the number of messages
that have been sent between the processes on the same (resp. different) CPU.
For a given combination of the number of CPUs, and work division, we compare
the WS policy against the best GP policy.

We have evaluated the GP policy by varying the idle time parameter τ over a
range of values for each given work division d. A point in the plot for the given
d corresponds to the experiment with the median running time belonging to the
best value of τ . The details of finding the best τ value are somewhat involved,
and are therefore given in appendix.

Computing the median over a set of 10 measurements would generate arti-
ficial data points.5 In order to avoid this, we have discarded the last of the 10
measurements before computing the median.

Since a context-switch also switches stacks, it is to be expected that cached
stack data will be quickly lost from CPU caches when there are many processes
in the network. We have measured that the cost of re-filling the CPU cache
through random accesses increases by ∼ 10% for each additional hop on our
machine (see figure 2). Due to an implementation detail of Nornir and Linux’s
default memory allocation policy, which first tries to allocate physical memory
from the same node from which the request came, all stack memory would end
up being allocated on a single node. Consequently, context-switch cost would
depend on the node a process is scheduled on. To average out these effects, we
have used the numactl utility to run benchmarks under the interleave NUMA
(non-uniform memory access) policy, which allocates physical memory pages
from CPU nodes in round-robin manner. Since most processes use only a small
portion of the stack, we have ensured that their stack size, in the number of pages,
is relatively prime to the number of nodes in our machine (4). This ensures that
the “top” stack pages of all processes are evenly distributed across CPUs.

3.3 Results

The ring benchmark measures scheduling and message-passing overheads of
Nornir. Table 1 shows the results for 1000 processes and 1000 round-trips, to-
talling 106 [send → context switch → receive] transactions. We see that GP per-
formance is fairly constant for any number of CPUs, and that contention over
run-queues causes WS performance to drop as the number of CPUs increases
from 1 to 2. The peak throughput in the best case (1 CPU, no contention)
is ∼ 750000 transactions per second. This number is approximately doubled,
i.e., transaction cost halved, when accounting mechanisms are turned off. Since
detailed accounting data is essential for GP to work, we have run also WS ex-
periments with accounting turned on, so that the two policies can be compared
against a common reference point.

The k-means program, which executes on a MapReduce topology, is an exam-
ple of an application that is hard to schedule with automatic graph partitioning.

5 Median of an even number of points is defined as the average of the two middle
values.
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Table 1. Summary of ring benchmark results (1000 processes and 1000 round-trips).
tn is running time on n CPUs.

t1 t2 t4 t6 t8
GP 1.43 1.65 1.78 1.58 1.71

WS 1.33 2.97 2.59 2.66 2.86

If the idle time parameter τ is too low, repartitioning runs overwhelmingly of-
ten, so the program runs several minutes, as opposed to 9.4 seconds under the
WS method. When the τ is high enough, repartitioning runs only once, and
the program finishes in 10.2 seconds. However, the transition between the two
behaviours is discontinuous, i.e., as τ is slowly lowered, the behaviour suddenly
changes from good to bad. Because of this, we will not consider this benchmark
in further discussions.

From figure 4 it can be seen that the WS policy has the least median run-
ning time for most workloads ; it is worse than the GP policy only on the ring
benchmark (not shown in the figure; see table 1) and the RND-B network when
work division is d ≥ 30000. At this point, performance of message-passing and
scheduling becomes the limiting factor, so the running time increases proportion-
ally with d. On the H.264 benchmark, the GP policy shows severe degradation
in performance as the number of workers and the number of CPUs increases.
The root cause of this is the limited parallelism available in the H.264 network;
the largest speedup under WS policy is ∼ 2.8. Thus, the threads accumulate idle
time faster than load-balancing is able to catch-up, so repartitioning and process
migration frequently takes place (90 – 410 times per second, depending on the
number of CPUs and workers). The former is not only protected by a global lock,
but its running time is also proportional with the number of partitions (CPUs)
and the number of nodes in the graph, as can be clearly seen in the figure.

As the RND-B benchmark is the only case where GP outperforms WS (when
d > 30000), we have presented further data of interest in figure 5. We can see that
WS achieves consistently better peak speedup and at lower d than GP, achieving
almost perfect linear scalability with the number of CPUs. Furthermore, we can
see that the peak GP speedup has no correlation with peaks and valleys of the
proportion of locally sent messages, which constitute over 70% of all message
traffic on any number of CPUs. We can also see that the proportion of local
traffic under WS decreases proportionally with the increase in the number of
CPUs.

Furthermore, we see that WS achieves peak speedup at d = 100, which is
the largest d value before message throughput starts increasing. Similarly, the
peak speedup for GP is at d = 1000, which is again at the lower knee of the
message throughput curve, except on 8 CPUs where the peak is achieved for
d = 10000. At d ≥ 30000, the throughput of messages under the GP policy be-
comes greater than throughput under the WS policy, which coincides with upper
knee of the throughput curve and the point where speedup under GP speedup
becomes greater than WS speedup.
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Fig. 4. Median running times for WS and GP policies on 1,2,4,6 and 8 CPUs
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Fig. 5. Further data on RND-B benchmark. The local traffic ratio is calculated as
l/(l + r) where l and r are volume of local and remote traffic. Message throughput is
calculated as (l + r)/t, t being the total running time.
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Fig. 6. Performance of the scatter/gather benchmark under WS scheduler. Note that
the scale on the x-axis is non-linear and non-uniform.

Figure 6 shows the running time of the scatter/gather benchmark for the
WS policy on 1 – 8 CPUs. The maximum speedup (7.1 on 8 CPUs) is achieved
for d = 100 and drops sharply for d > 1000; at d = 20000 the speedup on 8 CPUs
is nearly halved. Thus, we can say that WS performs well as long as each process
uses at least 100μs of CPU time per message, i.e., as long as the computation-to-
communication ratio is ≥∼ 75. When this ratio is smaller, communication and
scheduling overheads overtake, and WS suffers drastic performance degradation.

Figure 7 uses the box-and-whiskers plot6 to show the distribution of running
times and number of repartitionings achieved for all benchmarked τ values of
GP policy. The plots show the running time and the number of repartitions for
the RND-B benchmark on 8 CPUs and d = 1000. From the graphs, we can
observe several facts:

– WS has undetectable variation in running time (the single line at τ = 0),
whereas GP has large variation.

– The number of repartitionings is inversely-proportional with τ , but it has no
clear correlation with either variance or median running times.

– When τ ≥ 72, the minimal achieved running times under the GP policy
show rather small variation.

We have thus investigated the relative performance of GP and WS policies, but
now considering the minimal real running amongst all GP experiments for all
values of τ . The graphs (not shown) are very similar to those of figure 5, except
that GP speedup is slightly (< 2% on 8 CPUs) larger.
6 This is a standard way to show the distribution of a data set. The box’s span is from

the lower to the upper quartile, with the middle bar denoting the median. Whiskers
extend from the box to the lowest and highest measurements that are not outliers.
Points denote outliers, i.e., measurements that are more than 1.5 times the box’s
height below the lower or above the upper quartile.
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RND−B distribution of running times
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Fig. 7. Illustration of GP variance in running time for RND-B on 8 CPUs and d = 1000,
which is one step past the WS peak speedup. x-axis is the value of the idle time
parameter τ for the GP policy. τ = 0 shows the results for WS.

4 Discussion

In the previous section we have analyzed performance of applications running
under graph-partitioning and work-stealing schedulers. WS has been formally
proven to be optimal only for the restricted class of fully-strict computations,
but it nevertheless gives best performance also on our benchmark programs,
none of which is fully-strict. We can summarize our findings as follows:

– WS gives best performance, with speedup almost linearly proportional with
the number of CPUs, provided that 1) there is enough parallelism in the
network, and 2) the computation to communication ratio, which directly
influences scheduling overheads, is at least ∼ 75.

– GP and WS show similar patterns in running time, but GP never achieves
the same peak speedup as WS.

– There exists an optimal work division d at which the largest speedup is
achieved; this granularity is different for WS and GP.

– Increasing d beyond peak speedup leads to a sharp increase in message
throughput. This increase quickly degrades performance because message-
passing and context-switch overheads dominate the running time.

– GP has large variance in running time; neither the median running time nor
its variance is correlated with the idle time parameter τ .

– GP achieves a greater proportion of local traffic than WS, and this ratio falls
very slightly with the number of CPUs. The proportion of local traffic under
WS falls proportionally with the number of CPUs.

– We have not found any apparent correlation between locality and running
time or speedup.
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Regarding GP, there are two main obstacles that must be overcome before it can
be considered as a viable approach for scheduling general-purpose workloads on
multi-processor machines:

– Unpredictable performance, as demonstrated by figure 7.
– The difficulty of automatically choosing the right moment for rebalancing.

As our experiments have shown, monitoring the accumulated idle time over all
CPUs and triggering rebalancing after the idle time has grown over a threshold
is not a good strategy. Thus, work-stealing should be the algorithm of choice for
scheduling general-purpose workloads. Graph partitioning should be reserved
for specialized applications using fine-grained parallelism, that in addition have
enough knowledge about their workload patterns so that they can “manually”
trigger rebalancing.

Saha et al. [14] emphasize that fine-grained parallelism is important in large-
scale CMP design, but they have not attempted to quantify parallelism granu-
larity. By using a cycle-accurate simulator, they investigated the scalability of
work-stealing on a CPU having up to 32 cores, where each core executes 4 hard-
ware threads round-robin. The main finding is that contention over run-queues
generated by WS can limit, or even worsen, application performance as new
cores are added. In such cases, applications perform better with static partition-
ing of load with stealing turned off. The authors did not describe how did they
partition the load across cores for experiments with work-stealing disabled.

We deem that their results do not give a full picture about WS performance,
because contention depends on three additional factors, neither of which is dis-
cussed in their paper, and all of which can be used to reduce contention. Con-
tention can be reduced by 1) overdecomposing an application, i.e., increasing
the total number of processes in the system proportionally with the number of
CPUs; by 2) decreasing the number of CPUs to match the average parallelism
available in the application, which is its intrinsic property; or 3) by increasing
the amount of work a process performs before it blocks again. The first two fac-
tors decrease the probability that a core will find its run-queue empty, and the
third factor increases the proportion of useful work performed by a core, during
which it does not attempt to engage in stealing.

Indeed, our H.264 benchmark shows that even when the average parallelism
is low (only 2.8), the WS running time on 6 and 8 cores does not increase
relative to that on 4 CPUs, thanks to overdecomposition. If there were any
scalability problems due to contention, the H.264 benchmark would exhibit slow-
down similar to that of the ring benchmark.

5 Conclusion and Future Work

In this paper, we have experimentally evaluated performance of two load-
balancing algorithms: work-stealing and an algorithm by Devine et al., which
is based on graph-partitioning. We have used as the workload a set of synthetic
message-passing applications described as directed graphs. Our experimental re-
sults confirm the previous results [13, 14] which have reported that WS leads
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to almost linear increase in performance given enough parallelism, and expand
those results by identifying limitations of WS. We have and experimentally found
the lower threshold of computation to communication ratio (∼ 75), below which
the WS performance drops sharply. GP suffers the same performance degra-
dation, but the overall application performance may (depending on the exact
workload) be slightly better in this case than under WS. The presented numbers
are specific to our implementation; we would expect the threshold of computa-
tion to communication ratio to increase under less-efficient implementations of
work-stealing, and vice-versa.

GP never achieved the same peak speedup as WS, but this is not its biggest
flaw. The main problem with GP is its instability – running times exhibit a
great variance, and the ratio of worst and best running time can be more than
4, as can be seen in figure 7. In our research group, we are currently investigating
alternative approaches to load-balancing, which would yield results that are more
stable than those obtained with today’s methods based on graph-partitioning.

As opposed to the large variance of running time under GP, the proportion
of local traffic in the total traffic volume is stable and shows only a very mild
decrease as the number of CPUs increases. On 8 cores, the proportion of local
traffic was at least 70%. On the other hand, proportion of local traffic under WS
decreases proportionally with the increase in the number of CPUs. On 8 cores,
the proportion was at most 18%. For most work division factors, GP had ∼ 8
times larger proportion of local traffic than GP. Contrary to our expectations, the
strong locality of applications running under GP does not have a big impact on
the running time on conventional shared-memory architectures. One of possible
reasons for this is that our workloads are CPU-bound, but not memory-bound, so
GP effectively helps in reducing only the amount of inter-CPU synchronization.
However, the overhead of inter-CPU synchronization on our test machine is very
low, so the benefits of this reduction become annihilated by the generally worse
load-balancing properties of GP.

Nevertheless, we believe that this increase in locality would would lead to
significant savings in running time on distributed systems and CPUs with more
complex topologies, such as Cell, where inter-CPU communication and process
migration are much more expensive than on our test machine. However, prac-
tical application of GP load-balancing in these scenarios requires that certain
technical problems regarding existing graph partitioning algorithms, described
in appendix, be solved.

Ongoing and future activities include evaluations on larger machines with
more processors, possibly also on Cell, and looking at scheduling across ma-
chines in a distributed setting. Both scenarios have different topologies and inter-
connection latencies. In a distributed scenario, we envision a two-level scheduling
approach where GP will be used to distribute processes across nodes, while WS
will be used for load-balancing within a single node.

We have also found weaknesses in an existing, simulation-based results about
WS scalability [14]. Based on the the combined insight from theirs and our
results, we have identified a new, orthogonal dimension in which we would further
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like to study WS performance characteristics: the relation between the number
of processes in the system and the number of CPUs. Ultimately, we would like
to develop an analytical model of WS performance characteristics, which would
take into consideration the number of processes in the system, work granularity
(which is inversely proportional with the amount of time a CPU core spends on
useful work), as well as the system’s interconnection topology.
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A Selecting the Best GP Result Set

To evaluate the GP policy, we have varied the idle time parameter τ over a
range of values for each given work division d. A single result set consists of 10
measurements for a given combination of d and τ . We cannot choose the best
τ for a given d by simply selecting the τ having the lowest average (or median)
running time. The reason is that consecutive runs of an experiment with the
same combination of d and τ can have high variance.

To choose the best τ for a given d, we compare all result sets against each
other and select the set s(τ) which compares smaller against the largest number
of other sets. Formally, for a fixed d, we choose τ as follows:

τ = min(arg max
τ∈T

|{τ ′ ∈ T : (τ ′ �= τ) ∧ (s(τ) < s(τ ′))}|)

where |X | denotes cardinality of set X , T = {8, 16, . . . , 256} is the set of τ values
over which we evaluated the GP policy, and s(τ) is the result set obtained for the
given τ . To compare two result sets, we have used the one-sided Mann-Whitney
U-test [18]7 with 95% confidence level; whenever the test for s(τ) against s(τ ′)
reported a p-value less than 0.05, we considered that the result set s(τ) comes
from a distribution with stochastically smaller [18] running time.
7 Usually, the Student’s t-test is used. However, it makes two assumptions, for which

we do not know whether they are satisfied: 1) that the two samples come from a
normal distribution 2) having the same variance.

http://www.vcodex.com/files/h264_overview_orig.pdf
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B Migration Cost

α is just a scale factor expressing the relative costs of communication and migra-
tion, so it can be fixed to 1, and tmig scaled appropriately; in our experiments
we have used α = 1 and tmig = 16. This is an arbitrary low value reflecting the
fact that our workloads have low migration cost because they have very light
memory footprint. Since load-imbalance is the primary reason for bad perfor-
mance of GP, another value for tmig would not significantly influence the results
because graph partitioning first establishes load-balance and then tries to reduce
the cut cost. Nevertheless, even such a low value succeeds in preventing that a
process with low communication volume and CPU usage is needlessly migrated
to another CPU.

Workloads with a heavy memory footprint could benefit if the weight of their
migration edges is a decreasing function c(tb) of the amount of time tb a process
has been blocked. As tb increases, the probability that CPU caches will still
contain relevant data for the given process decreases, and the cost of migrating
this process becomes lower.

C NUMA Effects and Distributed Process Networks

We have realized that the graph-partitioning model described in section 2 does
not always adequately model application behavior on NUMA architectures be-
cause it assumes that processes migrate to a new node together with their data.
However, NUMA allows that processes and their data reside on separate nodes,
which is also the case in our implementation. Nevertheless, the model describes
well applications that use NUMA APIs to physically migrate their data to a new
node. Furthermore, the graph-partitioning algorithm assumes that the commu-
nication cost between two processes is constant, regardless of the CPUs to which
they are assigned. This is not true in general: for example, the cost of commu-
nication will be ∼ 10% bigger when the processes are placed on CPUs 0 and 7
than when placed on CPUs 0 and 2.

These observations affect very little our findings because of three reasons:
1) the workloads use little memory bandwidth, so their performance is limited
by message-passing, context-switch and inter-CPU synchronization overheads,
2) NUMA effects are averaged out by round-robin allocation of physical pages
across all 4 nodes, 3) synchronization cost between processes assigned to the
same CPU is minimal since contention is impossible in this case.

In a distributed setting, load-balancing based on graph models is relevant
because of several significant factors: processes must be migrated together with
their data, high cost of data migration, and high cost of communication between
processes on different machines. Indeed, we have chosen to implement Devine’s
et.al. algorithm [10] because they have measured improvement in application
performance in a distributed setting. The same algorithm is applicable to running
other distributed frameworks, such as MapReduce or Dryad.
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D Graph Partitioning: Experiences and Issues

Nornir measures CPU consumption in nanoseconds. This quickly generates large
numbers which PaToH partitioner [16] used in our experiments cannot handle,
so it exits with an error message about detected integer overflow. Dividing all
vertex weights by the smallest weight did not work, because it would still happen
that the resulting weights are too large. To handle this situation, we had two
choices: run the partitioning algorithm more often, or aggressively scale down all
vertex weights. The first choice made it impossible to experiment with infrequent
repartitionings, so we have used the other option in our experiments: all vertex
weights have been transformed by the formula w′ = w/1024 + 1 before being
handed over to the graph partitioner. This loss of precision, however, causes an
a priori imbalance on input to the partitioner, so the generated partitions have
worse balance than would be achievable if PaToH internally worked with 64-bit
integers. This rounding error may have contributed to the limited performance
of GP load-balancing, but we cannot easily determine to what degree.

As exemplified above, the true weight of an edge between two vertices in the
process graph may depend on which CPUs the two processes are mapped to. This
issue is addressed by graph mapping algorithms implemented in, e.g., the Scotch
library [19]. However, SCOTCH does does not support pinning of vertices to
given partitions, which is the essential ingredient of Devine’s algorithm. On the
other hand, PaToH supports pinning of vertices, but does not solve the mapping
problem, i.e., it assumes that the target graph is a complete graph with equal
weights on all edges. Developing algorithms that support both pinned vertices
and solve the mapping problem is one possible direction for future research in
the area of graph partitioning and mapping algorithms.
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