
Q-L/MRP: A Buffer Management Mechanism for QoS Support in a
Multimedia DBMS

Pål Halvorsen, Vera Goebel & Thomas Plagemann
University of Oslo, UniK - Center for Technology at Kjeller

Granaveien 33, P.B. 70, N-2007 KJELLER, Norway
{paalh, goebel, plageman}@unik.no

In: Proceedings of 1998 IEEE International Workshop on Multimedia Database Management Systems (IW-MMDBMS’98), Dayton, Ohio, USA, August 1998, pp. 162 - 171

Abstract

Multimedia database systems (MMDBSs) have to be
capable to handle efficiently time-dependent and time-
independent data, and to support Quality-of-Service (QoS).
To support continuous playout of time-dependent data,
reservations of the limited resources disk I/O bandwidth and
network bandwidth have to be combined with appropriate
buffer management. Based on the special requirements of
the DEDICATION pre-study, i.e., building a cheap proto-
type system for asynchronous distance education, we have
designed the buffer management mechanism Q-L/MRP. Q-
L/MRP is a buffer preloading and page replacement mech-
anism for multimedia applications with heterogeneous QoS
requirements. Q-L/MRP extends L/MRP with two features:
(1) it supports multiple concurrent users, and (2) it supports
QoS with a dynamic prefetching daemon. This dynamic
prefetching daemon is able to dynamically adapt to the
changes in network and disk I/O load. Furthermore, QoS
requirements from the users like frame rate are mapped into
the buffer mechanism. Our performance analysis shows
that Q-L/MRP is very suitable for the special environment in
DEDICATION and outperforms other buffer management
mechanisms. Since we have implemented Q-L/MRP in soft-
ware only, it is also suitable for other multimedia applica-
tions on other systems with different hardware configura-
tions and workloads.

1. Introduction

Distributed multimedia applications, like News-on-
Demand, digital libraries, and interactive distance learning,
seem to be the key to the future information society. Mul-
timedia database systems (MMDBSs) are a suitable plat-
form for these applications if they are capable to handle
efficiently large, complex, continuous, and time-dependent
data elements such as video, audio, and animations com-
bined with time-independent data elements like pictures,
graphics, and traditional data elements like text and integers
[15]. Furthermore, it is necessary that MMDBSs support
Quality-of-Service (QoS) and are capable to negotiate it
with the other elements of distributed multimedia systems,
e.g., networks, transport protocols, and operating systems.

The QoS concept is well known in the networking com-
munity [18]; it allows applications - respectively their users
- to specify their requirements to the system before they are
actually using services of the system. Important QoS pa-
rameters comprise: reliability, throughput, delay, and delay
jitter. For example, a video frame must be presented within

a specific time limit in order to avoid delay jitter, i.e., a
glitch in the continuous stream. It is generally accepted,
that appropriate taxing policies will motivate users to spec-
ify exactly the quality they need, instead of simply request-
ing always the best QoS. The reason for this is simple, the
higher the quality the more resources are necessary, i.e., the
more expensive the service. Thus, QoS specifications al-
low to economically manage system resources like network
bandwidth, disk I/O bandwidth, CPU time, and main mem-
ory; and to make appropriate reservations to assure the re-
quested real-time behavior. For example, the playback of
time-dependent data requires to transfer all data to be pre-
sented with a guaranteed rate, i.e., throughput, from a local
or remote disk into the applications main memory. In this
example, disk I/O bandwidth and network bandwidth are
very limited resources and bandwidth reservations have to
be combined with appropriate buffer management to effi-
ciently support multiple concurrent users/applications.

In the DEDICATION (Database Support for Distance
Education) project at UniK, University of Oslo, we face
the problem to support the concurrent playout of lectures
that have been given in the so-called electronic classroom
and are stored on a main stream PC with one large disk.
The electronic classroom is used at the University of Oslo
and other Norwegian Universities for regular courses since
four years. It overcomes geographical separations between
the different sites by exchanging digital audio, video, and
whiteboard information, i.e., transparencies and annota-
tions, in real-time via an ATM-based network. The goal of
DEDICATION is to develop a system that allows students to
retrieve and playback lectures of the current term. Students
should be able to select particular parts and particular media
streams of interest, like video, audio, transparencies, or an-
notations for playout. The system should support for each
media stream the QoS requirements of the student. Obvi-
ously, the most limited resource in this system is the disk
I/O bandwidth of the PC, and due to pragmatical and eco-
nomical reasons in our pre-study, we are currently not able
to avoid or at least to reduce this bottleneck. However, if the
pre-study delivers promising results, we might in the future
use a large server with a disk array. Thus, our main concern
is to optimize the buffer management to achieve maximal
utilization of the available I/O bandwidth.

In this paper, we present an extension of the buffer man-
agement mechanisms L/MRP (Least/Most Relevant for Pre-
sentation) [11], called Q-L/MRP (QoS-L/MRP), that has
been designed in DEDICATION to meet the above men-
tioned requirements. Q-L/MRP supports heterogeneous
QoS requirements of multiple concurrent users and is able

to adapt itself to the characteristics of disk and network
I/O. For the evaluation of Q-L/MRP, we apply the partic-
ular workload of the electronic classroom and the restric-
tions of DEDICATION. Therefore, we describe briefly the
electronic classroom and the DEDICATION project in Sec-
tion 2. Afterwards, we address in Section 3 the problem
of buffer management in MMDBS and we analyze the suit-
ability of known buffer management mechanisms for DED-
ICATION. Section 4 describes L/MRP and Q-L/MRP. In
Section 5, we evaluate the performance of Q-L/MRP and
compare it with other buffer management mechanisms. Fur-
thermore, we analyze the general applicability of Q-L/MRP,
i.e., without the stringent limitations of DEDICATION. Fi-
nally, we summarize and conclude this paper in Section 6.

2. Distance Education Scenario
Distance education refers to all types of studies in which

students are separated by space and/or time. The elec-
tronic classrooms [1] at the University of Oslo (see Figure
1) overcome separation in space by exchanging digital au-
dio, video, and whiteboard information between two sites of
the University of Oslo and one of the University of Bergen.
Since 1993, the electronic classrooms are regularly used for
teaching graduate level courses as well as for research on
QoS support in distributed multimedia systems [14].

Classroom with lecturer Classroom without lecturer

Figure 1. The electronic classroom today.

The main parts of each electronic classroom are:

Electronic whiteboard (EW): at each site there is at least
one electronic whiteboard (100") that is used to dis-
play lecture notes and transparencies written in Hyper-
text Markup Language (HTML) format. Transparen-
cies consume about 200 KB (per transparency) and
must be kept in the buffer while displayed at the white-
board. When a section is displayed, the lecturer can
write, draw, and erase comments on it by using a light-
pen.

Document camera: can be used from the whiteboard ap-
plication to capture the contents of printed materials,
e.g., a page of a book, and present it on the whiteboard.

Audio system: microphones are mounted evenly distrib-
uted on the ceiling in order to capture the voice of all
the participants. Audio is PCM encoded and is digi-
tized using a 16 bits/16 MHz sampler, which results in
a constant data stream of 32 KB/s.

Video system: one camera focuses on the lecturer, and two
further cameras focus on the students. A video switch
selects the camera corresponding to the microphone
with the loudest input signal. Two monitors are placed
in the front and two monitors are placed in the back of
each classroom displaying the incoming and outgoing
video information. A H.261 codec is currently used to
digitize and (de-)compress video data.

Table 1 summarizes the used coding and throughput re-
quirements of the different data streams, e.g., transparen-
cies, video frames, audio samples [19].

Media type Coding Bandwidth requirement

Video H.261 Max: 1950 Kbit/s, Min: 13 Kbit/s, Avg: 522 Kbit/s

Audio PCM 32 KB/s

EW HTML 200 KB / transparency (loaded once)

Table 1. Workload of electronic classroom
Today, only synchronous teaching is supported, that

means the lectures are transfered in real-time over an ATM-
based network to the peer classroom(s) and vice versa. Con-
sequently, all students have to be physically present in one
of the classrooms during a lecture. In the DEDICATION
project, we extend the functionality of today’s electronic
classroom to support asynchronous teaching by using a
MMDBS to store the lectures for graduate level courses.
To allow maximum flexibility, all the data types are stored
independently. In such a system, students are able to re-
trieve via network lectures at different times of the day, may
search for interesting topics, and playback only parts of lec-
tures. Depending on the student’s end-system, network con-
nections, and requirements of the students, different QoS
specifications have to be supported. For example, one stu-
dent might work at home and is connected via ISDN, i.e., 2

� 64 Kbit/s, to the server. The student has followed the lec-
ture, has a hardcopy of the transparencies, and wants only to
recapitulate the explanations of the teacher. Thus, he/she re-
trieves the audio stream of the particular lecture with maxi-
mum quality and the video stream with low quality, i.e., low
frame rate. Another student might have missed the lecture
and retrieves the full lecture, i.e., audio, video, whiteboard,
and document camera, in maximum quality from a terminal
that is connected via Fast Ethernet, i.e., 100 Mbit/s, to the
server. Generally, we denote situations in which different
users potentially have different requirements as heteroge-
neous QoS requirements.

In the current phase of DEDICATION, we develop a first
prototype of this system and use quite cheap equipment: the
test server1 runs on a PC with one large disk. Based on the
fact that in average 15 students follow a graduate course,
we assume generally maximal three concurrent users at a
time. This workload can be handled by the PC. However,
we are only able to store always the last two stored lectures.
Depending on the experiences with the first prototype, its
acceptance, etc. we might later on extend the system with a
RAID storage system.

For our performance evaluation in Section 5, we consider
the workload that is given by the electronic classroom. The
only exception is the compression format of video data, be-
cause H.261 is designed for real-time transmission and is
not appropriate for storing video data [18]. From the appro-
priate compression techniques like JPEG, MPEG, MPEG-II
we have chosen M-JPEG (Motion-JPEG) in order to per-
form a worst case analysis. This results in a bandwidth re-
quirements of about 1.5 MB/s for the video and about 360
KB/s for the document camera, i.e., about 60 KB per M-
JPEG frame. The bandwidth requirements for audio and
the electronic whiteboard are described in Table 1. Fur-
thermore, we apply in our simulation model the character-
istics of the Seagate Elite 23 disk, which are summarized in
Table 2.

1Used for testing and simulating buffer mamagement. A real MMDBS
server would run on a more powerful machine.

Formatted capacity 23,2 GB

Cylinders 6876

Tracks per cylinder 28

Blocks per track 235

Block size 512 Bytes

Track-To-Track Seek (read/write) 1,1 ms

Average Seek (read/write) 13 ms

Maximum Seek (read/write) 28 ms

Spindle Speed 5400 RPM

Average Latency 5,56 ms

Internal Transfer Rate 10,75 - 15,5 MB/s

Table 2. Specification of the SEAGATE ELITE 23
Disc Drive [17].

3. Buffer Management for Multimedia DBS

Until quite recently, work on buffer management ad-
dressed traditional applications with only small, time-
independent data. Well-known page replacement algo-
rithms like RANDOM, LRU (Least Recently Used), FIFO
(First In First Out), LFU (Least Frequently Used), CLOCK,
GCLOCK (Generalized CLOCK) and LRD (Least Refer-
ence Density) [3] are implemented in most traditional sys-
tems. These algorithms as well as their improvements, e.g.,
LRU-K [13] and 2Q [6] which are extensions of LRU, are
not suitable to support time-dependent data in MMDBS.
There are two reasons for the inappropriateness of these tra-
ditional page replacement algorithms:

� they consider as page replacement criteria only age and
reference frequency of pages, and

� they use demand paging.

Time-dependent data requires real-time behavior in terms
of the QoS parameters throughput, delay jitter and response
time from the MMDBS. The following example demon-
strates that demand paging is a poor choice to support time-
dependent data, especially when limited delay and delay
jitter is required. To simplify the example, we assume a
single-user of the distance education application described
in Section 2. To playout video frames with a frequency of
24 frames/sec we have an upper bound of delay to read a
single video frame of 41 ms, because this is the latest time
the next frame has to be available for presentation. For play-
out applications, demand paging algorithms fetch one frame
per period from disk. However, the average latency to read
a video frame from disk (with a page size of 8 KB) is ap-
proximately 61 ms.

Figure 2 presents calculated transfer times in single-user
mode using only average seek time, spindle speed and aver-
age latency of the Seagate Elite 23 disk in a demand paging
scenario with the previously described requirements from
our distance education application. The horizontal line de-
notes an upper time limit of 41 ms to fetch each presentation
unit, and the curves show the calculated transfer times when
retrieving different combinations of data types for different
page sizes. As we can see, the transfer times of both audio
and video are far above the upper limit, so there is no pos-
sibility, independent of the page size, to support continuous
presentations of an entire lecture with all data types in a de-
mand paging system. Obviously, it is impossible to support
multiple concurrent users in this scenario.

The solution of this problem lies in the characteristics of
the application: playback of continuous data streams such

10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

page size (KB)

da
ta

 tr
an

sm
is

si
on

 ti
m

e
(s

ec
on

ds
)

video and audio

video

upper limit

Figure 2. Data transmission time from disk to
buffer in a single-user demand paging scenario.

as video is predictable, i.e., data elements are read sequen-
tially. Thus, prefetching of data combined with contiguous
data placement on disk reduces the number of page faults
and improves I/O bandwidth utilization.

In the last few years, there has been quite a lot of work
in the area of buffer management for MMDBSs. Rotem and
Zhao [16] compare different ways of partitioning the buffer
in order of maximize the number of concurrent users in a
Video-on-Demand (VoD) scenario. Ng and Yang [12] ad-
dress the problem of buffer sharing among multiple users
and how to prefetch data from disk to buffer. Liskov et
al. [8] present a novel adaptive prefetching strategy for
the object-oriented DBS Thor designed for small objects
(average 51 bytes). This algorithm does not take into ac-
count application semantics, knowlege of typical access
patterns, network traffic, and QoS aspects. Furthermore,
Moser, Kraiß and Klas [11] present the buffer replacement
strategy L/MRP (Least/Most Relevant for Presentation), es-
pecially designed for interactive continuous data streams
like in VoD scenarios. Hollfelder, Kraiß and Rakow [5]
present a smooth buffer adaption technique at the client
side which provides an implicit QoS support for playback
of time-dependent data streams. Kamath, Ramamritham
and Towsley [7] use media caching for data reuse by subse-
quent users, and they look at the benefits of batching con-
current users and sharing data from continuous media. Dan
and Sitaram [2] introduce a caching strategy, GIC (general-
ized interval caching), to guarantee continuous delivery of
time-dependent data. However, these works on buffer man-
agement for MMDBSs usually address support of continu-
ous presentation of time-dependent data with homogeneous
QoS requirements, e.g., all users request the same frame
rate. Furthermore, almost all these papers describe work
on large Media-on-Demand servers with almost only pure
linear playbacks, e.g., VoD or News-on-Demand (NoD).

All these servers have far more resources than we have
on our PC in DEDICATION, e.g., in [2] they use buffers up
to a couple of GB whereas we use buffers of 16 MB to 128
MB. Furthermore, the number of users of our application
is limited to the number of students, and the inter-arrival
time between requests might therefore be in magnitude of
hours. We want to support interactive presentation of a lec-
ture where a user can explicitly describe his/her QoS re-

quirements. Most buffer management mechanisms do not
explicitly address the problem of supporting heterogeneous
QoS requirements like we do for our interactive, distance
education application.

We have extended the L/MRP [11] preloading and data
replacement strategy with QoS support both on server and
client side, denoted Q-L/MRP. The next sections describe
L/MRP and Q-L/MRP in detail and show performance eval-
uations. We demonstrate how useful QoS specifications are
to minimize the number of page faults and the amount of
data to be loaded from disk to buffer.

4. L/MRP and Q-L/MRP

In this section, we describe both the original L/MRP al-
gorithm [11] and our extensions to support different QoS
requirements of different users and to adapt it for our appli-
cation.

4.1. L/MRP

L/MRP [11] is a buffer management strategy which con-
siders presentation specific information in order to provide
an optimized behavior with respect to requirements like
continuous presentation of time-dependent data in both pure
linear presentations and after frequent user interactions.

The main goal of L/MRP is to replace those data which
will not be used for the longest time in the future and
to prefetch data into the buffer before they are requested.
Based on relevances and presentation state, this strategy re-
places units being least relevant for the presentation and pre-
loads the most important units.

L/MRP splits a continuous object (CO), e.g., a video
clip, into smaller continuous object presentation units (CO-
PUs), e.g., video frames. An element ��� , i = 0, ...,

�
CO

�
- 1,

denotes the COPU with index i within the CO. The state of a
presentation is characterized by a tuple s = <p, skip> where
p denotes the COPU index at the current presentation point
and skip denotes the skip value.

Replacement of data is done by giving each COPU a rel-
evance value, and the COPU with lowest relevance value is
replaced. These relevance values are assigned by including
the COPUs in interaction sets, and the reference value is set
according to which interaction set the COPU is member of
and where the presentation point is in the CO (see Figure 3).
Basically, there are three2 types of interaction sets: (1) Ref-
erenced - COPUs to be presented in the future, (2) History -
COPUs in the reverse direction, i.e., COPUs that have been
presented, and (3) Skipped - COPUs to be skipped, e.g., in
a fast forward presentation. Furthermore, L/MRP supports
different presentation modes like fast forward, e.g., display
every second video frame, by setting a lower reference value
to the presentation units not to be displayed.

To denote the relevance of a given COPU within an inter-
action set, a distance relevance function, ����� (i), is defined
in each interaction set (A) which calculates the relevance
value for a given COPU according to the COPU’s distance
(i) from the current presentation point. This means that the
distance relevance function describes the degree of impor-
tance to keep a COPU in the buffer, i.e., COPUs near the
presentation point have high relevance values and are not to
be replaced while COPUs far away from the presentation
point have a low relevance values and may be replaced. An
interaction set 	�
 for a presentation state s is now defined as
a set 	�
 ={(�� , ��� � (i))

� ����� CO, i ����� , j = g(i,s)} where the

2More sets can be added, see [11].

COPU to be presented COPU which has been presented COPU to be skipped

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1

0,9

0,7

0,5

0,3

0

relevance value presentation point p

COPU number

Figure 3. Reference values in L/MRP [11].

index j of the COPUs to be considered is determined by a
function g which depends on the current presentation point
p and the distance i to p. To compare the relevance values
of all COPUs, a relevance function, � ��� is defined as

��� ����������� �! #"#$��� �&% ��')(+* v (c, v) � A
�, otherwise

where the COPU’s relevance value for a given interaction
set is equal to the distance relevance value or NIL according
to whether the COPU is a member of the set or not, respec-
tively. Furthermore, a COPU can be considered in multiple
interaction sets. In order to determine the overall relevance
of a COPU with respect to all the interaction sets 	�-�.
 the
relevance function for all COPUs in CO is defined as

��/10 .
 �2������� �, �"3$��/10 .
 % �#'4(57628-:9��<;>= � .@?@?@?>. �BA&= � % � -!% �#'C'
where � - calculates the COPU’s relevance value according
to interaction set k. �D/<0 then assigns the maximum of these
relevance values to the COPU.

Replacement and prefetching of data is integrated into
one general L/MRP algorithm (see Figure 4). This algo-
rithm is initiated each time a COPU is requested for pre-
sentation. Then all the COPUs which are most relevant
for presentation, i.e., those COPUs where � /10 .
 (c) = 1, are
prefetched into the buffer. If there is some free buffer space,
these COPUs are just loaded into the buffer. Otherwise, the
COPUs with a minimum value �D/<0 .
 (d) are the replacement
victims, and the COPUs with the least relevance values are
replaced by preloading the COPUs with the highest rele-
vance values.

GetNextCopuToBePresented(s) : Pointer to COPU
for all c E CO with FHGJI = � (c) = 1 do

if c KE BUFFER then
if buffer is full then

v E { LNMPOLNM , L>QRE BUFFER, F GJI = � (LNM)= S<T AQHU�V = W W = X GJI X Y2; (Z GJI = � ([Q))}

replace v by preloading c
else

preload c in a free buffer space
return buffer address of COPU LN\

Figure 4. General L/MRP algorithm [11].

4.2. Q-L/MRP
We have extended L/MRP to support our distance edu-

cation application by defining different interaction sets with
different distance relevance functions. Q-L/MRP supports
not only one data stream, but all the data streams in our sce-
nario, i.e., a stream for the electronic whiteboard, a video
stream, an audio stream, and a stream for a document cam-
era. Furthermore, L/MRP is designed for a single-user en-
vironment using small buffers containing some seconds of a
M-JPEG video. It is implemented in the continuous object
manager of the VODAK object-oriented database system
[11] where it runs on the client side in a client/server envi-
ronment. We test Q-L/MRP both at the server and the client
side for our application with support for multiple users. The
two extensions are quite trivial and are provided by adding
additional interaction sets to each data stream and each user.

To support users with different QoS requirements, we
map QoS specifications into the buffering mechanism. For
example, if a user wants to reduce the frame rate of the
video presentation, e.g., to half of the current frame rate,
Q-L/MRP loads only every second video frame, i.e., drops
the others frames, and thereby increases the available sys-
tem bandwidth. L/MRP would always load all the frames
regardless of the user request.

if total time waiting for I/O � 0.2 s then
amount = 1 s; /* PREFETCH THE next second OF DATA every 250 ms */
timer = 0.25 s;

else if 0.2 s < total time waiting for I/O � 0.45 s then
amount = 2 s; /* PREFETCH THE next 2 seconds OF DATA every 500 ms */
timer = 0.5 s;

else if 0.45 s < total time waiting for I/O � 0.7 s then
amount = 3 s; /* PREFETCH THE next 3 seconds OF DATA every 750 ms */
timer = 0.75 s;

else if 0.7 s < total time waiting for I/O � 0.95 s then
amount = 4 s; /* PREFETCH THE next 4 seconds OF DATA every 1000 ms */
timer = 1 s;

else if 0.95 s < total time waiting for I/O � 1.2 s then
amount = 5 s; /* PREFETCH THE next 5 seconds OF DATA every 1250 ms */
timer = 1.25 s;

else if 1.2 s < total time waiting for I/O � 1.45 s then
amount = 6 s; /* PREFETCH THE next 6 seconds OF DATA every 1500 ms */
timer = 1.5 s;

else
amount = 7 s; /* PREFETCH THE next 7 seconds OF DATA every 1750 ms */
timer = 1.75 s;

Figure 5. Configuration of the preloading daemon.

In section 3, we outlined the importance of prefetch-
ing data from disk to buffer in order to be able to retrieve
data in time for continuous playback of time-dependent data
streams. Figure 2 shows that due to performance reasons,
a one-COPU-at-a-time preloading strategy is not adequate
for our application. Instead of activating the L/MRP buffer
management strategy each time a COPU is requested for
presentation, we create a prefetching daemon which is ac-
tivated by a page fault or after a given time interval. If the
total execution time of the daemon including waiting for
I/O exceeds the given time interval, the daemon is activated
again whenever the previous process is finished3.

How much data has to be preloaded and with which pre-
loading frequency is strongly dependent of each other. A

3We have two choices regarding daemon activation: (1) activate when-
ever the previous daemon finishes (as described in this paper), or (2) acti-
vate after a given time interval regardless whether the previous process has
completed its work or not. We have chosen the first alternative, because
we did not want to have multiple daemon processes which might request
the same data from disk (multiple transmissions of the same data).

high frequency (many requests) introduces additional round
trip delays and disk accesses and might cause more page
faults. If the amount of data to be preloaded each time is too
high, we might waste bandwidth on loading data which will
not be used, e.g., the user interacts with the presentation.
Thus, support of continuous presentation of time-dependent
data in all types of I/O system and network workloads, i.e.,
reduce the number of page faults, in single or multi-user
mode, and heterogeneous QoS requirements, and optimiz-
ing the available bandwidth of the I/O system, i.e., do not
preload data not needed, can only be provided via dynamic
adaption of the buffer management mechanism. We have
created a dynamic prefetching daemon which tries to bal-
ance these contradictionary parameters, i.e., frequency and
amount of data. The frequency and data amount is dynami-
cally adjusted according to the system workload (total wait-
ing time for I/O). A dynamic daemon configuration exam-
ple is shown in Figure 5. For implementation details, see
Section 5.

The amount of data to be preloaded and the preload-
ing frequency is mutually dependent. A high frequency re-
sults in many requests, each for a small amount of data.
Vice versa, low frequency results in less requests for larger
amounts of data. The choice for a particular preloading fre-
quency and the particular amount of data to be preloaded
is depending on: available disk I/O bandwidth, network
load, QoS requirements, and other factors. For example,
the higher the total transfer time from disk the better is a
low preloading frequency. However, the larger the amount
of data to be preloaded, the higher the potential waste of
bandwidth by preloading the wrong data. With respect to
the fact that most of the influencing factors are dynamic, it
is obvious, that only dynamic adaptation of the buffer man-
agement mechanism will assure an optimal solution.

We have created a dynamic prefetching daemon which
tries to balance these contradictionary parameters, i.e., fre-
quency and amount of data. The frequency and data amount
is dynamically adjusted according to the system workload
(total waiting time for I/O). A dynamic daemon configu-
ration example is shown in Figure 5. For implementation
details, see Section 5.

5. Performance Evaluation
In order to be able to evaluate the performance of the

buffer management mechanism without any side effects
from other system components and to be able to use exactly
the same environment each time, we have implemented and
simulated Q-L/MRP in Matlab [9]. Matlab is a mathemati-
cal modeling tool for simulations and the programming lan-
guage is very similar to C or Pascal. We run the simulations
using homogeneous QoS requirements. We assume a sys-
tem environment and application requirements as they are
described in Section 2.

As simulation data, we have taken a five minutes long,
randomly chosen time window from a stored lecture which
is representative for an entire lecture. We use two reference
strings for the playback of this lecture based on [14]: (1)
pure linear playback, and (2) playback including playback
forward, backward, in other speeds, and jumps backward
and forward. For simulating Q-L/MRP on the client side,
we use three different network round trip delay figures as
they are illustrated in Figure 6. These figures are based on
measurements we have performed in the target environment
of DEDICATION [19], i.e., between UniK and the main
campus of the University of Oslo (a distance of about 30
km). We use these figures to analyze how Q-L/MRP adapts

to changes in the total transmission time introduced by the
network.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

network load 1

network load 2

network load 3

Three scenarioes of varying round trip delays in the network.
ro

un
d

tr
ip

 d
el

ay
 in

 s
ec

on
ds

playout time in minutes

Figure 6. Different round trip delays over the net-
work.
In order to evaluate if Q-L/MRP can support continuous

presentation of time-dependent data we analyze the num-
ber of page faults and delays generated by Q-L/MRP. We
simulate three different scenarios:

1. A centralized system where the client first downloads
the entire lecture.

2. A distributed system where the client fetches data from
a remote server (Q-L/MRP at the client side). The
client controls the playout and sends a request to the
server each time more data is needed (pull approach).
This scenario is divided into two parts: (A) data must
be retrieved from disk at the server, and (B) data is al-
ready loaded into the server buffer.

3. A distributed system where clients fetch data from a re-
mote server (Q-L/MRP at the server side). The client
handles the playout but sends only requests concern-
ing interactions, e.g., start, stop, jump etc. The server
transmits data to the client (push approach).

We run several simulations to prove that Q-L/MRP in-
creases the system throughput by generating less page re-
placements than traditional algorithms. We compare Q-
L/MRP with LRU and RANDOM for two reasons: (1) other
related work, which the authors know about, do not address
the problem of heterogeneous QoS specifications, do not di-
rectly address data preloading and page replacement, and
are designed for much larger environments than our dis-
tance education application, and (2) LRU and RANDOM
are widely used in traditional buffer management mecha-
nism in database management systems (DBMSs). At the
client side, we also compare Q-L/MRP to an extended ver-
sion of L/MRP (support of all our data streams). The differ-
ent simulation scenarios are based on the described band-
width requirements and reference strings. Due to the partic-
ular requirements and the workload of our application, we
simulate single-user mode and multi-user mode with three
concurrent users. We also compare page replacement using

different preloading strategies, and analyze the gain of data
reuse4 by increasing the buffer size. The following subsec-
tions present the simulation results.

for each media type do
/* DISTANCE RELEVANCE FUNCTIONS: */
/* - THE Referenced INTERACTION SET */

drRef ��� . dist . amount � 9���� . 0 � dist � amount�	� ��
 dist . amount + 1 � dist

/* - THE History INTERACTION SET */
drHis �� . dist � 9 ��� ��
 dist

/* - THE Skipped INTERACTION SET */
drSkip ��� . dist � 9 ��� ��
 dist

/* COMPUTE DISTANCE n BETWEEN TO COPUS IN REFERENCED*/
(1)if skip > 0 then

n = skip + rate - 1
else

n = skip - rate - 1
end

/* COMPUTE AND ASSIGN THE RELEVANCE VALUES */
/* TO THE COPUS IN THE BUFFER */

(2)for each COPU c E BUFFER where COPU c is of type media type do
/* COMPUTE DISTANCE d FROM COPU j TO PRESENTATION POINT p */
d = j - p

if (d < 0 && skip > 0) O@O (d > 0 && skip < 0)
/* COPU E History */
relevance value of COPU c = drHis(� , d)

else if mod(p, n) = mod(p + d, n)
/* COPU E Referenced */
relevance value of COPU c = drRef(� , d, amount_to_preload)

else
/* COPU E Skipped */
relevance value of COPU c = drSkip(� , d)

end
end

/* PRELOAD ALL COPUS WHOSE RELEVANCE VALUE IS ONE */
(3)for count = 1 : amount_to_preload; step rate do

i = p + count
 n
find COPUQ with lowest reference value
replace COPU Q with COPU T

end
end

Figure 7. Pseudo code of the prefetching daemon.

The implementation of Q-L/MRP for the client side in
our simulation environment is outlined in Figure 7 with sim-
plified pseudo code. On the server side, points (1), (2), and
(3) have to be executed for each user as well. The algorithm
in Figure 5 determines the amount of data to be preloaded
and the execution frequency. Table 3 shows the respective
parameters. If we do not have straight playback forward, the
audio stream is not presented, and the rate has only mean-
ing in the video and camera case, i.e., rate is set to one for
audio. Saving and loading registers etc. during a context
switch is assumed to take about 50 micro-seconds based on
measurements for an IBM PowerPC in [10].

5.1. Support for Continuous Presentation of Time-
Dependent Data

In order to see if Q-L/MRP can support continuous pre-
sentations of time-dependent data, we present simulation re-
sults for all the different system scenarios described above
with buffer sizes of 32 MB and 64 MB, page sizes of 8 KB,
16 KB, and 32 KB, and the two reference strings.

4By the term data reuse in this context, we mean that the data needed
is still in the buffer. An improved data reuse gives less page faults and a
smaller amount of data must be loaded into the buffer.

Parameter Video Audio Camera Transparencies

� ;;���� V V ;; V ;
��� V V ;

�

� ;
��� V ;

� V ;;�� V ;
�

� ;
��� V ;

� V ;;�� V -

Table 3. Distance relevance function parameters
used in our simulations.

In the first scenario (centralized, isolated system), the re-
sults are similar to those presented in [11]. Q-L/MRP re-
duces the number of page faults dramatically compared to
traditional, demand paging algorithms like RANDOM and
LRU, i.e., in all buffer and page size configurations, we have
only one page fault in the interactive reference string which
results in a delay of about 0.06 seconds for presenting data
on the electronic whiteboard. The pure linear playback is
presented without any page faults.

Simulating Q-L/MRP at the server with three concurrent
users, pure linear playback is presented with one or two
page faults giving delays of about 0.3 seconds. Using the
interactive reference string, we get between 171 and 174
page faults resulting in delays from 0.15 to 0.59 seconds.
Compared to the total amount of pages fetched from disk,
we have about 0.2% page faults depending of the buffer size
using 16 KB pages, and compared to demand paging mech-
anisms this is a large improvement as shown in Table 4. The
prefetching mechanism in Q-L/MRP produces only 0.09 -
0.37% of the number of page faults compared to RANDOM
and LRU in a 32 MB or a 64 MB buffer.

Buffer size Page size Algorithm
(MB) (KB) Q-L/MRP LRU RANDOM

8 173 185290 190124
32 16 172 92645 95065

32 172 46325 47576

8 174 185240 185939
64 16 171 92620 92916

32 172 46312 46513

Table 4. Number of page faults in a server with
three concurrent users.

Additionally, we simulate L/MRP and Q-L/MRP on the
client side. Our results shows that the algorithm execution
time and the time to retrieve all data from disk and transmit
it over the network is too high to support continuous presen-
tation of a lecture using L/MRP. Before one request is fin-
ished another two to six requests has arrived depending on
page size, buffer size and network delays. This means that
the L/MRP must run each request in parallel (which will be
many) and use a some extra CPU-time, or if there are only
one request run at a time, there will be various number of
page faults resulting in delays in the presentation.

Simulations using Q-L/MRP and no network delays give
the same results as in the first scenario, i.e., at most two
page faults. Simulating with the network delays shown in
Figure 6, we compare our dynamic preloading mechanism
(see Figure 5) which adapts to changes in the network and
disk I/O (denoted Q-L/MRPdyn) with two static preload-
ing strategies (denoted Q-L/MRPmin and Q-L/MRPmax).
These static preloading strategies are similar with respect
to adaption to an extended version of L/MRP which runs

a prefetching daemon which is statically configured like
the one originally implemented in L/MRP. The two static
strategies are configured as high preloading frequency with
a small amount of data to prefetch, e.g., prefetch the next
second of data every 250 ms, and low preloading frequency
with a large amount of data to prefetch, e.g., prefetch the
next seven seconds of data every 1750 ms. Compared to
demand paging algorithms, Q-L/MRP provides a large im-
provement in the amount of page faults.

Network load/ Algorithm
Buffer size Q-L/MRPdyn Q-L/MRPmax Q-L/MRPmin

Load 1/32 MB 5 5 5 261 261 261 28 26 27

Load 2/32 MB 5 5 5 261 261 261 4 4 4

Load 3/32 MB 4 4 4 261 261 261 160 54 54

Load 1/64 MB 5 4 4 261 261 261 27 27 28

Load 2/64 MB 5 5 5 261 261 261 5 5 5

Load 3/64 MB 7 4 4 261 261 261 191 54 54

8 16 32 8 16 32 8 16 32
Page sizes (KB)

Table 5. Number of page faults depending on pre-
loading strategy using an interactive reference
string.

From Table 5, which shows the simulation results where
data has to be retrieved from the server disk, we conclude
that a dynamic preloading strategy supports continuous pre-
sentation of time-dependent data better than static ones.
When data is found in the server buffer, Q-L/MRPmax gen-
erates exactly the same amount of page faults. However,
since we do not have to retrieve data from disk, the to-
tal waiting time for I/O decreases. In this simulation sce-
nario, Q-L/MRPdyn is configured by the system exactly as
Q-L/MRPmin. Both generate almost the same results as
Q-L/MRPdyn does in the case where the disk has to be ac-
cessed. Furthermore, our simulation results show that the
implemented prefetching and page replacement mechanism
in Q-L/MRP supports continuous presentation of lectures
from our distance education application, and the response
time after interactions varies from 0 to 0.70 seconds, which
is below PAL’s (phase alternating line) two seconds restart
delay requirement [11].

5.2. Amount of Data Loaded into the Buffer

In this Section, we compare the amount of data loaded
into the buffer from the page replacement strategies Q-
L/MRP, L/MRP, LRU, and RANDOM. We present only the
multi-user mode results using pure linear playback, because
there is nearly no reuse of data in a single-user situation,
the results are almost identical for all the page replacement
algorithms, and similar results are presented in [11]. Us-
ing playback with interaction, we present the results from
single-user mode. We compare the dynamic and static pre-
loading strategy, and present the benefits of increasing the
buffer size.

5.2.1 Comparison of Page Replacement Strategies

The results from the multi-user simulation (see Figure 8)
with a 32 MB buffer show that Q-L/MRP gives better per-
formance by reducing the amount of data loaded into the

buffer. This is a large improvement, e.g., in case of 8 KB
pages, Q-L/MRP, LRU, and RANDOM load 1406.9 MB,
1447.6 MB, and 1485.3 MB of data respectively. Similar
results are achieved with the 64 MB buffer simulation, but
the amount of loaded data is further reduced compared to
LRU and RANDOM. If we look at the referenced data, Q-
L/MRP preloads more data than necessary when using a 32
MB buffer, but increasing the buffer size to 64 MB results
in more data reuse, and the total amount of loaded data is
smaller than the amount of referenced data.

5 10 15 20 25 30 35
1250

1300

1350

1400

1450

1500

Total amount of data refered

Q−L/MRP (32 MB buffer)

LRU (32 MB buffer)

RANDOM (32 MB buffer)

Q−L/MRP (64 MB buffer)

LRU (64 MB buffer)

RANDOM (64 MB buffer)

page size (KB)

am
ou

nt
 o

f d
at

a
lo

ad
ed

 in
to

 th
e

bu
ffe

r
(M

B
)

Comparison of the amount of data loaded into the buffer

Figure 8. Page replacements for different paging
strategies (non-interactive scenario, three users).

Like the simulation without interactions, Q-L/MRP
gives the best results in the single-user playback simulation
with all kinds of user interactions. Both the 32 MB and
the 64 MB buffer simulation show an even larger improve-
ment compared to LRU and RANDOM than in the non-
interactive scenario (see Figure 9, Q-L/MRP and L/MRP
have almost overlapping curves). Compared to L/MRP, the
gain in the amount of loaded data is very low, i.e., Q-L/MRP
loads about 506.1 MB while L/MRP loads 507.1 MB using
a 32 MB buffer. If we again compare with the referenced
data, Q-L/MRP loads less data than referenced no matter
what buffer size we use.

Furthermore, if we compare Q-L/MRP (which maps user
requirements) and L/MRP (which always loads the max-
imum amount of data), the amount of data loaded is re-
duced by the number of COPUs not loaded multiplied by
the COPU size. For example, if the user in a pure linear
playback reduces the frame rate to the half, we will load
about 40 MB less of data per minute using Q-L/MRP in-
stead of L/MRP in our distance education scenario. This
will increase the available system bandwidth.

5.2.2 Dynamic Versus Static Preloading Strategies

In case of pure linear playback, the three preloading strate-
gies, Q-L/MRPdyn, Q-L/MRPmin and Q-L/MRPmax, all re-
place the same amount of data. However, in an interactive
scenario there is a risk of prefetching too much data as the
user for example might jump backwards. In this case, the

10 15 20 25 30
460

480

500

520

540

560

580

600

620

640

660

page size (KB)

am
ou

nt
 o

f d
at

a
lo

ad
ed

 in
to

 th
e

bu
ffe

r
(M

B
)

Comparison of the amount of data loaded into the buffer

Total amount of data refered

Q−L/MRP (32 MB buffer)

LRU (32 MB buffer)

RANDOM (32 MB buffer)

L/MRP (32 MB buffer)

Q−L/MRP (64 MB buffer)

LRU (64 MB buffer)

RANDOM (64 MB buffer)

LMRP (64 MB buffer)

Figure 9. Page replacements for different paging
strategies (interactive scenario, one user).

prefetched data will not be used, and we waste some I/O
bandwidth loading data we do not need. Table 6 presents
the amount of data in MBs loaded into the buffer for all the
simulated preloading strategies in Q-L/MRP using the net-
work delays given in Figure 6 and assuming data has to be
retrieved from the server disk. Since Q-L/MRPmax is static
and prefetches a larger amount of data than necessary in all
the different network loads, the total size of preloaded data
is equal using the same buffer and page size. Prefetching
too much data as in Q-L/MRPmax results in loading 40 MB
of data which is not used. Q-L/MRPmin always preloads
a smaller amount of data which obviously results in less
wasted bandwidth. Our simulations show that Q-L/MRPdyn
preloads a little more than Q-L/MRPmin, which preloads
from 1.2 MB to 6.2 MB more using a 32 MB buffer, but
it is much better than Q-L/MRPmax, which preloads from
37.2 MB to 42.1 MB less using a 32 MB buffer.

Page
Algorithm Network load / Buffer size (MB) size

1/32 2/32 3/32 1/64 2/64 3/64 (KB)
502.8 499.2 503.0 468.6 463.6 470.5 8

Q-L/MRPdyn 502.2 498.2 503.0 468.3 464.1 469.1 16
502.3 498.3 503.1 468.4 464.2 469.2 32
540.3 540.3 540.3 507.8 507.8 507.8 8

Q-L/MRPmax 540.3 540.3 540.3 507.8 507.8 507.8 16
540.4 540.4 540.4 507.9 507.9 507.9 32
496.7 497.0 496.4 462.4 463.3 462.4 8

Q-L/MRPmin 496.7 497.0 496.8 462.5 463.7 462.7 16
497.2 497.0 496.8 462.9 463.8 462.8 32

Table 6. Amount of data loaded into the buffer de-
pending on preloading strategy.

When the needed data is found in the server buffer,
Q-L/MRPmax prefetches the same amount of data as
when data is retrieved from disk. Q-L/MRPdyn adapts

to the reduced time to retrieve data and configures like
Q-L/MRPmin: less data is prefetched at a higher frequency.

5.2.3 Data Reuse Versus Buffer Size

We have looked at the gain of data reuse by increasing the
buffer size from 16 MB to 128 MB. By increasing the buffer
size from 16 MB to 32 MB, we get a large improvement of
data reuse, and as we see in Figure 8 and 9, the amount
of preloaded data decreases strongly when increasing the
buffer from 32 MB to 64 MB in both single and multi-user
mode. The gain of data reuse in single-user mode decreases
by increasing the buffer size from 64 MB to 128 MB, be-
cause nearly all data to be presented after an interaction in
our reference string can be kept in the buffer. However, in
multi-user mode we can increase the buffer size to benefit
more from data reuse. Compared to the amount of refer-
enced data, Q-L/MRP in pure linear playback and multi-
user mode preloads less data than referenced using a buffer
of 64 MB or larger. In single-user mode (interactive play-
back scenario), Q-L/MRP always loads less data then the
amount of referenced data.

5.3. Algorithm Execution Time

Since Q-L/MRP computes the relevance value of
each COPU in the buffer according to each interac-
tion set, it is a quite expensive algorithm to execute.
The total execution time can be estimated by the function

execution time (p,b,u,m,c) � time to set relevance values + time to prefetch data
� [#interaction sets
 #buffers] +

[#COPUs to load
 #pages per COPU]
� [(u
 m)
 �\] + [c
 COPU size\]

where p is page size, b is buffer size, u is number of users, m
is number of media types, and c is the number of COPUs to
be preloaded into the buffer. However, all these parameters
are not constants and may vary, e.g., the number of COPUs
to be preloaded changes according to the workload and
the COPU size varies according to each data type. Figure
10 and 11 presents some examples from our simulations5.
The execution time increases linearly with more users and
larger buffer size, and exponentially with a smaller page
size. Furthermore, Figure 12 shows the gain in execution
time by introducing our prefetching daemon in Q-L/MRP
compared to the prefetching in L/MRP at the client side.

6. Discussion and Conclusions

In this paper, we have demonstrated that demand pag-
ing cannot deliver data fast enough to support a continuous
presentation of time-dependent data. Prefetching of data in-
stead minimizes the number of disk accesses, and reduces
the total time spent transferring data from disk to buffer.

Based on the special requirements of our DEDICATION
pre-study, i.e., building a cheap prototype system for asyn-
chronous distance education, we have designed the buffer
management mechanism Q-L/MRP. Q-L/MRP is a buffer
preloading and page replacement mechanism for multime-
dia applications with heterogeneous QoS requirements. Q-
L/MRP extends L/MRP [11] with two features: (1) it sup-
ports multiple concurrent users, and (2) it supports QoS

5We have used the software monitor Quantify to calculate the number
of CPU cycles needed, and computed the execution time simulating a 200
MHz CPU.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

buffer size (MB)

al
go

rit
hm

 e
xe

cu
tio

n
tim

e
in

 %
 o

f t
ot

al
 C

P
U

−
tim

e

A static preloading scenario varying the buffer size (32 KB pages)

Three users

One user

Figure 10. Average execution time of Q-L/MRP
varying buffer size in a static preloading scenario.

5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

page size (KB)

al
go

rit
hm

 e
xe

cu
tio

n
tim

e
in

 %
 o

f t
ot

al
 C

P
U

−
tim

e

A static preloading scenario varying the page size (128 MB buffer)

Three users

One user

Figure 11. Average execution time of Q-L/MRP
varying page size in a static preloading scenario.

with a dynamic prefetching daemon. The dynamic prefetch-
ing daemon is able to dynamically adapt to the changes in
network and disk I/O load. Furthermore, QoS requirements
of users like frame rate are mapped into the buffer mech-
anism. Based on different interaction sets, the COPUs are
assigned relevance values which are used to prefetch and
replace data in the buffer.

Our performance evaluation shows that the adaption to
changes in network and disk I/O load as well as the con-
sideration of QoS requirements results in much better per-
formance: the number of page faults is drastically reduced.
For example, the higher the network delay, the better the im-
provements of Q-L/MRP through adaption. Prefetching of
data reduces the disk I/O and network I/O bottleneck, but it
contains also the danger of preloading the wrong data, i.e.,

5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

page size (KB)

al
go

rit
hm

 e
xe

cu
tio

n
tim

e
in

 %
 o

f t
ot

al
 C

P
U

−
tim

e

Comparison of Q−L/MRP and L/MRP regarding algorithm execution time

Q−L/MRP (32 MB buffer)

Q−L/MRP (64 MB buffer)

L/MRP (32 MB buffer)

L/MRP (64 MB buffer)

Figure 12. Execution time of Q-L/MRP and L/MRP.

data that is not used by the application. This danger is es-
pecially high for interactive usage of multimedia data. Our
results show that the amount of wrongly preloaded data in
Q-L/MRP is quite small, even for reference strings of inter-
active application usage.

In summary, we have shown that Q-L/MRP is very suit-
able for the special environment in our DEDICATION pre-
study and outperforms other buffer management mecha-
nisms. Since we have implemented Q-L/MRP in software
only, and it benefits from the predictability of the refer-
ence behavior in continuous data streams (which is the case
in many multimedia applications), the results presented in
this paper do not only affect our application. They may
also be valid for other applications with continuous, time-
dependent data streams on other systems which may have
different hardware configurations and workloads. With re-
spect to the general applicability of Q-L/MRP in MMDBSs
we detected only one restriction: the time to compute rele-
vance values and preload data into the buffer in Q-L/MRP
is increasing with a larger buffer size, more users, and a
smaller page size. Thus, the Q-L/MRP algorithm might be
too CPU intensive for MMDBS servers with large buffers.
For MMDBS clients, however, Q-L/MRP is very suitable,
as we have shown in our performance evaluation.

A direct continuation of the work presented in this pa-
per is the analysis of the situation when using Q-L/MRP
in a MMDBS client and another buffer management mech-
anisms, e.g., some kind of media caching [2], [7], in the
MMDBS server. Generally, our ongoing and future work
is concerned with QoS support from the entire system in-
cluding the MMDBS for asynchronous teaching. Currently,
there are two projects at UniK that work with QoS issues in
MMDBSs: DEDICATION and OMODIS (Object-Oriented
Modeling and Database Support in Distributed Multimedia
Systems. Main emphasis in OMODIS is on the conceptual
aspects and the integration of QoS in MMDBSs [4].

References
[1] Bakke, J., W., Hestnes, B., Martinsen, H.: “Distance Ed-

ucation in the Electronic Classroom”, Televerkets Forskn-
ingsinstitutt, report TF R 20/94, 1994

[2] Dan, A., Sitaram, D.: Multimedia Caching Strategies for
Heterogeneous Application and Server Environments, Mul-
timedia Tools and Applications, Vol. 4, No. 3, May 1997,
pp. 279 - 312

[3] Effelsberg, W., Härder, T.: “Principles of Database Buffer
Management”, ACM Transactions on Database Systems,
Vol. 9, No. 4, December 1984, pp. 560 - 595

[4] Goebel, V., Plagemann, T., Berre, A.-J., Nygård, M.:
“OMODIS - Object-Oriented Modeling and Database Sup-
port for Distributed Systems”, Norsk Informatikk Konfer-
anse (NIK’96), Alta, Norway, November 1996, pp. 7 - 18

[5] Hollfelder, S., Kraiß, A., Rakow, T., C.: “A Buffer-Triggered
Smooth Adaption Technique for Time-Dependent Media”,
technical report No. 1002, German National Research Cen-
ter for Information Technology (GMD), June 1996

[6] Johnson, T., Shasha, D.: “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm”,
Proceedings of the 20th IEEE VLDB Conf., Santiago, Chile,
1994, pp. 439 - 450

[7] Kamath, M., Ramamritham, K., Towsley, D.: “Continu-
ous Media Sharing in Multimedia Database Systems”, 4th
Int. Conf. on Database Systems for Advanced Applications
(DASFAA’95), Singapore, April 1995, pp. 79 - 86

[8] Liskov, B., Adya, A., Castro, M., Day, M., Ghemewat, S.,
Gruber, R., Maheshwari, U., Myers, A.C., Shrira, L.: “Safe
and Efficient Sharing of Persistent Objects in Thor, SIG-
MOD Conference 1996, Montreal, Canada, 1996, pp. 318
- 329

[9] MATLAB (Version 4.2c), High-Performance Numeric
Computation and Visualization Software, User’s Guide and
Reference Guide, The MATH WORKS Inc, 1992

[10] McVoy, L., Staelin, C.: “lmbench: Portable Tools for
Performance Analysis”, USENIX 1996 Annual Technical
Conf., San Diego, CA, January 1996

[11] Moser, F., Kraiß, A., Klas, W.: “L/MRP: A Buffer Manage-
ment Strategy for Interactive Continuous Data Flows in a
Multimedia DBMS”, Proceedings of the 21th IEEE VLDB
Conf., Zurich, Switzerland, 1995, pp. 275 - 286

[12] Ng, R., T., Yang, J.: “Maximizing Buffer and Disk Utiliza-
tion for News-On-Demand”, Proceedings of the 20th IEEE
VLDB Conf., Santiago, Chile, 1994, pp. 451 - 462

[13] O’Neil, E., J., O’Neil, P., E., Weikum, G.: “The LRU-K Page
Replacement Algorithm For Database Disk Buffering”, Pro-
ceedings of the 1993 ACM SIGMOD Int. Conf. on Manage-
ment of Data, Washington, D.C., USA, May 1993, pp. 297 -
306

[14] Plagemann, T., Goebel, V.: “Experiences with the Elec-
tronic Classroom: QoS Issues in an Advanced Teaching and
Research Facility”, 5th IEEE Workshop on Future Trends in
Distributed Computing Systems, FTDCS’97, Tunesia, Tu-
nis, October 1997, pp. 124 - 129

[15] Rakow, T., C., Neuhold, E., J., Löhr, M.: “Multimedia
Database Systems - The Notion and the Issues”, Daten-
banksysteme in Büro, Technik und Wissenschaft, BTW’95,
GI-Fachtagung, Dresden, Germany, March 1995, Springer,
1995, pp. 1 - 19

[16] Rotem, D., Zhao, J., L.: “Buffer Management for Video
Database Systems”, Proceedings of the 11th Int. Conf. on
Data Engineering, Tapei, Taiwan, March 1995, pp. 439 - 448

[17] Seagate, http://www.seagate.com/disc/elite/elite.shtml,
1997

[18] Steinmetz, R., Nahrstedt, K.: “Multimedia: Computing,
Communications and Applications”, Prentice Hall, 1995

[19] Sæthre, K., A.: “Distributed Multimedia Applications and
Quality-of-Service” (in Norwegian), Master Thesis, Univer-
sity of Oslo, UniK, November 1996

