
Real-Time Detection of Events in Soccer Videos
using 3D Convolutional Neural Networks

Olav A. Nergård Rongved∗‡, Steven A. Hicks∗‡, Vajira Thambawita∗‡, Håkon K. Stensland∗, Evi Zouganeli†,
Dag Johansen¶, Michael A. Riegler∗, and Pål Halvorsen∗‡§

∗SimulaMet, Norway ‡Oslo Metropolitan University, Norway §Forzasys, Norway ¶UIT The Arctic University of Norway

Abstract—In this paper, we present an algorithm for automat-
ically detecting events in soccer videos using 3D convolutional
neural networks. The algorithm uses a sliding window approach
to scan over a given video to detect events such as goals,
yellow/red cards, and player substitutions. We test the method on
three different datasets from SoccerNet, the Swedish Allsvenskan,
and the Norwegian Eliteserien. Overall, the results show that we
can detect events with high recall, low latency, and accurate time
estimation. The trade-off is a slightly lower precision compared
to the current state-of-the-art, which has higher latency and
performs better when a less accurate time estimation can be
accepted. In addition to the presented algorithm, we perform an
extensive ablation study on how the different parts of the training
pipeline affect the final results.

Index Terms—Event detection, deep learning, sports analysis,
soccer.

I. INTRODUCTION

Today, we have access to billions of hours of content
through services like YouTube and Netflix, not to mention
hundreds of TV channels that run 24/7. In sports, televised
events are broadcast around the clock, where a single event
can last for hours before concluding. In this context, sum-
marization techniques have become popular as a means to
compress video content, be it news or sports, into only the
most interesting parts. For soccer, or sports in general, this
summarization would typically consist of game highlights
such as goals, bookings (cards), goal attempts, and penalties.
Currently, the gold-standard for creating these highlight reels
is through manual annotations. This is a time-consuming,
tedious, and expensive operation. Automating this process, or
parts of it would go a long way in providing fast game high-
lights at a much lower cost. Furthermore, automatic detection
and annotation of these events could be used for statistical
purposes, which in turn could provide value to fans, teams,
or the broadcasts themselves. The challenge is to develop a
system that is accurate enough for important events and fast
enough to be used in real-time for live services.

Although event detection is useful in many scenarios, one
especially interesting use-case is producing game highlights
while the game is ongoing. However, for this to work, the
detection algorithm has to process frames at the pace of
the videos’ frame-rate (typically 25 frames-per-second). Real-
time detection of sports events is nothing new, but previous
pursuits rely on textual information that may not always be
available [1] or require complex setups that use expensive
equipment [2]. With the recent advances in deep learning-

based action recognition and detection, it may be possible
to create a data-driven model that generalizes to multiple
sports and events. In this paper, we explore how state-of-the-
art deep learning models perform in soccer event detection.
Our goal is to automatically annotate soccer events in videos
as close to the actual event in real-time. One approach to
evaluate automatic event detection is through the task of
spotting measuring the distances between the actual events
and the predicted events. We built a prototype and used
multiple datasets to evaluate our method against a baseline
comparison from SoccerNet [3] in terms of both accuracy and
tolerance for delays. The results indicate that the approach
presented in the current state-of-the-art [4] gives a higher
detection accuracy if there is a higher tolerance for accurate
time estimation, whereas our approach is competitive for lower
tolerance on accurate time estimation, and superior when real-
time detection is required.

II. RELATED WORKS

Automatic event detection is a broad field spanning multiple
different areas such as sports. In this section, we cover the most
relevant works using automatic analysis of sports broadcasts.
We split this coverage into two parts, sports analytics and
action detection, and insert our work to see how it contributes.

A. Sport Analytics

In the rising trend of machine learning-based methods,
automatic sports analytics has been growing over the last few
years. This field is wide, encompassing sports ranging from
soccer [3] to curling [5], [6] and everything in-between [7],
[1], [8], [9]. One popular technique is using computer vision
to analyze sports broadcasts to produce statistics or generate
highlight reels for games. In 2003, Ekin et al. [10] presented
a framework to automatically summarizing soccer videos
using cinematic and object-based features. Later, Giancola
el at. presented SoccerNet [3], which is an open dataset
for soccer video analysis. As a benchmark, they performed
some preliminary experiments using I3D [11], C3D [12], and
ResNet [13] pre-trained on ImageNet [14] as fixed feature
extractors, followed by dimensionality reduction with princi-
pal component analysis (PCA). These features are sampled
every 0.5s throughout the soccer videos. Afterward, based
on these features, the authors use convolutional layers to
capture temporal information, followed by pooling layers and
a fully connected layer. This process is done locally around

an annotated event where the final trained model predicts
events on full videos by a sliding-window approach and post-
processing of the predictions. The authors tested this approach
by using temporal windows ranging from 5-60 seconds, where
5-second windows performed best given strict requirements for
distance between predicted events, while 20-second windows
performed best overall. Cioppa et al. [4] improved the results
on SoccerNet. The authors introduced a new loss function for
temporal segmentation that varies the loss based on whether
a prediction is located far before, just before, just after, or far
after an event.

B. Action Detection

Action detection is a problem that has also been getting
more attention over the last decade. Action detection aims to
find what actions occur, at what time in videos. Videos have
challenges such as change of camera view, cluttered back-
grounds, and motion blur. There are also practical challenges
due to high-computational costs, high storage requirements,
and costly annotation for datasets.

Action Recognition is a classification task of short, trimmed
clips of video. Datasets such as UCF101 [15] and HMDB-
51 [16] have been important additions to the field in terms
of making the action recognition task more accessible and
creating a common benchmark to measure performance. In
earlier works, features such as Histogram of Gradients (HOG),
Histogram of Flow (HOF), Motion Boundary Histogram
(MBH) [17], dense trajectories [18], [19] showed promising
results. In 2014, Karpathy et al. [20] explored the use of
CNNs using two streams, cropping the center of the image
and down-sampling it as input. Furthermore, Simonyan et
al. [21] introduced a Two-Stream CNN architecture related to
the Two-Stream hypothesis [22], which is an idea of humans
possessing two distinct visual systems. They used two separate
CNNs, where a spatial CNN [23], pre-trained on ImageNet,
which takes RGB input by sampling frames from video, and,
the temporal stream, which uses optical flow fields as input.
Carreira et al. [11] added 3D convolution to the Two-Stream
structure, and Feichtenhofer et al. [24] explored the fusion
process with 3D convolution and 3D pooling. The Two-Stream
architecture is also extended with ST-ResNet [25], which adds
residual connections [13] in both streams and from the motion
stream to the spatial stream. Research into a combination
of hand-crafted features and deep-learned features has also
shown promising results [26]. Wang et al. [27], [28] proposed
Temporal Segment Networks (TSN), arguing that existing
models mostly focused on short-term motion, rather than long-
range temporal structures. TSN takes a video input, separates
it into multiple snippets, and makes a prediction using two-
stream networks for each snippet. C3D [12] explored 3D
convolution learning spatio-temporal features. When compar-
ing with existing 2D convolution solutions, 3D convolution
is indeed beneficial by adding temporal information such as
motion.

When the kinetics-400 [29] was released, the Two-Stream
Inflated 3D ConvNet (I3D) [11] model was introduced, using

both 3D convolution and the inception architecture [30]. I3D
works much like the two-stream networks, using one network
for the RGB stream input and one for the optical flow. To
enable 3D convolution, they inflated filters on a pre-trained 2D
CNN, i.e., using transfer learning to initialize the 3D filters.

To avoid relying on only RGB or optical flow as input,
PoTion [31] used a pose detection algorithm [32] to find spatial
locations frame by frame for joints and key parts of the human
body. Combined with RGB input, they could now use a much
smaller CNN. However, a challenge with this approach is the
reliance on good results from the pose detection model.

Later, Tran et al. [33] introduced Res (2+1)D, which is
based on (2+1)D convolutions separating the 3D convolution
into two steps. The idea is that it may be easier for the
network to learn spatial and temporal features separately.
Finally, SlowFast [34] introduced the SlowFast architecture.
The model is based on the use of two different frame rates as
input, where the idea is to have a high-capacity slow pathway
that sub-samples the input heavily, and a fast pathway that has
less capacity but significantly higher frame rate.

Temporal action detection aims to find a temporal interval
in an untrimmed video, along with a given action that oc-
curs. Common datasets for this task are THUMOS [35] and
ActivityNet [36]. Some success has been seen with sliding
window approaches [35], however, this is computationally
expensive and lacks flexibility due to fixed window sizes.
Some works focus on generating temporal proposals, which
can then be used with a classifier [37], [38]. Inspired by
Faster R-CNN [39], Xu et al. [40] created an end-to-end model
for temporal action detection that generates temporal region
proposals, followed by classification.

Spatio-temporal action detection attempts to not only find a
temporal interval for a given action, but also spatially. Finally,
spotting [3] focuses on detecting sparse events in untrimmed
videos. In contrast to temporal action detection, there is no
temporal interval in which an event occurs, rather it is defined
as an instant point in time.

III. METHODOLOGY

Building on the ideas presented above, we aim for a system
both accurate and fast. In a real-time setting, latency is
important. Therefore, models that use small temporal windows
are useful since it is often necessary to gather contextual
features both from the future and the past. If a model relies
on information from the future, it will need to buffer the
video, creating a delay. While a sliding-window approach
is computationally expensive, current hardware can still run
CNN’s fast enough in many cases. This can also be mitigated
in many cases by using a higher temporal stride.

A. Data and Pre-processing Pipeline

To detect events in untrimmed videos, we use a sliding
window approach with a CNN classifier. Therefore, we recast
the problem as a classification problem locally around each
event. We sample N frames locally with the temporal anchor

as the center. This approach leaves us with a biased model con-
sidering all the background data due to the sparsity of events.
We consider video frames that are not near an annotated event
as background.

Contextually, the scenes in soccer videos may also be very
similar for different events, such as a goal attempt versus a
goal, or a close up view on the referee pointing versus a
yellow card. Therefore, we try to represent full videos by gen-
erating background samples to encourage the model to learn
meaningful features. The borders between background and
events have some inherent ambiguity, as seen in Sigurdsson et
al. [41], which explored how the temporal extent of an event
varies between different annotators. We annotate a background
set using the following rule: If the distance between two
consecutive events a and b is greater than 180 seconds, then
we annotate a new event labeled Background at at+bt

2 . At a
minimum 180 seconds away from the closest annotated event,
we have cleared a temporal distance large enough such that
information from events should not be contained within a
background sample. While it is possible to sample a replay
of an event, we find it unlikely since replays are typically
played closer to events.

Class Train Validation Test

Card 1296 396 453
Substitution 1708 562 579
Goal 961 356 326
Background 1855 636 653

Total 5820 1950 2011

TABLE I: The number of samples per class.

Table I shows our new dataset that contains ‘Background’.
SoccerNet has 6, 637 annotations across about 784 hours of
video. If we assume that a given event lasts 5 seconds,
we have annotations for 5 × 6637 seconds of the total
784× 60× 60seconds. This adds up to 1.17%, with the other
98.83% seconds containing something else. Therefore, the
vast majority of a soccer match is background in relation to
these three classes. There are some weaknesses as well since
we automatically generate new samples. Background may be
annotated during replays of any of the three events, while it
is likely rare, we expect some ’bad’ samples to be present.

During training, we pre-process the clips on the fly. First,
we resize clips to a resolution of 112 × 199, followed by
normalization. Secondly, we randomly crop a 112× 112 clip.
Finally, we randomly flip each frame with a probability of
0.5. Considering that soccer fields are symmetric around that
center, therefore this may make the model more robust to
events on either side. In Figure 1, we show some example
frames included in the three classes.

B. Model Architecture

We use an 18-layered 3D ResNet as in Tran et al. [33].
It uses 17 3D-convolution layers followed by global average
pooling and an output layer. The model is composed by using
several residual blocks that contain 3D convolutions, with

Card

Substitution

Goal

Background

Fig. 1: Sample frames visualized for a sample of 128 frames.
The middle frame is at the annotated time.

batch-normalization and ReLu. Additionally, the model has
been pre-trained on Kinetics-400 [29]. Due to the pooling
layer, an arbitrary number of video frames can be used as
input.

C. Training and Implementation Details

We implemented the model in PyTorch [42] and trained on
a machine consisting of 16 Nvidia Tesla V100 GPUs, which
combined have a total memory capacity of 512 Gigabytes.

Component Time (seconds)

Avg. Video Read/Load + Transforms 0.605930s
Avg. Transforms 0.144913s
Avg. Video Read/Load 0.460952s
Avg. GPU load 0.004735s
Avg. GPU foward pass 0.004633s
Avg. GPU load + forward pass 0.009372s
Avg. Total 0.615302s

TABLE II: Average runtime over 50 samples on a single
Nvidia Tesla V100 GPU.

1) Runtime: Table II shows the time spent with our method
to create our prediction signal. Samples are 128 frames with
resolution 224×398, that is transformed through resizing and
center cropping to 112× 112 resolution, and then normalized.
These are sampled at a stride of 1 second in a single game.
Most of the time is spent reading in video frames, followed
by the transforms.

2) Hyperparameters: We use SGD with 0.9 momentum for
each model and use a learning rate scheduler that reduces the
learning rate by a multiplicative factor of 0.1 every 10 epochs.
We use an initial learning rate of 0.001 and a minibatch size
of 64.

3) Configuration: We evaluate results on samples from the
validation split. To find a good configuration for the classifi-
cation model, we experiment with resolutions of 112 × 112
and 224 × 224, and the number of frames ranging between
8 and 128. The input data consists of video at 25 frames-
per-second with 224 × 398 resolution. We achieve the best
results with R3D-18 pre-trained on Kinetics-400 [29] with

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n

Card

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Substitution

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Goal

Prediction Ground truth

0 500 1000 1500 2000 2500
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Background
Fig. 2: Softmax confidence for each class over 45-minutes with ground truth.

128 frame inputs using 112 × 112 resolution. The difference
between 112× 112 resolution and 224× 224 was negligible.
The number of frames and the use of a pre-trained model
had significant effects on the result. The video used is run
at 25 frames-per-second, therefore, a 128 frame model has a
temporal footprint of 5.12 seconds. The model achieves 88.4%
accuracy for classification on the validation set samples.

D. Post-processing output

We apply the model in a sliding window fashion with
a stride of 1 second. We use a moving average filter with
a kernel size of 3 on the output signal, followed by non-
maximum suppression (NMS) for windows of 8 seconds, such
that there are no predictions within 4 seconds of each other.
Lastly, we apply a threshold in order to remove low confidence
predictions.

IV. RESULTS AND DISCUSSION

To test the proposed model, we have performed various
experiments to compare the approach to the state of the art.

A. Metrics

For spotting, we look at each class separately as a one-vs-all
binary problem and consider a positive prediction as a possible
true positive if it is within a tolerance δ of the ground truth
event with higher confidence than our threshold. Formally, we
use the condition in Equation 1:

|gtspot − pspot| <
δ

2
(1)

Where gtspot is a ground truth spot, and pspot a predicted
spot in seconds. We take predictions that match the criteria
in Equation 1 and create unique pairs of predicted spots and
ground truth spots. These are matched in a greedy fashion,
where each ground truth spot is matched with the closest
prediction. Predicted spots that have no match, is considered
a false positive. If, for a given gtspot, there are no predictions

made where this condition holds, we consider it a false
negative. We use the condition in Equation 1 to calculate the
average precision (AP) for each class, and subsequently we
calculate the mean average precision (mAP). This is done for
tolerances δ ranging between 5 and 60 seconds. Finally, we use
the mAP scores calculated for different δ to calculate the AUC
to get the Average-mAP score which gives us some insight into
the models total performance in the range of 5 - 60 seconds.

B. Results

1) SoccerNet: Figure 2 depicts the Softmax confidence for
each class separately for a soccer half-game of 45 minutes.
The background signal dominates most of the time. However,
the signals are noisy and include multiple high responses at
the wrong time.

Figure 3 shows our final predictions. After applying a
threshold of 0.9, we observe that we have removed most of the
noise. For the event Card, we get a false positive long after
the event itself. Looking at both Substitution and Goal, we
observe that we get reasonable predictions close to the ground
truth. However, we also end up with multiple false positives
that are entirely unrelated.

In Figure 4, we can observe that our method reaches a
plateau at about δ = 10. Our method has a small temporal
receptive field of 8 seconds after all post-processing steps,
including NMS is used. Therefore, results at higher tolerance
are of less interest. The threshold used is found by estimating
the threshold that optimizes f1-score at tolerance δ = 5.

2) Cross dataset: To investigate how our approach gener-
alizes to other soccer videos, we download an additional 617
short clips combined from Norwegian Eliteserien and Swedish
Allsvenskan. 533 of these clips contain a goal, while 84
contain goal attempts. As we do not explicitly train our model
on goal attempts, we expect false positives as we test clips
that are contextually similar to goals. This dataset contains
clips from Norwegian Eliteserien and Swedish Allsvenskan,

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n

Card

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Substitution

0 500 1000 1500 2000 2500
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Goal

Prediction Ground truth

Fig. 3: Prediction for each second after mean filtering and thresholding. Red dotted line shows ground truth for each class.

5 10 15 20 25 30 35 40 45 50 55 60
Tolerance (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 v

al
ue

Precision (Cioppa et al)
Recall (Cioppa et al)
F1 (Cioppa et al)
Precision (ours)
Recall (ours)
F1 (ours)

Fig. 4: Comparison of recall, precision and f1-score relative to
a tolerance δ for the class ’Card’. Code used to generate figure
was adapted from: https://github.com/cioppaanthony/context-
aware-loss [4].

ranging from approximately 60 to 90 seconds, where each
clip includes an event at about 25 seconds into the clip. In
practice, the event generally lies within 20 to 30 seconds into
the clip. In Figure 5, we find that there is a trend of high
responses around 25 seconds. However, we note that based
on these samples, the prediction score is lower compared to
actual goals. This indicates that we should expect many false
positives at lower thresholds and that it is crucial to have a
high enough threshold.

Dataset N

Goal Allsvenskan 233
Goal Eliteserien 300
Goal attempt Allsvenskan 84

Total 617

TABLE III: Statistics for Allsvenskan and Eliteserien clips.

Table III shows the number of goals and the number of goal
attempts. In Figure 5, we observe how our approach generally

seems to react to goal attempts. This is further exemplified in
Figure 6.

Method mAP

SoccerNet baseline 20s [3] 49.7
Cioppa et al. [4] 62.5

Ours 32.0

TABLE IV: Results for the spotting task in SoccerNet.

3) Comparison to state-of-the-art: Table IV shows that our
method scores low for the Average-mAP. However, since our
approach relies on a small temporal window of 8 seconds after
post-processing, the values calculated for tolerances δ > 8 can
be misleading. Average-mAP uses a range of tolerances from
5 to 60 seconds. Since our model relies on local informa-
tion, rather than long-range contextual information regarding
events, it is expected that higher tolerances will only result in
finding spots that are false positives. In a real-time setting, it
may be important to have an as little delay in predictions as
possible. For our approach, a live prediction will have a delay
of about 4 seconds. This includes buffering future frames and
computation. The baseline model would have about 10 seconds
delay, while the current state-of-the-art [4] would have about
100 seconds. It seems that long-range contextual features can
boost performance, and that there is a trade-off between delay
and the practical ability to buffer future video frames.

V. ABLATION STUDY

To assess different parts of the system, we have performed
an ablation study.

A. Local Behavior with Sliding Window

The sliding window approach was performed with a stride
of 1 second. The videos’ frame rate is 25 frames-per-second,

0.0

0.2

0.4

0.6

0.8

1.0
Go

al
 p

re
di

ct
io

n
Goal prediction
Expected shot
Max prediction

Goal prediction
Expected shot
Max prediction

Goal prediction
Expected shot
Max prediction

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

Goal prediction
Expected shot
Max prediction

Goal predictions on 'goal shots' dataset

Fig. 5: Randomly sampled from Allsvenskan ’goal attempts’ clips.

10 20 30 40 50
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
oa

l p
re

di
ct

io
n

Average goal prediction
max: 23.56

Fig. 6: The average prediction for the ’goal attempts’ clips.

and we could therefore sample more often, which might be
valuable. However, sampling densely at 25 times per second
would be computationally expensive.

To better understand the local behavior of our model and
how densely we need to sample, we perform the following
experiment. First, we randomly sample 8 correctly predicted
event samples from the validation set. Next, we pad the input
with 130 zero frames before and after, hence, we now have
a 3 × 386 × 112 × 112 tensor. Finally, we do a sliding-
window approach, where we use a stride of 1 frame, densely
sampling predictions. It may be that some classes require
longer temporal windows for correct predictions.

In Figure 7, we can observe how the model prediction is
generally strong while close to a perfect overlap with the
event, especially when within 15 frames of a perfect overlap.
Depending on the class, we also notice differences. The class
Substitution has a higher AUC in our samples compared to

the class Goal. Intuitively, this may be due to the underlying
length of the different events. A goal will often contain rapid
changes, while a substitution may be a more slow process.

We observe similar results for larger samples around events.
Based on these experiments, we conjeture that sampling too
densely with a sliding window approach is unnecessary. Since
we are not required to densely sample predictions, it is easier
to run real-time.

B. Class Activation Maps

To understand what our model reacts to temporally and
spatially, we inspect the class activation maps (CAMs) for
correct and wrong predictions. We follow the methodology
presented by Zhou et al. [43] to generate CAMs.

The model R3D uses global average pooling before a fuller
connected layer after 17 convolutional layers. For R3D, with
128 frames specifically, we have a 512×16×7×7 tensor that is
reduced to 512×1×1×1 after the global average pooling layer.
These are the 512 features that are used to compute the final
scores, followed by Softmax. Let Fi denote the i-th feature
channel for i ∈ {1, 2, 3, ..., N}. Then Sc is the pre-Softmax
class score, computed as a weighted sum by Equation 2:

Sc = Bc +

N∑
i=1

wc
iFi (2)

Here, Bc is the bias term, wc
i are the weights, and c denotes

our four different classes Card, Substitution, Goal, and Back-
ground. Fi is calculated by Equation 3:

Fi =
1

K

∑
t,x,y

Vi(t, x, y) (3)

0 100 2000.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

AUC = 99.52
1

0 100 200

AUC = 93.37
2

0 100 200

AUC = 75.39
3

0 100 200

AUC = 94.52
4

0 100 200
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

AUC = 51.79
5

0 100 200
Frame

AUC = 52.59
6

0 100 200
Frame

AUC = 110.13
7

0 100 200
Frame

AUC = 117.2
8

Goal signal

Goal prediction Event 30 Frame interval

Fig. 7: Softmax output for the event Goal with a stride of 1 frame over 260 frames. Samples are correctly predicted validation
samples. Red dotted line shows the output prediction for the 128 frames of the event.

Vi holds our N feature volumes with K elements each, which
in our case is 16×7×7 = 784, where t denotes our temporal
dimension, and x, y our spatial dimensions. Thereby:

Sc = Bc +

N∑
i=1

wc
i

1

K

∑
t,x,y

Vi(t, x, y)

= Bc +
1

K

∑
t,x,y

N∑
i=1

wc
iVi(t, x, y)

(4)

In Equation 4, we attempt to show the relationship between
the pre-average pool feature volumes and the weights and bias
used to compute the class scores Sc. As Zhou et al. [43], we
ignore the bias term moving forward as it has little impact on
the final results. We define a class feature tube (CAT) as a
3-dimensional equivalent of class activation maps as follows:

Tc(t, x, y) =

N∑
i=1

wc
iVi(t, x, y) (5)

Going from Equation 5 to our class score Sc, we need to
calculate the average over all elements and add the bias
term. Since this is the case, we may find useful information
both temporally and spatially that helps us gain insight into
what our model reacts to. Figure 8a illustrates where we get
our feature volumes in our model. Additionally, we illustrate
how these feature volumes are used to compute CAT’s, as in
Equation 5, in Figure 8b.

We use CATs to understand spatio-temporal features by
considering the spatial information at time t. In order to
get a comparison to our input, we interpolate our 7 × 7

(a) Structure in the R3D model. The feature volumes Vi are extracted
prior to global average pooling layer in order to preserve spatial and
temporal information.

(b) Calculation of class activation tubes Tc.

Fig. 8: Extraction of features and calculation of CAT.

maps in {Tc(t = 0, x, y), Tc(t = 1, x, y)...Tc(t = T, x, y)}
using bicubic interpolation. We also use the CATs to com-

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(a) Center input frame between interval [s × n, 28 + s × n] of 512
frame sample of event for the nth sample.

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(b) Corresponding center CAM Tcard(8, x, y).

Fig. 9: Results from CATs spatio-temporally for the event Card.

pute temporal signals to indicate where in time, our model
reacts. This is achieved by average pooling Tc across spatial
dimensions, resulting in a 1-dimensional signal. Due to the
spatial relationship of the spatio-temporal class activation
features at time t, we refer to them as class activation maps.
Furthermore, we refer to the 1-dimensional temporal signal as
class activation signal.

1) Sparse CAMs: In order to gain some insight into the
spatial features of the network, we slide our model across
each sample with inputs of 128 frames, using a stride of 16
frames. For each location, we save the middle input image and
the corresponding middle CAM at Tc(8, x, y). In Figure 9, we
observe how the model seems to react strongly to a referee
holding a card.

2) Class activation signal: Since we are using video and
a 3-dimensional CNN, we have both spatial and temporal
information. Therefore, we can focus on the temporal signal
alone by averaging across the spatial dimensions, resulting in
a 1-dimensional signal.

Zhou et al. [43] showed that CAMs could be used for object
detection. It may also be possible to use this for more accurate
and efficient detection of events. In Figure 10a, we show how
our model reacts in the temporal dimension. It seems that the
strongest activations occur close to the actual event. Normally,
any of these signals would be averaged and used as input
into Softmax to produce the final predictions. However, this
process removes temporal information that could be used for
more accurate annotations. This is seen when increasing the

temporal footprint as well. Figure 10b shows that the class
activation signal indicates strong reactions at the actual event.

VI. CONCLUSION

In this paper, we presented an algorithm to automati-
cally detect and annotate segments of soccer videos using
convolutional neural networks (CNNs). The approach uses
sliding windows to detect events and classifies them into
a set number of categories. To better understand how the
algorithm detects events, we performed an extensive ablation
study and visualized the network’s layers using class activation
maps (CAMs). Overall, we achieved an accuracy of 88.4%
on trimmed clips in SoccerNet, and an Average-mAP score
of 32.0% on the spotting task of SoccerNet [3]. Compared
to the results presented in the SoccerNet papers, we achieve a
slightly lower detection accuracy compared to the state-of-the-
art if there is a higher tolerance for accurate time estimation.
However, our approach is competitive when accurate time
estimation is important (finding the event’s exact time) and
better when a low delay is required, for example for real-time
event detection. Ongoing work includes tuning of the system
to increase precision while keeping the recall and low delay.
Finally, we believe that the presented approach will scale to
other sports, which will be investigated in the future.

REFERENCES

[1] R. Kapela, K. McGuinness, A. Swietlicka, and N. E. O’Connor, “Real-
time event detection in field sport videos,” in Proc. of CVPR, 2014.

0

10 64 80 96 112 128

0

10 144 160 176 192 208

0

10 224 240 256 272 288

0

10 304 320 336 352 368

0 10 20 30 40 50 60

0

10 384

0 10 20 30 40 50 60

400

0 10 20 30 40 50 60

416

0 10 20 30 40 50 60

432

0 10 20 30 40 50 60

448

(a) Class activation signal for the center input frame between interval [s × n, 28 + s × n] of 512 frame sample of event for
the nth sample.

5

0

5

10 frames: [0, 512] frames: [64, 576] frames: [128, 640] frames: [192, 704]

5

0

5

10 frames: [256, 768] frames: [320, 832] frames: [384, 896] frames: [448, 960]

5

0

5

10 frames: [512, 1024]

frames: [576, 1088]

frames: [640, 1152] frames: [704, 1216]

0 10 20 30 40 50
5

0

5

10 frames: [768, 1280]

0 10 20 30 40 50

frames: [832, 1344]

0 10 20 30 40 50

frames: [896, 1408]

0 10 20 30 40 50

frames: [960, 1472]

(b) Corresponding class activation signal with 512 frame input for center CAM Tcard(8, x, y).

Fig. 10: Results from CATs temporally for the event Card.

[2] T. D’Orazio, M. Leo, P. Spagnolo, M.Nitti, N. Mosca, and A. Distante,
“A visual system for real time detection of goal events during soccer
matches,” Computer Vision and Image Understanding, vol. 113, no. 5,
pp. 622 – 632, 2009.

[3] S. Giancola, M. Amine, T. Dghaily, and B. Ghanem, “Soccernet: A
scalable dataset for action spotting in soccer videos,” in Proc. of CVPR
Workshops, USA, June 2018, pp. 1711–1721.

[4] A. Cioppa, A. Deliege, S. Giancola, B. Ghanem, M. V. Droogenbroeck,
R. Gade, and T. B. Moeslund, “A context-aware loss function for action
spotting in soccer videos,” in Proc. of CVPR, June 2020.

[5] H. Pojskic, K. McGawley, A. Gustafsson, and D. G. Behm, “The relia-
bility and validity of a novel sport-specific balance test to differentiate
performance levels in elite curling players,” Journal of Sports Science
& Medicine, vol. 19, no. 2, p. 337, 2020.

[6] J. Bradley, “The sports science of curling: A practical review,” Journal
of Sports Science & Medicine, vol. 8, pp. 495–500, 12 2009.

[7] V. Bettadapura, C. Pantofaru, and I. Essa, “Leveraging contextual cues
for generating basketball highlights,” in Proc. of MM, 2016, p. 908–917.

[8] H.-T. Chen, W.-J. Tsai, S.-Y. Lee, and J.-Y. Yu, “Ball tracking and
3d trajectory approximation with applications to tactics analysis from
single-camera volleyball sequences,” Multimedia Tools and Applications,
vol. 60, no. 3, pp. 641–667, 2012.

[9] N. Homayounfar, S. Fidler, and R. Urtasun, “Sports field localization
via deep structured models,” in Proc. of CVPR, 2017, pp. 4012–4020.

[10] A. Ekin, A. M. Tekalp, and R. Mehrotra, “Automatic soccer video
analysis and summarization,” IEEE Transactions on Image Processing,

vol. 12, no. 7, pp. 796–807, 2003.
[11] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new

model and the kinetics dataset,” in Proc. of CVPR, 2017, pp. 4724–
4733.

[12] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proc. of
ICCV, 2015, p. 4489–4497.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of CVPR, 2016, pp. 770–778.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. of CVPR, 2009, pp.
248–255.

[15] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” CoRR, vol. abs/1212.0402, Dec.
2012.

[16] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: A
large video database for human motion recognition,” in Proc. of ICCV,
2011, pp. 2556–2563.

[17] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented
histograms of flow and appearance,” in Proc. of ECCV, 2006, p.
428–441.

[18] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” International
Journal of Computer Vision, vol. 103, no. 1, pp. 60–79, 2013.

[19] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Proc. of ICCV, 2013, pp. 3551–3558.

[20] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proc. of CVPR, Jun. 2014, pp. 1725–1732.

[21] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Proc. of NIPS, 2014, p. 568–576.

[22] M. A. Goodale and A. D. Milner, “Separate visual pathways for
perception and action,” Trends in Neurosciences, vol. 15, no. 1, pp. 20
– 25, 1992.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. of NIPS, 2012, pp.
1097–1105.

[24] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Proc. of CVPR, Jun.
2016, pp. 1933–1941.

[25] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal residual
networks for video action recognition,” in Proc. of NIPS, 2016, p.
3476–3484.

[26] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in Proc. of CVPR, Jun. 2015,
pp. 4305–4314.

[27] Z. Shou, D. Wang, and S.-F. Chang, “Temporal action localization in
untrimmed videos via multi-stage cnns,” in Proc. of CVPR, Jun. 2016,
pp. 1049–1058.

[28] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in Proc. of ECCV, 2016, pp. 20–36.

[29] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and
A. Zisserman, “The kinetics human action video dataset,” CoRR, vol.
abs/1705.06950, May 2017.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. of CVPR, 2015, pp. 1–9.

[31] V. Choutas, P. Weinzaepfel, J. Revaud, and C. Schmid, “Potion: Pose
motion representation for action recognition,” in Proc. of CVPR, June
2018.

[32] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in Proc. of CVPR, 2017, pp.
1302–1310.

[33] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” in
Proc. of CVPR, Jun. 2018, pp. 6450–6459.

[34] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for
video recognition,” in Proc. of ICCV, Oct. 2019, pp. 6202–6211.

[35] H. Idrees, A. R. Zamir, Y. Jiang, A. Gorban, I. Laptev, R. Sukthankar,
and M. Shah, “The thumos challenge on action recognition for videos
“in the wild”,” Computer Vision and Image Understanding, vol. 155,
pp. 1–23, 2017.

[36] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “Activitynet:
A large-scale video benchmark for human activity understanding,” in
Proc. of CVPR, 2015, pp. 961–970.

[37] T. Lin, X. Liu, X. Li, E. Ding, and S. Wen, “Bmn: Boundary-matching
network for temporal action proposal generation,” in Proc. of ICCV,
October 2019.

[38] T. Lin, X. Zhao, H. Su, C. Wang, and M. Yang, “Bsn: Boundary sensitive
network for temporal action proposal generation,” in Proc. of ECCV,
2018.

[39] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015,
pp. 91–99.

[40] H. Xu, A. Das, and K. Saenko, “R-c3d: Region convolutional 3d network
for temporal activity detection,” in Proc. of ICCV, 2017.

[41] G. A. Sigurdsson, O. Russakovsky, and A. Gupta, “What actions are
needed for understanding human actions in videos?” in Proc. of ICCV.
IEEE Computer Society, 2017, pp. 2156–2165.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Proc. of NIPS, 2019, pp. 8024–
8035.

[43] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. of CVPR, 2016,
pp. 2921–2929.

