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Abstract—Medical practice makes significant use of imaging
scans such as Ultrasound or Magnetic Resonance Imaging (MRI)
as a diagnostic tool. They are used in the visual inspection
or quantification of medical parameters computed from the
images in post-processing. However, the value of such parameters
depends much on the user’s variability, device, and algorithmic
differences. In this paper, we focus on quantifying the variability
due to the human factor, which can be primarily addressed by the
structured training of a human operator. We focus on a specific
emerging cardiovascular MRI methodology, the T1 mapping, that
has proven useful to identify a range of pathological alterations of
the myocardial tissue structure. Training, especially in emerging
techniques, is typically not standardized, varying dramatically
across medical centers and research teams. Additionally, training
assessment is mostly based on qualitative approaches. Our work
aims to provide a software tool combining traditional clinical
metrics and convolutional neural networks to aid the training
process by gathering contours from multiple trainees, quantifying
discrepancy from local gold standard or standardized guidelines,
classifying trainees output based on critical parameters that
affect contours variability.

Index Terms—Cardiovascular MRI, T1 mapping MRI, quality
assessment, deep learning, image analysis training, standardisa-
tion.

I. INTRODUCTION

In recent years, machine learning-based algorithms have
been used to perform a variety of different tasks within
medicine [1]. Deep learning, for example, has already shown
much success in aiding medical doctors to perform diagnosis
on diseases including different types of cancers and other
conditions [2], [3]. For the most part, machine learning al-
gorithms are only as good as the data used to train them.
Therefore, quality datasets are essential as they directly affect
the performance of a given model. In the medical domain,
datasets are usually created by medical doctors who collect
and annotate each element in a given set. Due to the time-
consuming process of annotating large datasets, and a general
lack of medical doctors, it is often tough to get high-quality
datasets [4]. Therefore, making this process more efficient
could significantly improve the availability of quality medical
datasets. This would not only aid in making better machine-
learning models but could also be used in the medical com-
munity to train students in performing different tasks such as
segmentation. Using automatic methods to support the training
of medical experts is a somewhat neglected topic. There does
not exist much work on how machine learning can be used to
make the training of junior doctors better and more efficient.

Fig. 1: Example MRI taken from the Sunnybrook Cardiac Data
(SCD) [5] dataset. Note that the presented image has been
resized for the purpose of this figure.

In this work, we propose a system that targets a specific area
within this problem, specifically, creating annotations. As a use
case, we chose T1 mapping in cardiac Magnetic Resonance
Imagings (MRIs), which requires a precise segmentation of
the left ventricle of the heart.

T1 mapping in cardiac MRIs is a rapidly emerging tech-
nique in the clinical setting to identify microstructural defects
associated with a range of cardiovascular disease [6]. It
achieves this by quantifying the spin-lattice relaxation time
(T1) of protons in the water molecules of the biological
tissue. This is measured by hitting the protons with a radio
frequency signal and seeing how long it takes (in milliseconds)
for the protons to return to their original state during an
MRI procedure. T1 times are determined by the proportion
of water content in tissue, in addition to its compartmen-
talization, so that each tissue type (such as blood or fat)
show a range of different T1 values. These ranges, however,
change drastically at different magnetic field strengths and may
also depend on the specific MRI sequence used to measure
them [7]. T1 mapping is the process of mapping T1 times
to the individual pixels for a given MRI. These mappings
are used to visualize the MRI image to easily distinguish



between the different types of tissue, including blood, fat, and
muscle. Standardization of image acquisition, post-processing,
and interpretation is crucial to ensure the consistency and
reproducibility of any medical image analysis process, as well
as guaranteeing a common ground for clinical assessment.
Clinical use of cardiovascular T1 mapping is no exception,
and a standardization task force has already provided the initial
guidelines [8].

A T1 mapping of cardiac MRIs is a process which requires
a segmentation of the inner and outer left ventricle of the heart
(Figure 1 shows an example MRI image of the left ventricle).
These segmentations are used to calculate the wall thickness
(WT) and the T1 value, which both set the basis for detecting
a range of abnormalities. Placing these segmentations requires
trained observers who understand how to interpret and analyze
a cardiac MRI. Observers are commonly trained through a
training program consisting of segmentation tasks on an expert
segmented training dataset, which is made up of segmentations
created by a consensus of multiple expert observers. However,
labeled datasets are limited, and evaluating each student’s
segmentation is time-consuming and lacks the immediate feed-
back needed for rapid improvement. Therefore, we propose
a system that aids in the training of new observers. For the
system to be truly useful, it needs to incorporate the following
requirements:

1) Produce a standardized report of the training progress
and completion for accreditation for an individual
trainee, or team of trainees.

2) Include a centralized approach to compare the perfor-
mance of a single trainee, as well as a team of students,
against the accepted reference for a training dataset.

3) Automatically generate an average contour either from
expert analysis (typically called the consensus) or the
average of team results.

With these requirements in mind, we present a software
tool that aids the training of new observers by automatically
evaluating their work by comparing against an automatically
generated ”expert” consensus using deep convolutional neural
networks (CNNs).

The novelty of our software is two-fold. Firstly, it focuses on
the evaluation of trainees working on T1 mappings in cardiac
MRIs, not just from an individual point of view, but also
from the viewpoint of multiple operators (who typically work
in a clinical research unit). This combination of individual
and team evaluation stems from the fundamental need for
consistency in the performed analysis, not just concerning
general guidelines, but also within a clinical unit.

Secondly, the expert observer segmentations used to eval-
uate a trainees (or group) segmentation is automatically gen-
erated by a deep CNN. This CNN is modeled and trained to
imitate the knowledge of several expert observers. By using
pre-existing training datasets, we teach the model to estimate
an outline of the outer (epicardium) and inner (endocardium)
wall of the myocardium for a given MRI together with a
trainees contour. The presented approach allows for instant
feedback to trainees without having an expert annotate new

Fig. 2: Screenshot of the Trainee’s Dashboard after the T1
analysis is uploaded.

MRI images since the CNN back-end can get the expert
feedback from based on the student annotation. Furthermore,
another advantage is that a training facility would not have to
rely on expert contoured MRI datasets.

In the process of analyzing T1 mappings in cardiac MRIs,
two measurements are typically recorded; The average my-
ocardial T1 value measured in milliseconds, and the average
myocardial WT measured in pixels or millimeters. The value
of T1 is the most clinically relevant in these types of scans,
whereas WT is mostly employed as a quality assessment
metric; its value is loosely correlated with the average T1.
Regarding the underlying research carried out alongside the
software development, we present a combination of traditional
metrics of evaluation (such as average myocardial T1 and WT)
that are easily understandable to a clinical audience.

The rest of this paper is structured as follows. In Sec-
tion II, we give a brief look at some previous works done
in this field. This section mostly focuses on work done for
the automatic segmentation of the left ventricular myocardial
ring. Section III further details how the developed software
may support the cardiovascular magnetic resonance imaging
(CMR) community as a whole, and the main contributions we
aim to deliver with this research. Section IV describes our
software, showing how it may be used for the training of new
observers. Then, in Section V, we look at the architecture and
implementation details of this software and discuss in detail
how it works. Section VI shows the experiments performed for
the underlying expert observation CNN model used to evalu-
ated trainee segmentations. Lastly, Section VII concludes this
paper with a summary of our findings and a brief discussion
on future work.

II. RELATED WORKS

Our software aims to aid students in training to become
expert observers of T1 mappings in cardiac MRIs. It does
this by providing immediate feedback on the students’ per-
formance and providing a progress report for individuals and
classes of students. Image post-processing of T1 mapping in
MRIs requires the delineation of a region of interest (ROI),
that is, placing contours. The most common case is that of the
left ventricular myocardial ring. Depending on the software,
contours can be set manually or semi-automatically. However,
manual inspection should be carried out to ensure that the



Fig. 3: A diagram showing how data is transferred across the
system, starting with the user and ending with the Django
based server. From the left, we see that a user uploads a
segmentation together with the associated training image. This
is then passed through the local Node based proxy server to
the centralized Django server. The image together with the
contour is stored in the database and evaluated by the CNN
”expert”. The evaluation is then passed back to the user where
he/she is presented with their performance metrics.

contours do not include regions outside of the myocardium
(such as the outer pericardial fat or inner blood pool). Some
more thorough quality assessment also label regions in the
myocardium affected by imaging artifacts to exclude them
from the analysis.

Over the years, multiple approaches for automatically plac-
ing these contours have been proposed. In 2014, Hu et al. [9]
proposed a method for automatically segmenting the left ven-
tricular myocardial using local binary fitting models and dy-
namic programming techniques. Overall, their approach shows
good results, yet they struggle to segment the overlap between
intensity distributions within the cardiac regions. Abdelfadeel
et al. [10] use maximally stable extremal regions to segment
the left ventricle of cardiac MRIs. Their achieves a DICE
metric of 0.88 on the Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2009 challenge database [5].
Similar to our method, Zreik et al. [11] propose a technique
based on deep CNNs, where they try to segment the left ven-
tricle in cardiac CT images. Their method uses a combination
of three different CNNs, each detecting the presence of the
left ventricle in the axial, coronal, and sagittal independently.
Our work, however, differs from these approaches as we try
to measure the quality of a student contour by generating an
expert consensus based on the student contour and MRI image
using a deep CNN.

III. THE RESEARCH CONTRIBUTION

The development of the software tool started from the
specific requirements gathered from a team of researchers
working in the field. Thus, first of all, it is a tool for
research support. In this respect, by allowing more efficient
and consistent monitoring of quality assessment in cardiac
MRI image analysis, it has a fundamental impact on the
quality of the research produced at that center. However, this
has allowed us to carry out novel research in the field of
quality assessment using deep learning methods, specifically to
automate the generation of contours based on expert observer
analysis (in other words, generating an expert consensus). This
approach to quality assessment based on the comparison of
contours, rather than point measures such as T1 or WT, has

not yet been fully explored in the CMR community, with some
exceptions [12]. We believe that this aspect of our work will
contribute to a more quantitative, detailed, and standardized
approach to quality assessment of image analysis done on T1
mapping in cardiac MRIs.

IV. SYSTEM DESCRIPTION AND USAGE

We have divided the application into two user groups: (a)
experts/supervisors and (b) trainees. The system expects both
users to upload files of the file types Digital Imaging and
Communications in Medicine (DICOM) [13], that contain the
original T1 mapping MRI data, and Interactive Data Language
(IDL) SAV Files [14], that includes the image segmentation,
that is the black and white binary mask representing the ROI
enclosed by the contours (specifically, the image segmenta-
tion). The system is implemented as a web-based application,
comprising of a back-end server and front-end web interface
(which will be further discussed in Section V).

A. The Supervisor System

The supervisor (expert) can upload a pre-generated consen-
sus of experts into the system, which will give the trainees
the ability to compare their analysis with that of the gold-
standard. Also, the supervisor can enable an automatically
generated consensus to be an evaluation option for the trainees.
This allows for the use of non-contoured datasets, which
increases the overall training material. The system will also
allow supervisors to view the overall progress of a class of
trainees by getting an automatically generated report about
their collective progress. The report is produced in a PDF
format and provides various graphs and summary metrics
about individual trainees and the class as a whole.

B. The Trainee System

As previously stated, the main purpose of this software is to
train observers in contouring the endocardium and epicardium
of the left ventricle and giving immediate feedback by com-
paring against an automatically generated ”expert” consensus
produced by a deep CNN. For an example use case scenario,
we imagine a trainee who has been working on contouring
an MRI as part of their training dataset. The trainee uploads
the T1 mapping of the MRI (or DICOM file) along with their
produced segmentation into the system. The system will then
start extracting key values from the DICOM [13] file, of which
the trainee will be presented with a visual representation of
their work, as well as the T1-value and the WT. Then, to get
an understanding of their progress, the trainee may compare
against the systems generated ”expert” contour consensus by
getting a visual representation of the overlay between the two
contours (trainee produced contour and CNN produced con-
tour), showcasing the regions of the discrepancy between the
two. Furthermore, the user will get some key metrics regarding
how well their contour compares to the one generated by the
system. These evaluation metrics will be used to clearly state
how well the trainees’ segmentation compares to that of the
consensus.



Fig. 4: A diagram showing the entire process for training the
”expert” consensus CNN used to evaluated trainees. Starting
from the left, we see that the input image (comprised of the
student contour and MRI) is resized to 224× 224× 4 before
being put into the model. Then, the model outputs a vector
with size 52, 176, which is then reshaped into the same shape
as the input image.

The trainee can also generate a basic T1 training report to
track the progress of their repeated analysis over the same
dataset. This is produced in a PDF format and provides an
overview of the progress with graphs and summary metrics
showing the discrepancies between their analysis and the con-
sensus. This report may also be used to track the development
of a team of trainees, showing how a class improves over time.

V. SOFTWARE ARCHITECTURE AND IMPLEMENTATION

Due to the sensitive nature of the data used for train-
ing, as well as the geographical localization of our target
demographic, the system is only meant to be run over a
local area network (LAN). That is, it is not meant to be
available outside the area of deployment. With this in mind,
our web application is managed by two locally run servers.
One is based on Node.js [15] acting as an intermediate proxy
which is responsible for handling the front-end logic, and the
other is based on the python web-framework Django [16]
which interacts with the database and deep learning model.
A screenshot of the web-based graphical user interface (GUI)
is shown in Figure 2, and the overall architecture is shown in
Figure 3.

The web-based client is built using React [17] (a popular
JavaScript library used to build front-end interfaces), which
communicates directly with the Node.js based server. This
server acts as a proxy that redirects all HTTP requests and
responses to the Django server. From here, Django may
retrieve images from the database or evaluate uploaded con-
tours against the contours produced by the CNN model or
expert consensus. Furthermore, the Django-based server is
also responsible for calculating the evaluation metrics used to
assess a trainee’s performance on contouring the left ventricle.
The underlying CNN is implemented using the deep learning
framework Keras [18] with a TensorFlow [19] back-end. The
CNNs purpose is to automatically infer the endocardium
and epicardium contours based on a given MRI and student
contour.

VI. AUTOMATED FEEDBACK USING CNNS

Part of what makes the system novel is the automatic
generation of an ”expert” contour consensus using deep CNNs.
The purpose of automating this process is to fulfill the need

for quick and consistent feedback to the trainees using the
system, in addition to not needing a fully expert contoured
dataset. This section will cover the various experiments done in
producing this ”expert” observer CNN, and qualitative analysis
on the models produced contours. But first, we will give a short
description of the dataset used to train our models.

A. Dataset Details and Preprocessing

The dataset consists of 42 fully anonymized single mid-
ventricular short-axis native T1-maps, half of which come
from healthy volunteers, while the other half from patients
with an acute myocardial injury. Each T1-map comes as a
DICOM file (a standard for medical imaging data). A typical
DICOM file contains a wide variety of different information
ranging from simple meta-data (such as information about the
MRI sequence or details about the patient), to full MRI images.
Because we are only interested in the MRI data, the MRI
images had to be extracted before training the neural network.
This was done using the python library called pydicom [20],
which is a popular library for working with DICOM files.
The extracted images vary in size, ranging from 384× 264 to
384× 344 pixels.

For the ground truth contours, the dataset includes several
contours per DICOM file. Each MRI has been contoured by
several experts to form a consensus between them. Overall,
there are two sets of contours; one for the inner myocardial
wall (endocardium), and one for the outer (epicardium). These
contours come in a special file written in a proprietary pro-
gramming language called IDL. The contents of these files
are coordinates that correspond to the contours of the related
MRI image. For training purposes, we converted these files to
a pixel activated vector which was used as the ground truth
for our CNN experiments.

B. CNN Architecture and Training Configuration

The network used to generate segmentations is a modified
version of the VGG-16 [21] based model implemented in
Keras. To decide on which architecture to use, we experi-
mented with numerous of the Keras-based implementations
of popular CNN architectures (such as, ResNet [22], Incep-
tion [23], DensNet [24]), but we ended up using VGG-16 as
it showed the best performance. For input, the model expects
an image consisting of four channels. The first three channels
consist of the R (red), G (green), and B (blue) color channels of
the extracted MRI image (extracted as previously described).
The student contour represents the fourth image channel. The
input image is then resized 224×224×4 before being passed
into the model, which outputs a vector with the size 50, 176
(224 × 224) which represents the segmentation of the left
ventricular myocardial ring. Each value in the vector represents
one pixel of the output segmentation, and each pixel can be
either ”on” or ”off”, meaning it consists of 50, 176 binary
values being either 1 or 0. To get the final segmentation, we
chop the output vector into 224 pieces and stack them on top
of each other before turning ”on” pixels white and ”off” pixels
black.



(a) CNN system (b) Expert observer

Fig. 5: The segmentation results produced by the system’s
CNN and an expert observer.

For training, we used the Keras based implementation of
VGG-16 and trained it from scratch. We replace the clas-
sification block of the original model with a custom block
consisting of one 2D global average layer, a normalization
layer that squashes the input values between 0 to 1, then a
final fully-connected layer consisting of 50, 176 nodes (one
for each pixel). The model was trained using mean absolute
error (MAE) to calculate loss and Nadam [25] to optimize the
weights with a learning rate of 0.004, 0.900 for β1, and 0.999
for β2. The ground truth is created from expert segmentations
made by multiple observers. This includes several expert
segmentations for a single MRI image, which are all used
in the training process to let the network average an ”expert”
consensus. To ensure robust results, each experiment was run
using three-fold cross-validation. A diagram explaining the
entire training process can be seen in Figure 4.

Figure 5 shows some examples of segmentations produced
by the underlying CNN model compared to that of the actual
expert-created segmentation. We see that the CNN-created
segmentation is quite similar to that of the expert but still
requires some improvements before being deployed into a fully
functional system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a software tool meant to aid
students in contouring the inner and outer wall of the left
ventricle of the heart. The system automatically evaluates the
trainees’ segmentation by comparing it against an ”expert”
consensus generated by a deep CNN. This allows for imme-
diate feedback on their submitted segmentation and removes
the need for a fully contoured expert dataset. Furthermore, the
system presents an overview of the student progress using a
variety of different metrics and graphs. The underlying CNN
used for generating the ”expert” segmentation is based on a
VGG-16 architecture and trained on a dataset consisting of
segmentations made by multiple cardiologists.

For future work, we aim to support more options for
generating an expert consensus, in addition to improving the
existing method. Furthermore, we intend to get this software
into the hands of real trainees and observers to gain further
feedback and real-world evaluation of this tool.
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