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Abstract—With 360◦ panorama video technology becoming
commonplace, the need for efficient streaming methods for such
videos arises. We go beyond the existing on-demand solutions and
present a live streaming system which strikes a trade-off between
bandwidth usage and the video quality in the user’s field-of-view.
We have created an architecture that combines RTP and DASH to
deliver 360◦ VR content to a Huawei set-top-box and a Samsung
Galaxy S7. Our system multiplexes a single HEVC hardware
decoder to provide faster quality switching than at the traditional
GOP boundaries. We demonstrate the performance and illustrate
the trade-offs through real-world experiments where we can
report comparable bandwidth savings to existing on-demand
approaches, but with faster quality switches when the field-of-
view changes.

I. INTRODUCTION

Virtual reality (VR) headsets like the Samsung’s Gear VR,
Facebook’s Oculus Rift, HTC’s Vive and Google’s Daydream
are an often used and owned equipment nowadays. There-
fore, efficient delivery of panoramic videos for these devices
becomes increasingly important. The well-known challenge
in this respect is to provide the user with a good perceived
experience while at the same time saving system resources.
A common approach to this trade-off is to use tiling, by
delivering the parts of the video frame included in the user’s
field-of-view (FoV) in high quality, while the rest of the frame
is delivered in lower quality to save bandwidth. This means
that each user interactively controls a “virtual camera” to
create their view when moving their FoV, resulting in different
streams for every user. In the area of on-demand over-the-
top streaming type of applications, there are many solutions
that use DASH (Dynamic Adaptive Streaming over HTTP)
or similar solutions [11], [13], [22], [1], [34], aiming for
optimized tile selection, rate adaptation and storage optimiza-
tions, etc. These have the potential to save a lot of bandwidth,
but encoding the video in tiles comes with a streaming and
storage penalty as more headers are required, the coding
efficiency is reduced and more download requests must be
sent. Furthermore, if the download strategy fails to download
a tile for the FoV in high quality in time for playback, the
perceived video quality suffers. For instance, in DASH-style
streaming, quality changes are possible at segment boundaries,
i.e., usually every two seconds. If the FoV moves to a lower

quality tile in the middle of segment playback, the quality in
the FoV drops.

Thus, there exist several approaches for tiled streaming,
many presenting a small variation or improvement of another
tile retrieval algorithm. However, there seems to be little other
work addressing the aspect of delivering these streams live.

In this paper we present a system for FoV-optimized live
(and on-Demand) streaming for 360◦ video using tiling for
bandwidth saving while keeping the users’ perceived quality as
good as possible. We focus here particularly one the streaming
delivery part, and providing multiple contributions to the live
support, we use a combination of RTP streaming with DASH-
based pull-patching [17] delivering the tiled HEVC-encoded
video to both a Samsung Galaxy S7 with Gear VR and a
Huawei set-top box (STB). Furthermore, we demonstrate that
we can save bandwidth with quality loss by transforming a
panorama format from equirectangular via cubic to an “opti-
mized” cubic tile layout, and we have successfully performed
initial multicast experiments. Additionally, we present the
concept of a catch up decoder as a mechanism to improve
quality switching delay when the FoV changes by exploiting
multiple decodings on a single hardware decoder. Finally, we
present results that show bandwidth savings, a greatly reduced
average switching delay and support for multicast, i.e., our
experiments achieve more then 50% in most of the FoV-change
scenarios, compared to streaming the full HQ panorama, and
reducing the average switch latency from one second in a two-
second segment length scenario to about 500 ms and 750 ms
for the smartphone and IPTV scenarios, respectively.

The reminder of the paper is structured as follows. First, we
give a brief overview of existing related work in section II. In
section III, we present our streming system and evaluate the
bandwidth savings and quality switching latency in section IV.
A small discussion is provided in section V before we sum-
marize our findings and conclude the paper in section VI.

II. RELATED WORK

Delivery and representation of panorama videos and a
partial extraction of an FoV is an area that is currently
receiving a lot of attention. Panoramas can be divided broadly
into two groups, partial panoramas covering less than 360◦



and complete panoramas spanning 360◦ around at least one
axis. To allow users to explore these panoramas, pan-tilt-zoom
(PTZ) operations of a virtual camera have been developed in
both research [9], [8], [4], [5], [28], [30], [31], [33], [26], [39],
[41], [20] and industry [3], [32]. In each of these, the active
FoV covers only part of the entire panorama, e.g., following
a lecturer [28], [36] or an athlete [15], [10].

The arrangement of panoramic video in memory requires
a projection of the surrounding space into a flat 2D rep-
resentation. Researchers have discussed a variety of layout
options [29], [37], but the currently practiced options use
either equirectangular projections (e.g., [15]), which can be
compressed and decompressed like regular videos, or Cube-
Map projections (e.g., [39]), which are supported by graphics
hardware.

To save bandwidth, tiling is a popular approach to deliver
the FoV in high quality and the rest in low quality, or not at
all. Such tiled videos can be processed on the server side, to
create a single, personal video stream for each viewer [19], but
this approach does not scale to a large number of concurrent
viewers with individual control. To support individualized
views, the tiles that cover each user’s desired view must
be delivered from the server, with subsequent processing
occurring on the client side. Thus, the most common approach
is to request the tiles on the client side. First, there are several
approaches that evaluate strategies for tile download for partial
panoramas [11], [12], [20], [19], [14], [18]. There are also
many recent approaches that work exclusively on 360◦ sys-
tems [1], [2], [6], [13], [24], [34], [35]. For example, Graf et.
al. [13] present a streaming system for omnidirectional video
over HTTP and define various streaming strategies where
bitrate savings from 40% (in a realistic scenario with real
users) up to 65% (in an ideal scenario with a fixed viewport)
are achieved. Moreover, a new data-driven probabilistic tile
weighting approach and a new rate adaptation algorithm for
mobile multicast environments are proposed in [1], and Aykut
et. al. [2] proposed a method to compensate for the perceived
delay in the horizontal direction in a stereoscopic telepres-
ence scenario. A probabilistic tile-based adaptive streaming
that applies a target-buffer-based control algorithm to ensure
continuous playback and a probabilistic model to cope with
the viewport prediction errors is described in [35]. Using a
simplified theoretical model, Corbillon et. al. [6] investigated
the fundamental trade-offs between spatial size of the quality-
emphasized regions and the aggregate video bit-rate. To reduce
the influence of network delays on tiled streaming with many
requests from the client, the server push functionality of the
HTTP/2 protocol together with a viewport prediction algorithm
has been used [22], [23]. Moreover, Naik et. al. [21] assessed
asymmetric video applied separately to the foreground and
background views of omnidirectional sessions, i.e., applying
asymmetric stereoscopic streaming delivery on the foreground
view can save up to 41% bit rate, and using the same technique
on the background view, one can save approximately up to
15% bit rate. Zhou et. al. [40] analyzed the state of Oculus
360◦ video streaming. Son et. al. [27] propose an FOV-based

tile method using HEVC and its scalability extension, reaching
more than 47% bandwidth reduction. Finally, Zare et. al. [38]
describe a packing intended in mixed-resolution viewport-
adaptive streaming of 6K resolution while complying with the
standard HEVC 4K-decoding constraint, and they achieve a
streaming bitrate saving of 32%.

In summary, there exist several approaches for tiled stream-
ing, many presenting a small variation or improvement of
another tile retrieval algorithm. However, there seems to be
little other work addressing the aspect of delivering these
streams live, and we therefore present a system that supports
this. In addition to this, we also focus on fast quality switches
as the individual FoV change.

III. LIVE STREAMING SYSTEM

Our tiled streaming system supports both on-demand and
live FoV optimized delivery of 360◦ videos. Similar to many
of the approaches listed in the previous section, the on-demand
version uses DASH to manage qualities in each tile and
delivery over HTTP. However, our focus in this paper is the
live system. This can of course also be supported using DASH,
but today’s services using DASH typically have long delays
and do not support multicast delivery. Therefore, we have used
multicast-supported RTP streams where losses are handled
using HTTP based repair streams [17].

We use the latest generation video codec, H.265 High
Efficiency Video Coding (HEVC), that independently supports
encodable and decodable tiles. The codec is supported on
recent devices such as Huawei P10 and Samsung Galaxy S7,
and STBs like the Huawei Q22. By utilizing the horizontal
and vertical slicing features of HEVC, we can stitch tiles
from multiple quality layers in the compressed domain, using
a single hardware decoder to decode a composition of tiles
from multiple quality layers. The tile support in HEVC was
designed for increasing parallel codability and not for stitching
tiles in the compressed domain, but by using only a limited
set of the codec features, it is possible to obtain independently
decodable tiles [25]. In this paper, we limit the number of
qualities per tile to two: low (LQ) and high quality (HQ). This
is a design choice to focus this work on the main objectives
- optimize for what is in FoV and what is not, in contrast to
adapting to varying network conditions. The system can easily
be extended to support an arbitrary number of qualities per tile,
e.g., gradually reducing the tile quality with the distance from
the FoV as we did in [12].

To be able to combine tiles from multiple quality layers
into a single panorama stitch, the decoding parameter con-
text known as video, picture and sequence parameter sets
(VPS/PPS/SPS) must be identical for all quality layers. Any
standard compliant decoder can decode our bitstreams and as
such, our approach is fully compatible with any mobile phone
or client device supporting HEVC decoding.

A. Server

The server demultiplexes a tiled panorama into separate
streams for each tile (see figure 1). The live system primarily
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Fig. 1: System overview.
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Fig. 2: Encoding and retrieval of LQ and HQ tiles

streams RTP. However, it also keeps a cache of frames which
can be requested via HTTP to enable retransmits due to packet
loss and to allow catch up to download HQ tiles needed for the
FoV that were not received in the RTP stream, i.e., enabling
faster quality switches.

1) Encoding: As described above, we here use two quali-
ties. As shown in figure 2, we encode the 360 panorama into
one large tile for LQ at a rate approximately 10% of the full
quality panorama. For the HQ, we first organize the 360 frames
in a cube where each side of the cube is tiled in a 2x2 structure.

When the FoV changes, there will be a transition period
where the client does not have HQ tiles which cover the
region that has just become visible. It is especially important
that any motion in this region is still visible, even if the
overall picture quality is reduced. In our system the LQ tile
provides a fall-back mechanism for this. While HQ tiles are
only downloaded if they are visible, the full LQ tile covering
the entire panorama is always downloaded. Since the priority
with the LQ background is to preserve motion during what
should be a brief period, and in order to reduce bandwidth,
the background is encoded at significantly lower bitrate than
the HQ tile.

One important aspect of the encoding in a live setting is
the ability to transform and encode the panorama into tiles
in multiple qualities for live streaming. This is not in focus
in this paper, but we have preliminary experiments setting up

a large cloud instance (Amazon EC2) running the panarama
transform system and the Kvazaar encoding component in
real-time. Furthermore, hardware solutions from for example
Harmonic1 is able to perform such live encoding. Thus, we
here focus on the live delivery.

2) RTP: RTP streams are initiated via RTSP. Each stream
has one substream (also called a track) per tile with track 1
reserved for LQ. A client can get a list of the available tracks
by issuing a DESCRIBE request. In the case that the stream is
a multicast stream, the response will contain the multicast IP
addresses to be used with the stream. In that case, each track
will have its own multicast group. For live and VOD unicast
streams, the client must go through a SETUP/PLAY workflow
to start receiving RTP for a track, and similarly send PAUSE
to halt it. With a multicast stream, it is enough to use IGMP
to join or leave the individual tracks.

3) HTTP: In case of loss, ranges of frames for individual
tiles can be requested from the HTTP cache by providing
the stream ID, the tile ID (which coincides with the track
ID of the RTP track) and starting and stopping presentation
timestamps (PTS). The response body of such a range request
consists of a field indicating the number of network abstraction
layer (NAL) units returned, followed by the records for the
individual frames which consist of PTS and number of bytes

1https://www.harmonicinc.com



followed by the NAL unit.

B. Client

1) Decoding: Decoding of a set of tiles must always start
on an I-frame. One way to reduce quality switching delays is to
increase the number of I-frames, but doing so will reduce the
compression rate. In our implementation, we use a GOP size
of 60. A shorter GOP size will reduce quality switching delays,
but will lead to worse compression rate. Similarly, increasing
the GOP size will instead improve the compression rate but
increase the quality switching delays. The GOP size we have
selected is a trade-off between these factors. Without other
mechanisms to speed up switching, this puts an upper bound
on switching delay of 60 frames of at least two seconds.

A separate decoder is used for decoding the LQ background.
To support faster switching of HQ tiles as the FoV changes,
there are two HQ decoders, i.e., one main decoder and one
catch up decoder. The HQ main decoder and the LQ decoder
run at a fixed rate of 30 fps and are synchronised to release
the next frame to rendering at the same instant.

2) Catch up decoder: When the FoV changes during a
GOP, a catch up decoder, which runs in the background with
rendering to the display disabled, begins decoding the new set
of visible tiles starting at the previous I-frame. Any missing
HQ tiles will be requested over HTTP. The catch up decoder
runs at the maximum frame rate available on the hardware
until it catches up with current playback, or is canceled if it
was too slow and could not catch up with playback within
the GOP. In case that the catch up decoder catches up to the
main decoder, a decoder switch is performed with the catch
up decoder and main decoder swapping roles and rendering
to the display being enabled or disabled accordingly.

3) Restricting the number of tiles: The cubic projection
used has, compared to other projections like equirectangular,
much less variation in the number of visible tiles under
different rotations. In order to reduce the resolution of the
decoded video frames and thus increase decoding frame rate
the number of HQ tiles is limited to at most six. Tiles are
selected in order of their area visible in the FoV and in the
case that there are more than six tiles visible some area will
be covered by the LQ background. When used with horizontal
FoV of 90◦and aspect ratio of 16:9, the vertical FoV will be
roughly 50◦, and six tiles will cover the large majority of the
screen for all viewing angles. Having more than 6 tiles in HQ
would consume an unreasonable amount of bandwidth while
yielding little or no visible improvement for the user. This
strategy thus helps improve both the bandwidth savings and
the quality switching delays.

4) Tile selection and signaling: Tile selection runs out-of-
band with the decoding and rendering pipeline, and client-
server signaling used to set up and tear down RTP streams
for individual tiles as the FoV changes. These changes are
signaled to the server via RTSP. Here, the set of FoV-visible
tiles are calculated at intervals of 40 ms, and the results are
communicated to both the process that manages the RTSP/RTP
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Fig. 3: Tiles from the encoded HQ picture is rewritten to a
new FoV-HQ picture in the compressed domain.

signaling and to the catch up decoder which may then initi-
ate a catch up run. Additionally, the set of visible tiles is
communicated to the HQ main decoder. This is done for two
purposes: 1) at the start of a GOP the main decoder will select
the currently visible tiles for decoding in the new GOP; and 2)
in the case that a tile moved out of the FoV, unsubscribing the
track, the main decoder must be notified as it will otherwise
wait in vain for it to arrive on the network.

5) Bitstream rewriting: To generate the HQ bitstream, we
extract the NAL units from tiles that are within the FoV into
a new bitstream. The new bitstream is decodable by a single
hardware decoder and is generated on the fly by the client.
Figure 3 shows the tile layout for our setup. There are 24
HQ tiles (4 tiles per face of a cube) with up to 6 HQ tiles
decoded for display at any time. The HQ input resolution is
3072x2048 where each tile is 512x512 pixels in a 6x4 layout.
We use the HEVC test model (HM) reference implementation
running on the client [16] for doing bitstream rewriting. First,
new SPS and PPS packets are generated that accommodates a
FoV-HQ picture of 3x2 tiles (1536x1024). The slice headers of
the individual tiles within a GOP are rewritten by updating the
offset to the slice segment. A mapping of the tile position in
the cube and its position in the FoV-HQ picture is created and
retained for the renderer. A tile’s position in FoV-HQ cannot
change within the GOP since subsequent frames depend on
previous frame’s predictions and this is a problem if packets
for a tile are lost, or if there are less than 6 tiles to decode
in the FoV-HQ picture. We solve this by inserting black no-
operation (NOP) tiles in the picture allowing the ordering of
the tiles to stay consistent throughout the GOP.

In Figure 3, tile 4, 8, 9, 14 and 15 are within the FoV and
were downloaded in HQ. The rewriter maps their bitstreams
into the FoV-HQ picture and updates the slice headers. Since
the FoV-HQ picture must be decodable by a standard decoder,
a NOP tile is added for completeness. The tiles can be placed
in any order in FoV-HQ, but the order must be retained within
the GOP.

IV. EXPERIMENTS

The experiments are designed to show the characteristics
of the system and in particular how well the system meets
its stated design goals. To achieve this we need to show how
different videos impact the bandwidth usage. An encoder will
typically encode the full panorama at a fixed bitrate, but it



DynamicMediumHorizontal FoV rotating back and forth horizontally, medium speed.
DynamicSlowHorizontal FoV rotating back and forth horizontally, low speed.
DynamicMediumVertical Fov rotating up and down vertically, medium speed.
DynamicSlowVertical Fov rotating up and down vertically, low speed.
StaticTop FoV fixed looking up.
StaticBottom FoV fixed looking down.
StaticHorizontal FoV fixed looking straight forward at horizon.

TABLE I: Movement patterns used in the evaluation.

will not enforce bitrates within tiles. It is thus possible that
some tiles will have significantly higher bitrates than other
tiles as long as the sums of bitrates of all tiles add up to the
allowed total bitrate. Such uneven distribution of bitrate will
not only affect the bandwidth which will increase when a tile
with bitrate higher than average enters the FoV but will also
cause varying download times when a catch up run is initiated
on a set of tiles with a combined bitrate which deviates from
the mean bitrate of the panorama.

A. Experimental setup

1) Sample videos: The system has been evaluated using the
Elephants and Rollercoaster videos [6]. The original videos are
equirectangular, and we have converted them to cubic using
Transform360 [7]. Elephants is filmed with a fixed camera,
and most of the movement is concentrated to the horizon, in
the center of the panorama. Rollercoaster is captured by a
camera mounted on a rollercoaster, and there is movement in
all directions throughout the clip. The two videos are meant
to represent two extremes of a continuum ranging between
movement concentrated to sub-regions on the one hand, and
equidistributed movement on the other.

2) FoV changes: The user selects pan and tilt movements
changing the FoV, and this ultimately decides which tiles
are downloaded and decoded. The already mentioned uneven
bitrate of tiles may correlate with the selected FoV to alter the
transmitted bitrate, but more importantly, FoV changes cause
catch-up runs which will download all frames for any missing
tile starting at the latest I-frame. A movement pattern where
tiles move in and out of the FoV at a high rate will cause a
high number of downloads. To make experiments reproducible,
we have recorded a set of movement sequences divided into
static positions facing a single direction and dynamic with
periodic movement in either horizontal or vertical direction
at slow or medium speed. Each of the static positions has
been selected to represent an average case when looking in
that general direction, and to avoid sweet spots caused by the
geometry of the projection. Table I describes the movement
patterns used.

3) Devices and setup: We have implemented our proof-
of-concept system as an Android application which runs on
any Android device with HEVC hardware decoding. In our
experiments, we use two different devices with a 16:9 display,
i.e., the Huawei Q22 STB with a Hi3798i system-on-a-chip
relevant for an IPTV scenario, and the Samsung Galaxy
S7 with an Exynos 8890 SoC as a representative of recent
smartphones (supporting the Gear VR, although that is not
used here). In Table II, we present results from our experiments

Samsung Galaxy S7 Huawei Q22 STB
# Decoders 1920x1080 3840x2180 # Decoders 1536x1024 3840x2048

1 269.09 101.91 1 128.9 81.9
2 104.58 55.14 2 100.88 41.3
4 40.33 N/A 3 67.0 27.8

TABLE II: HEVC hardware decoding performance in fps per
decoder instance using different resolutions.

with the devices’ decoding capabilities, and, one can observe
that both devices are capable of decoding video faster than
realtime (30 fps), allowing a secondary catch-up decoder to
run in parallel. Furthermore, the live streaming experiment
is performed using a traditional client-server setup where the
server supports both RTP and HTTP stream delivery. Thus,
we have performed experiments where the S7 is connected via
WiFi on an office network with the presence of retransmissions
giving transfer times relatively high variance, and the Q22 is
connected to a wired network with RTTs below 10 ms and
close to 0 packet loss.

B. Quality switching delay

In our experiments, the quality switching delay is defined as
the time it takes from a tile enters the FoV until it is covered
by an HQ tile. With a GOP size of 60 frames playing at
30 fps, the average quality switching delay without catch up
is around 1 second. The catch up decoder introduced in this
system is an attempt to reduce these delays. Table IV shows
the advantage of the catch up component with median and
95th percentile for switching latencies. On the Galaxy S7, our
catch up effectively cuts the switching latencies in half. On
the Q22, quality switching delays are not quite as good but
still considerably better than 1 second. Figure 4 visualizes the
quality switching delays for some movement patterns. Orange
bars show when a tile was in FoV and blue bars show when
a tile was available in HQ. It can be seen that tiles typically
become available in HQ shortly after entering the FoV and
switch back to LQ shortly after exiting the FoV, but in some
cases the delay is longer, for example switching to bottom
tiles in DynamicSlowVertical (Figure 4b). Moreover, the 95th
percentile quality switching delay show that in some cases
there are tiles which remain in LQ for more than a GOP,
(for example DynamicSlowVertical on the STB). Such delays
can happen because the main decoder has a buffer length
around 400 ms. This buffering was necessitated by variations
in networking and decoding delay. If a tile enters the FoV just
as an I-frame is added to the buffer and there is no successful
catch up run, playback must first consume the 400 ms buffer
followed by a full 2 second GOP before the tile changes to
HQ. The buffering also means that tiles that were in HQ and
left the FoV will remain available in HQ for a short duration as
indicated by the blue bars continuing beyond the orange bars
in Figure 4. A catch up run will only be initiated following an
FoV change if there is not already an ongoing catch up run.
Because of this the switching delay will be longer for an FoV
change that happens shortly after an earlier FoV change.



Elephants
Huawei Q22 Samsung Galaxy S7

Bandwidth savings (%) RTP (KB) HTTP (KB) Bandwidth savings (%) RTP (KB) HTTP (KB)
DynamicMediumHorizontal 51.4 41753.2 6335.7 49.8 41665.2 6592.1
StaticBottom 68.4 31398.6 0 64.2 35081.2 0
StaticHorizontal 50.4 47260.5 0 52.6 47456.8 0
DynamicSlowVertical 58.4 37626.6 4224.5 62.0 37028.9 4115.3
StaticTop 64.6 33916.0 0 64.0 35140.7 0
DynamicSlowHorizontal 55.2 38932.3 1334.6 62.4 37593.7 1649.0
DynamicMediumVertical 53.6 39603.5 9638.8 46.8 39534.9 10382.1

Rollercoaster
Huawei Q22 Samsung Galaxy S7

Bandwidth savings (%) RTP (KB) HTTP (KB) Bandwidth savings (%) RTP (KB) HTTP (KB)
DynamicMediumHorizontal 47.0 60096.0 10380.9 46.4 59940.1 11242.7
StaticBottom 63.2 48577.3 0 63.0 49003.7 0
StaticHorizontal 49.8 66922.2 0 50.6 66909.9 0
DynamicSlowVertical 59.2 48173.5 4577.9 59.8 48780.6 4489.8
StaticTop 77.4 30472.3 0 75.8 31838.6 0
DynamicSlowHorizontal 56.4 55845.0 3003.4 53.8 55881.2 2603.2
DynamicMediumVertical 49.4 53231.2 13965.9 51.6 52481.9 13631.4

TABLE III: Bandwidth savings. The full panorama bitrates are 13.3 Mb/s for Elephants and 20.1 Mb/s for Rollercoaster.

Elephants
Huawei Q22 Samsung Galaxy S7

DynamicMediumHorizontal 643.0 (1542.0) 449.0 (1253.5)
DynamicSlowVertical 660.0 (2013.2) 469.0 (2057.6)
DynamicSlowHorizontal 828.5 (2152.0) 490.5 (1498.0)
DynamicMediumVertical 621.0 (1778.2) 408.0 (1018.8)

Rollercoaster
Huawei Q22 Samsung Galaxy S7

DynamicMediumHorizontal 680.0 (1497.0) 464.5 (1276.3)
DynamicSlowVertical 658.0 (2235.5) 460.0 (1473.5)
DynamicSlowHorizontal 716.0 (1188.0) 561.0 (1830.4)
DynamicMediumVertical 641.0 (1430.0) 420.0 (944.0)

TABLE IV: Median quality switching delays in ms (95th per-
centile) incurred during 60s of video with different synthetic
movement patterns.

C. Bandwidth savings

In our experiments, we compare the sum of all RTP and
HTTP traffic, including both HQ and LQ, and compare it
to the size of the full HQ panorama. Thus, the bandwidth
savings (Table III) are defined as the fraction of the full
panorama not transferred. One major goal with tiled streaming
is to save bandwidth. We can observe that the bandwidth
savings are relatively stable over the different movement
patterns with an approximate average of 57% compared to
downloading everything in HQ. Limiting the number of tiles
to 6 will overall restrict the total bandwidth with deviations
being caused ether by unevenly distributed bitrate in tiles or
by HTTP download caused by FoV changes. In the static
cases, the FoV remains almost constant and the number of
HTTP downloads is generally low. For the vertical static cases
(StaticBottom and StaticTop), we see savings above 60%,
largely because there is little movement in their FoV in both
videos. In particular for StaticTop on Rollercoaster, we see
savings over 75%. Furthermore, one notable case with lower
savings is DynamicMediumVertical (46.8-53.6%). In this case,
we see that the high rate of FoV change causes a high number
of HTTP downloads explaining most of the discrepancy.

D. Multicast streaming

The live system is also tested over multicast where our
system correctly manages joining and leaving multicast groups
according to a user’s FoV. Over the approximately 500 km
wide area network, we experienced a higher rate of packet
loss, resulting in slightly more HTTP retransmits and slightly
higher switching delays. Thus, our initial experiments serves
as a proof of concept, but further work is needed in order
to fully understand the performance of a tiled 360 multicast
service.

V. DISCUSSION

The six tile FoV puts a baseline on the bandwidth usage.
With six tiles, we are downloading 25% of the tiles of the
full HQ panorama, and with picking an LQ bitrate at 10% of
the HQ panorama, the combined bandwidth usage adds up to
35% on average, or 65% bandwidth savings. In practice, the
elephants video has a full HQ panorama bitrate of 13.3 Mbit/s
with LQ at around 10% of HQ. Thus, the RTP bandwidth
should end up around an average of 4.65 Mbit/s and in the
experiments, we observed numbers between 3.72 and 5.45
Mbit/s. In the static cases, there is relatively little HTTP traffic,
and the bandwidth savings are close to the expected 65%.
Some further savings could potentially be made by increasing
the number of tiles for finer granularity, but by doing so, the
compression overhead and header/container overhead added
by tiling may counter those savings. A further optimization
could be to encode the LQ background with a longer GOP
size to improve the compression rate, but since its bitrate
is comparatively low, this would only give a small overall
improvement and a potentially reduced quality. In the dynamic
cases, we see that significant bandwidth is used to download
tiles that enters the FoV but when the FoV changes at a high
rate, tiles will have left the FoV before they are ready to be
rendered. By better timing when catch up downloads tiles,
significant savings can be made.

The experiments show that the catch up mechanism signif-
icantly reduces the quality switching delays, but it may still
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Fig. 4: Example S7 experiments displaying tiles needed in the
FoV and available HQ tiles

be noticeable. An interesting question is how much further
the switching delays can be made with our approach. The
catch up decoder runs in a closed loop where it sequentially
and iteratively downloads, rewrites and interacts with the
hardware decoder. According to measurements, we have made
improvements that can be achieved by running these steps
concurrently. On the Q22, it seems that slower bitstream
rewriting is one source of the added delays compared to
S7 and running the rewriting on a separate thread may help
improve the performance. However, the ultimate limit of our
approach is the decoding speed on the device, and the Q22
clock frequency is lower than the Galaxy S7 even if other
overhead is removed.

Furthermore, the switching delays have significant outliers
close to and above two seconds. In our implementation, the
catch up decoder will start as soon as an FoV change is
detected. In the event of two rapid FoV changes, the catch
up decoder will already be running when the second change
happens. Responding to the second change or subsequent
changes until completing the first run is not possible. Thus,
the delayed response to subsequent changes is increased. One
way to deal with this is to only start the catch up decoder
on specific frame numbers within the GOP during playback.
Doing so will stop the catch up decoder from starting too early
and will help cut the switching intervals more evenly.

In our PTZ system, it will be interesting to support multiple
quality layers to allow further refinement, especially when
increasing resolution to 8K and above. Supporting this on
the client side and streaming is straightforward, but encoding
of 8K panoramas cannot be made in real time on a single
machine. However, the tiled H.265 encoding used in our
system allows for independent encoding of tiles on multiple
machines. More challenging is transforming from equirect-
angular to cubic in real time. Most recording systems only
provide equirectangular, and this makes such conversion a
requirement for live. We are not aware of any system capable
of converting panoramas beyond 4K in real time. In theory, it
should be possible to partition the equirectangular panorama so
that different tiles on the cube can be transformed on different
machines. This can be explored in future work.

VI. CONCLUSION

For on-demand tiled 360 VR video streaming, a vast number
of possible solutions exist. In this paper, we have addressed
the challenges emerging when streaming this type of content
live over both wired and wireless networks. For the original
streams, we used RTP, but to repair for packet loss, we used
HTTP pull-patching streams. Our experimental results show
promising bandwidth saving potential, i.e., more than 50%
in most of the FoV-change scenarios, compared to streaming
the full HQ panorama. The quality catch-up solution greatly
reduces the quality change latency when the FoV changes,
compared to the expected one-second average using a 60
frame (2 seconds) GOP, i.e., reducing the average switch
latency from one second to about 500 ms and 750 ms for the
smartphone and IPTV scenarios, respectively. For future work,



there are some important directions to explore. Better live
and real-time support for higher resolutions than 4K will be
important, and more efficient representations and tiling of the
panorama video might be important for further improvements
of both bandwidth savings and quality switching latency.
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[15] Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K.C. Kris-
tensen, Alexander Eichhorn, Magnus Stenhaug, Stian Dahl, Håkon Kvale
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