
Implementation and Evaluation of Late Data Choice for TCP in Linux

Erlend Birkedal1, Carsten Griwodz1,2 and Pål Halvorsen1,2

1Department of Informatics, University of Oslo, Norway
2Simula Research Laboratory, Norway

{erlendbi, griff, paalh}@ifi.uio.no

Abstract

Real-time delivery of time-dependent data over the In-

ternet is challenging. UDP has often been used to transport

data in a timely manner, but its lack of congestion control is

often criticized. This criticism is a reason that the vast ma-

jority of applications today use TCP. The downside of this

is that TCP has problems with the timely delivery of data.

A transport protocol that adds congestion control to an oth-

erwise UDP-like behaviour is DCCP. For this protocol, late

data choice (LDC) [8] has been proposed to allow adap-

tive applications control over data packets up to the actual

transmission time. We find, however, that application de-

velopers appreciate other TCP features as well, such as its

reliability. We have therefore implemented and tested the

LDC ideas for TCP. It allows the application to modify or

drop packets that have been handed to TCP until they are

actually transmitted to the network. This is achieved with

a shared packet ring and indexes to hold the current sta-

tus. Our experiments show that we can send more useful

data with LDC than without in a streaming scenario. We

can therefore claim that we achieve a better utilization of

the throughput, giving us a higher goodput with LDC than

without.

1 Introduction

The amount of time-dependent data transmitted over the

Internet increases hugely. Many of the applications gener-

ating it, like video and audio conferences, on-demand me-

dia streaming, multimedia sensor networks and distributed

interactive online games, require considerable amounts of

data to arrive in a timely manner to provide a satisfactory

quality of service. When using the transmission control pro-

tocol (TCP) for such applications under network conditions

that allow a high bandwidth-delay ratio, this timeliness is

a challenge when packets get lost and TCP’s generic con-

gestion control mechanisms introduce retransmission de-

lays and reduce bandwidth. Applications may receive data

when it has become obsolete in the TCP send buffer. For ex-

ample, a frame of a layered video may have been displayed

already without waiting for the delayed refinement data.

For various reasons, TCP is the most frequently used

transport protocol today regardless of application type. It is

used both for time-independent and time-dependent appli-

cations. Many protocols such as the Microsoft media server

protocol and systems like Skype try initially to use UDP,

but due to widespread blocking of UDP in firewalls and at

ISPs, they have fallback mechanisms to TCP. For example,

in logs of the streaming service of the largest online news-

paper in Norway, Verdens Gang, we found that the initial

UDP attempt was successful in only 34.0% of the accesses.

The remaining deliveries used MMS over TCP (49.6%) and

HTTP over TCP (16.4%) [6]. Many multi-player online

games use TCP for the same reasons. Thus, even though we

may find appropriate and useful mechanisms for time de-

pendent media delivery in or on top of other transport proto-

cols like UDP, stream control transport protocol (SCTP) [9]

and datagram congestion control protocol (DCCP) [7], they

are largely ignored by network providers. For this reason

we focus on TCP-based solutions.

Using TCP for timely delivery of data poses challenges.

Network congestion can result in large packet delays due

to the mechanisms used by TCP to achieve reliability and

fairness. Packets are frequently held back in the buffer un-

til TCP sends the next segment in the queue. For time-

dependent applications, this is particularly bad, because the

send buffer contains data for a longer time span. Consider a

late video frame in a teleconference or a late position update

in a game as illustrations. At a given time, a particular video

frame or game position update is to be used for the data pre-

sentation at the client, but the sender has not even been able

to send the previous data elements. In the next available

transmission slot, TCP will then send the next data in the

queue, which may be worthless, delaying the new relevant

data even further, and possibly out-dating these data as well.

For applications requiring timely delivery of data, the de-

scribed scenarios waste resources in the network, as deliv-

ered data will be less relevant for the receiver. In the current

implementation, TCP does not have any means to deal with

the situation. To better utilize the resources and reduce the

delay of relevant data, it would therefore be an improvement

if an application had mechanisms available to prevent trans-

mission of outdated data, i.e., means to discover and discard

network traffic that is already too late. Thus, some control

over the transmission buffer is required, enabling modifi-

cation of buffers that the application has already handed to

TCP. Such functionality can be added in several ways. Pos-

sible approaches are support for partial reliability or late

data choice (LDC). The partial reliability approach of the

stream control transmission protocol (SCTP), for example,

is defined as a transport service “that allows the user to spec-

ify, on a per message basis, the rules governing how persis-

tent the transport service should be in attempting to send the

message to the receiver” [10]. LDC is an alternative imple-

mentation for feeding data to TCP that provides a generic

control over the transmit buffer [8] without any changes to

the TCP protocol itself. It enables an application to con-

trol its transmit buffer and gives it the ability to modify or

remove data in the buffer.

In this paper, we look at possible ways for delivering

time-dependent data faster when delays keep data in the

TCP send buffer. To avoid a huge number of cross-platform

updates, our aim has been to have a kernel patch which can

improve the situation using sender side modification only

and which is as closely integrated with the standard Linux

TCP implementation as possible without affecting applica-

tions that use the normal TCP API. In particular, we present

and evaluate an implementation1 of LDC for TCP in Linux

(version 2.6.15.4). Our experimental tests shows that the

implementation is able to provide the required functional-

ity while also providing an enhanced data path reducing the

number of user-kernel boundary crossings.

The remainder of this paper is organized as follows. In

the next section (section 2), we briefly describe the sending

operation in Linux TCP before looking at some related work

in section 3. Section 4 outlines the main LDC ideas from

DCCP, and in section 5, our LDC implementation for TCP

in Linux is presented. We evaluate our system in section 6,

and a discussion is given in section 7. Finally, section 8

concludes the paper.

2 TCP output

To send data over a TCP connection in Linux, the ap-

plication uses a system call like send, write, etc. on a

socket with at least a pointer to the data and its size. This

call is then managed by the appropriate system call function

and sent to the TCP functions for sending data. Here, data is

copied from user space into socket buffers in the tail of the

1Available at http://www.simula.no/departments/networks/software

socket send buffer. TCP then sends packets from the send

buffer in first come first serve order until there is not more

data to send (or until it is stopped for various reasons such

as congestion or “corking”).

The problem for time-dependent data occurs when the

transmission has stopped due to lack of space in the TCP

send window. The reasons for this are a loss event that is

interpreted as a sign for congestion or a flow control event

that indicates a blocking receiver. These events force TCP

to slow down or stop entirely, respectively. The application

may continue to send data to the communication system in

spite of this throttling as long as there is space in the send

buffer. The data may thus expire in the send buffer if it

only has a certain time to live. With no means for the ap-

plication to notice this situation and react to it, TCP sends

the unacknowledged packets in the send buffer in first come

first serve order even if newer updated information is placed

further back in the queue.

3 Related Work

Even though TCP has some issues with time-dependent

data, it is common today to use TCP also for time-

dependent streaming and gaming applications. We want to

give applications control over the TCP send buffer to ensure

that only timely data is sent. In this section, we look at the

work most relevant for our work.

The PRTP-ECN extension to TCP [3] makes a tradeoff

between reliability and latency by modifying the TCP re-

transmission scheme. This scheme may acknowledge lost

packets at the receiving-side (avoiding a retransmission)

and uses ECN to remedy the influence of congestion con-

trol. Similarly, TCP Urel2 is an option at the sender-side

to TCP, which sends fresh data in every segment regardless

of whether the segment is a new packet or a scheduled re-

transmission. Furthermore, the SCTP [9] partial reliability

extension (PR-SCTP) [10] is able to provide some control

over data to be sent and retransmitted. With timed reliability

it allows to associate a time to live with a packet. The packet

is dropped if transmission is not successful by the deadline,

and the receiver advances the cumulative ACK point. Lai

and Kohler’s LDC API [8] for DCCP [7] allows the appli-

cation to delete or modify packets sent from the application

but not yet transmitted to the network using a shared buffer

between the application and the kernel. Finally, dynamic

send buffer size [2] adapts the TCP send buffer size in Linux

to twice the congestion window size. This allows applica-

tions to notice much earlier than the usual implementation

when TCP reduces send speed for some reason, and react

much faster to it by adapting to a lower bitrate.

2The paper TCP Urel: A TCP Option for Unreliable Data Streaming

by Lin Ma, Xiuchao and Wei Tsang Ooi which is still under submission.

All these mechanisms address the challenge of deliver-

ing time-dependent data in more or less orthogonal or com-

plementary ways. PRTP-ECN, TCP Urel and PR-STCP

(movement of the cumulative ACK) may avoid retransmis-

sions of time-dependent data in case of congestion. PR-

STCP (timed reliability), LDC for DCCP and dynamic send

buffers enable applications to control what is sent in a con-

gested situation. Of the mechanisms, dynamic send buffers

are most similar to LDC, but their reaction speed is consid-

erably lower. What was supposed to be 2 round-trip times

worth of data are stored in its send buffers when a con-

gestion event occurs, and it takes subsequently 4 round-trip

times to deliver this data, and much of which may become

obsolete. Conditionally ignoring lost packets in PR-SCTP

and PRTP-ECN require client-side changes, and in the case

of PRTP-ECN, the authors rely on ECN, which is not nec-

essarily available. Moreover, TCP Urel (and PRTP-ECN)

avoids retransmitting old data independently of the data it-

self. The DCCP LDC mechanism and the PR-STCP (timed

reliability) are in many ways similar, and both can be used

in a larger class of applications. As LDC can be used to

provide the timed reliability of PR-SCTP, we describe LDC

for DCCP in more detail next and then take a look at how

to implement LDC support in TCP in the Linux network

architecture.

4 Late Data Choice in DCCP

The LDC API [8] for DCCP enhances applications’ abil-

ity to control, modify and possibly discard the data that has

already been sent to the communication system but not been

sent to the driver yet. It is implemented as a shared ring

between user and kernel space (similar to the ring buffer

shown in figure 2) with pointers indicating the current sta-

tus with respect to the packets that have been sent from the

application and that have been processed and transmitted to

the network. The former ones may still be controlled by the

application. Additionally, the LDC API enables the appli-

cation to use flags to mark packets for dropping, instructing

the kernel to move on to the next packet in the ring buffer.

Finally, the kernel can mark packets that have been sent suc-

cessfully. In this way, LDC lets DCCP retain control over

the sending speed and thus, more control over the timely

delivery of data to the application.

5 Late Data Choice Support in Linux TCP

This section briefly describes our LDC support for TCP

in Linux3 (for further details, please refer to [1]). The main

design is inspired by Lai and Kohler’s DCCP API for late

3We do not address security issues in this paper, but the ring pointers

should be protected to avoid illegal updates.

Figure 1. TCP LDC design

data choice (section 4), and the handling of packets that

have been sent once is inspired by earlier SCTP proposals.

Our primary goal is functionality to be able to go back in

the send buffer and delete (or modify) a packet that is still

queued in the kernel transmission buffer. We followed also

two additional design goals. One was that the implemen-

tation should work with an unmodified TCP receiver. The

other was to keep the existing TCP stack intact while pro-

viding additional LDC support.

As shown in figure 1, depicting the design overview, we

use send buffers that are shared between user and kernel

space. Furthermore, we have a TCP LDC module in the

kernel that links the packet ring and the traditional TCP/IP

stack. It enables sending data in the buffer directly using

the functions in the original stack. Finally, we have an LDC

user space library to provide calls to the LDC functional-

ity. In the current version, it includes functions to initial-

ize the socket as an LDC socket, to send packets using the

ring buffer and to drop one or more packets setting the per-

packet flags.

The heart of the implementation is the packet ring, which

“replaces” the original packet buffer. The main idea is that

the application “sends” packets without issuing a system

call. It puts data directly into one ring buffer of the packet

ring at a time. The kernel transmits data according to TCP’s

congestion control as long as the packet ring is not empty. If

the ring is empty, the LDC kernel module goes to sleep until

notified. Thus, when the application has put a packet in the

packet ring, it should notify the kernel if it is not already

sending packets.

5.1 Indexes and flags

Three index values (or pointers) per connection keep

track of status information and are used to manage the ring.

They are shown in figure 2 and are used as follows:

Figure 2. Packet ring and indexes

• The kernel index (kern i) points to the data element

that the kernel should process and send next.

• The user index (user i) points to the ring buffer that

the application should use next.

• The user modification index (umod i) points to the

oldest unsent ring buffer that can be modified safely.

This means that slots with index i where

• kern i≤i<umod i contain data ready to be sent

• umod i≤i<user i are buffers that the application

freely can modify/delete

• user i≤i<kern i are free to use

As long as the application does not update data, umod i

equals user i. The umod i is only decremented when

the application wants to modify or delete a ring buffer. The

kernel is then prevented from sending this and all following

packet buffers until umod i is increased again.

Additionally, there are two types of flags. The ring struc-

ture contains a kernel flag. By setting it, the kernel in-

dicates that it is not sending packets and needs to be notified

to start sending by setting it. A user flag exists once for

every packet buffer. The application sets it to indicate that

the ring buffer has been deleted. The kernel skips it and

processes the next buffer in the ring.

5.2 Replacing the existing socket buffer

Adding LDC support requires extra information in the

buffer structure and handling of data that differs from the

usual write operations. To do this without additional delays,

the TCP LDC packet ring mechanism is integrated with the

existing TCP socket buffer. With TCP LDC, unsent pack-

ets are in the packet ring and can be modified or deleted.

Only one packet, the next one to be sent, is in the original

TCP send buffer. Ring buffers in the TCP LDC packet ring

contain data and a minimal LDC header, while packets in

the original TCP send buffer are managed with a traditional

Linux skb buffer structure. Ring buffers that are moved to

the original buffer are not copied but wrapped as skbs.

5.3 User-Kernel Interface

Our LDC implementation uses a normal TCP socket, and

the application manages the kernel LDC functions using

setsockopt(), getsockopt() and ioctl() with a

set of new options. The socket is first defined as an LDC

socket using setsockopt() with the new TCP LDC op-

tion. The tcp ldc module (see section 5.4) is then loaded

on demand. After creating the LDC socket, the applica-

tion needs access to the allocated memory. This is done us-

ing getsockopt() with TCP LDC. This returns the user

space address to the shared buffer (packet ring). Now, the

application has access to the packet ring and can start plac-

ing packets in it. Finally, to wake up a sleeping transmission

operation if kern notify is set, we added an ioctl()

request that clears the flag and resumes (or starts) the TCP

data transmission.

5.4 The TCP LDC kernel module

The tcp ldc module is the core of the implementa-

tion. It implements buffer initialization and handling, send-

ing packets and removing deleted packets on behalf of the

application.

The first step in initializing a socket for LDC is creating

a set of pointers. Ring buffers for the packet ring are then

allocated in page aligned memory pages and mapped into

both the kernel’s and the application’s virtual memory. Af-

ter allocating the packet ring, the module “sleeps” until it is

notified by an application. Since the packet ring is shared

between the application and the kernel, we do not use the

normal send (or equivalent) system-calls. Packets are sim-

ply copied into ring buffers in shared memory. Since no sys-

tem call is involved in this, the kernel’s send operation can

not be initiated in this way. Explicit notification is therefore

necessary and achieved by an ioctl.

Sending data does not require a copyin operation like

a usual TCP send operation. Instead, tcp ldc uses the in-

dexes of the ring to find the next data to process and trans-

mit. The data is then sent using the standard skb buffer

structure. It copies data with a data pointer to the ring mem-

ory just in time for transmission (to avoid unnecessary data

movement). The skb is placed on the queue, and the pend-

ing frames are pushed out as in normal TCP. All normal

TCP operations including retransmissions and congestion

control are performed by the originally implemented mech-

anisms. Furthermore, when TCP has sent one segment, it

looks for a new one. For an LDC socket, the traditional

socket queue is not used. The TCP transmit function calls

the tcp ldc module to get the next ring buffer element in-

stead. If the ring is empty, the kern flag is set and the

operation goes to sleep.

Figure 3. Layered video

Figure 4. No rate limit, no loss

6 Experiments

We believe that an LDC implementation is useful in sce-

narios that have very strict time constraints. As a proof

of concept, we performed tests to see how LDC could af-

fect the user perception in a video streaming scenario with

a minimal latency, as it is desired for video conferencing.

Late data in this scenario is consequently dropped at the

receiver. We set up an experiment for streaming hierarchi-

cally layered video (see figure 3). The server sends with a

rate of up to 1 Mbps per stream divided into 8 video quality

layers of 128 Kbps. The lowest layer has highest relevance,

the other layers each refine all layers below them. Receiv-

ing more layers improves the quality of the playout. The

application drops packets starting with the higher layers un-

til it can send the stream strictly at playout speed with the

first packet as the time reference. We used a test setup with a

server and a client connected by one machine running netem

to emulate a network connecting them.

The tests presented here ran for 60 seconds. The band-

widths 1024 Kbps (full rate), 512 Kbps and 256 Kbps were

used. We used a 5% loss rate to provoke delays due to

retransmissions. For tests of TCP without LDC support

(denoted ”regular TCP”), we used the Linux default (New

Reno with DSACK) and the regular send() system call.

For the LDC tests, we used our modified stack and the LDC

user space library to allow the application to send data and

drop data using the LDC kernel module.

The measured average values of 10 test runs, using the

three stated bandwidths, are shown in figures 5 and 6 for

regular TCP and LDC, respectively. In a scenario with un-

Available BW TCP TCP with LDC Difference

1024 Kbps 862.47 851.96 1.22%

512 Kbps 457.72 456.30 0.31%

256 Kbps 235.88 235.24 0.27%

Table 1. Receive rate in Kbps

limited bandwidth and no loss (figure 4), each of the 8 layers

should be complete for both TCP variants, i.e., almost 1 MB

of data (983040 B) for each layer or about 7.5 MB.

In the first test, we looked at regular TCP. When we in-

troduced rate limits of 1024 Kbps, 512 Kbps and 256 Kbps

(and 5% loss), shown in figures 5(a), 5(b) and 5(c), we re-

ceived a total of 6.32 MB, 3.35 MB and 1.73 MB of data

during the 60 seconds, respectively. As we see in the fig-

ures, the received data is evenly distributed (except in the

last 1-second, eight layer segment) on the eight layers. The

reason for this is that the sending application does not ac-

tively drop any packets. Since TCP is a reliable protocol

and we send one second of data from one layer at a time

starting at the most significant layer (base layer), the appli-

cation receives all the data from all the layers in the order in

which it was sent.

The LDC results with rate limits of 1024 Kbps, 512 Kbps

and 256 Kbps (and 5% loss) are shown in figure 6(a), 6(b)

and 6(c). We received a total of 6.24 MB, 3.34 MB and

1.72 MB of data in average, respectively. Although we got

a little less data in the same time period than with regular

TCP (see table 1), we observe that the received data is much

more relevant. The base layer, layer 1, is complete for all

test scenarios, meaning that we can present the media at

the receiver in the correct time-frame. The figures illustrate

clearly that we achieved the desired effect, namely that the

application was able to prioritize the most significant layers

and drop data from the less significant layers when it was

not transmitted in time. This effect is a result of dropping

packets still in the send buffer after the deadline has expired.

In figure 7, we have looked at the amount of data that ar-

rives in time for a streaming scenario with minimal buffers

at the receiver. This scenario is valid for highly time-critical

applications but also when streaming to very limited re-

ceivers such as mobile phones.

Figure 7(a) shows regular TCP where all data is deliv-

ered despite of over-aged packets. In the presence of packet

loss, it is unable to deliver data in time for playout. On

the other hand, LDC enables the application to distinguish

between useful and useless transmissions. This increases

the amount of data that can be delivered in time. Similar

conclusions can be drawn from figure 8(a) where the ar-

rival time of each packet is plotted according to the time

by which the payload should have been played out. LDC

delivers data according to the playout consumption, but has

dropped some (of the least relevant) packets as shown by

the gaps between the points (the other rate limitations are

(a) 1024 Kbps (b) 512 Kbps (c) 256 Kbps

Figure 5. Received data after 60 seconds using TCP

(a) 1024 Kbps (b) 512 Kbps (c) 256 Kbps

Figure 6. Received data after 60 seconds using LDC

(a) Without LDC (b) With LDC

Figure 7. Achieved goodput with and without LDC

identical except that the amount of loss is decreased). In

contrast, the application using the regular TCP has prob-

lems providing a continuous playout from the occurence of

the first packet loss. Thus, LDC may also have some data

arriving too late as we cannot control the retransmissions

themselves, but in summary, the bandwidth is better utilized

for useful data.

7 Comparison and Discussion

TCP is frequently used for time-dependent data streams

because other transport protocols are often ignored and

blocked. We are therefore looking at streaming over TCP

although appropriate and useful mechanisms in or on top of

other transport protocols exist. For example, using UDP, we

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

a
m
o
u
n
t

o
f

r
e
c
e
i
v
e
d

d
a
t
a

(
%
)

time (seconds)

Playout consumption
LDC, 256 Mbps

TCP, 1024 Kbps
TCP, 512 Kbps
TCP, 256 Kbps

(a) Without initial buffering

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

a
m
o
u
n
t

o
f

r
e
c
e
i
v
e
d

d
a
t
a

(
%
)

time (seconds)

Playout consumption
TCP, 512 Kbps, 10s buffer

TCP, 1024 Kbps, 10s buffer
TCP, 512 Kbps, 20s buffer

TCP, 1024 Kbps, 20s buffer

(b) With initial buffering

Figure 8. Data arrival according to data consumption

would lose the same packets and not experience retransmis-

sion problems, giving us approximately the same gaps in the

data playout that we experience using LDC. The reliability

can also be achieved by adding user-space mechanisms on

top of UDP or DCCP [7], or standards-track extensions to

SCTP [9]. Nevertheless, the main problem is the required

use of TCP, and we have therefore addressed how we can

enhance the TCP API to better support time-dependent data

streams.

We have compared the results from our LDC implemen-

tation with a standard Linux setup using New Reno with

DSACK. We realize that several ”high-speed” TCP vari-

ations available in Linux achieve higher throughput than

New Reno with DSACK. However, the older New-Reno-

based variants perform best regarding retransmission han-

dling and latencies [4]. Furthermore, our LDC implemen-

tation does not influence fairness and congestion control

(which is the main difference between the various other

TCP versions) and can therefore be used with all the other

TCP variants in Linux.

The test results show that an application can deliver a lot

more relevant data with LDC than with regular TCP in a

time-dependent scenario. In our example, LDC improved

the perceived quality at the receiver by enabling a real-time

playout of the video in the case of limited bandwidth and

loss – with a quality according to the available rate. The

data delivered by regular TCP is not very useful in this very

strict real-time scenario. Data arrives too late according to

the playout rate (figure 8(a)). If we were to implement a

layered streaming architecture with regular TCP, we would

have to check available resources before sending a layer,

requiring larger buffers and introducing latencies, or using

dynamically sized TCP send buffers [2].

Initial startup buffering, as used by many players today,

would improve the situation. This is shown in figure 8(b)

where the same scenario is plotted with a 10 seconds and

a 20 seconds startup buffering. However, challenges here

are the requirement for memory (especially at thin clients)

and determining the size of the buffer, which should be de-

pendent on the playout-, loss- and transmission rate (all of

which can oscillate). Therefore, the test results clearly state

that streaming of layer-encoded media greatly benefits from

LDC support, both with and without buffering.

Another observation is that the throughput of TCP with

LDC is slightly lower than without LDC. If we look only

at the throughput, we get the values shown in table 1. We

have not investigated why this is the case, but there can be

several reasons. In the first place, data in the LDC packet

ring is wrapped in skbs just in time before it is sent, and this

may introduce an extra delay. In contrast, with regular TCP,

we already have the data ready as skbs in the send buffer.

Another reason may be our means of dropping packets. In

our test applications, we have an LDC packet size equal to

data for one layer in one second (128 kbit). So, when we

are dropping packets, we may not fully utilize the available

bandwidth. This may be tuned with different LDC packet

buffer sizes. The important thing to remember is that even

if we have slightly lower throughput with LDC than with

the regular TCP implementation, all the data received with

LDC support is usable, while that received with the regular

implementation is not. A good throughput is useless if the

data transmitted is too old.

Another property of the LDC implementation is that

the memory area between the application and the kernel is

shared. This enables a zero-copy data path where the skbs

use the LDC send buffer’s data pointer instead of just-in-

time copying from user-space. The benefits of zero-copy

approaches have been reported a numerous times before, re-

cently in our study of enhancements to Linux 2.6 kernel [5].

We have not experimented with a CPU bound system and

therefore not investigated this further for this paper.

It may be argued that the LDC API introduces complica-

tions because it lacks logic for dropping packets. LDC gives

the means for dropping to the application but the application

must itself implement a (good) drop algorithm to achieve

useful results. However, the knowledge of the relevance of

the data lies with the application (or programmer) and not

the kernel. The adaptive send buffer size approach [2] may

thus be simpler but the LDC API allows reacting even more

quickly to congestion.

Our test includes only a layered video streaming sce-

nario. However, the LDC functionality is useful for a larger

class of applications. Applications that send data with a

severely limited lifetime over TCP, like multiplayer games

updates and multimedia sensor data may benefit from LDC

support in TCP. Existing TCP-based applications can eas-

ily adopt LDC support while continuing to use their already

implemented TCP architecture with minimal modification.

After defining the application’s socket as an LDC socket,

there are only two modifications needed, that is the actual

sending of packets and adding logic for dropping packets

when they are outdated. As described below, one may want

to implement functionality that lets the kernel drop pack-

ets automatically, making logic for dropping packets in the

application unnecessary in the simplest cases.

To fully support delivery of time-dependent data over

TCP, we would like to extend the drop functionality. Adding

the timed reliability of PR-SCTP [10] would allow drop-

ping by the kernel. Furthermore, as shown in figure 7(b),

we still have some data arriving late due to retransmissions,

i.e., the packets are processed and no longer controllable by

LDC. Thus, it may also be desirable to include dropping of

retransmissions, as these may be outdated due to the extra

delay. However, in case of the PR-SCTP solution and the

PRTP-ECN extension to TCP [3], this also implies a modifi-

cation to the receiving side of a connection due to sequence

numbers. A possible solution would then be to orthogonally

use the solution of TCP Urel to send fresh data in every seg-

ment regardless of whether the segment is a new packet or

a scheduled retransmission.

8 Conclusions

Many existing applications require real-time delivery of

time-dependent data. TCP is used for this in spite of several

problems. In this paper, we have therefore investigated an

LDC extension to the sender-side handling of TCP in Linux.

This allows applications to modify or drop queued but still

unsent packets without any changes to the TCP protocol it-

self.

Our experiments with a layered video playout showed

that we can improve the user experience in a scenario with

time critical data in congested networks. Applications are

able to send more useful data using LDC. Thus, the per-

ceived quality for the receiver at a very low latency will be

better since we manage to transfer the whole base layer and

thereby get a continuous playback of the video in the de-

scribed test scenario. We can for the same reason claim that

we have a better utilization of the throughput, giving us a

higher useful throughput (or goodput) with LDC than with-

out. Based on this, we conclude that LDC support in TCP

actually reduces the latency and increases the throughput

for time critical data in congested networks.

We are currently performing more tests to further show

the benefits of our LDC implementation. Further work on

our system includes extending the drop functionality by

adding both dropping after a deadline and some kind of se-

lective retransmission.

References

[1] E. Birkedal. Late data choice with the linux TCP/IP stack.

Master’s thesis, Department of Informatics, University of

Oslo, Oslo, Norway, May 2006.

[2] A. Goel, C. Krasic, K. Li, and J. Walpole. Supporting

low latency TCP-based media streams. In Proceedings

of the IEEE International Workshop on Quality of Service

(IWQoS), pages 193–203, May 2002.

[3] K.-J. Grinnemo and A. Brunstrom. Enhancing TCP for ap-

plications with soft real-time constraints. In Proceedings of

SPIE Multimedia Systems and Applications, pages 18–31,

Nov. 2001.

[4] C. Griwodz and P. Halvorsen. The fun of using TCP for an

MMORPG. In Proceedings of the International Workshop

on Network and Operating System Support for Digital Audio

and Video (NOSSDAV). ACM Press, May 2006.

[5] P. Halvorsen, T. A. Dalseng, and C. Griwodz. Assessment of

data path implementations for download and streaming. In

Proceedings of the International Conference on Distributed

Multimedia Systems (DMS), pages 228–233, Sept. 2005.

[6] F. T. Johnsen, T. Hafsøe, C. Griwodz, and P. Halvorsen.

Workload characterization for news-on-demand stream-

ing services. In Proceedings of the IEEE International

Performance Computing and Communications Conference

(IPCCC), Apr. 2007.

[7] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion

Control Protocol (DCCP). RFC 4340 (Proposed Standard),

Mar. 2006.

[8] J. Lai and E. Kohler. Efficiency and late data choice in a

user-kernel interface for congestion-controlled datagrams.

In Proceedings of SPIE/ACM Conference on Multimedia

Computing and Networking (MMCN), pages 136–142, Jan.

2005.

[9] L. Ong and J. Yoakum. An Introduction to the Stream Con-

trol Transmission Protocol (SCTP). RFC 3286 (Informa-

tional), May 2002.

[10] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Con-

rad. Stream Control Transmission Protocol (SCTP) Partial

Reliability Extension. RFC 3758 (Proposed Standard), May

2004.

