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Abstract

Networked multi-player games constitute a demanding classof interactive distributed multimedia applications with

very high commercial relevance. As such, they attract a growing number of researchers in multimedia networking.

Most games use a client-server architecture, largely to prevent cheating. By analyzing the traffic of such games,

we confirm that individual client-server flows consume relatively little bandwidth. Thus latency, rather than band-

width, is the critical parameter when provisioning this class of applications. In order for commercial game services

to ensure low-latency operation, resource reservation must be explored. In this paper, we investigate options for

a DiffServ-style reservation on part of the path between a game server and sets of clients. We show how a token

bucket shaper can be parameterized based on a target end-to-end latency, and discuss the implications for a network

infrastructure. We use the shaper to quantify the burstiness of game traffic and the correlation between individual

flows, with a view to the limitations this imposes on resourcereservation for aggregate (multiplexed) flows.
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1 Introduction

Networking researchers have recently demonstrated a growing interest in networked multiplayer
games as a demanding example for distributed interactive multimedia applications. The com-
puter games industry is large and has been a more important factor in home computer develop-
ment than other multimedia applications including conferencing, Internet telephony and media
streaming. In the context of networking research, games aremostly interesting because the kind
of traffic that they create highlights possible developments in future, highly interactive applica-
tions. The uptake was initiated by the work on MiMaze (Gautier and Diot, 1998) and has led to
the NetGames workshops (Wolf, 2002). In this paper, we investigate the considerations that are
necessary to use reservation for aggregate game flows.

The public Internet offers no service guarantees to end users. Thus, neither available band-
width nor limits to end-to-end latency are guaranteed. Bothare mainly due to router queues that
grow until packets must be dropped. Usually, each individual data stream backs off in order to
alleviate congestion. For games traffic, this is impossible. In Anarchy Online (AO) for example,
every single client-server stream is so thin that it is an exceptional occurrence when two packets



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140  160  180

nu
m

be
r 

of
 p

ac
ke

ts

connection RTTs sorted by packets/RTT

(a) Packets per average RTT

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100  120  140  160  180

R
T

T
 / 

m
s

connection RTTs sorted by average RTT

RTT statistics for all packets that are never retransmitted

min
avg
max

(b) Average client RTTs

Figure 1: Packets per average RTT and standard deviation in Anarchy Online

of the same stream are sent within the same round-trip time (RTT) (figure 1). It is therefore
necessary to look differently at gaming traffic. Games have several concurrent flows that might
contribute to congestion in the vicinity of the server. Whencompeting for the bottleneck band-
width, these flows will experience considerable packet loss. For large-scale games, network
resources reservation, for example under a DiffServ regime, could alleviate the problems by
separating games traffic from other traffic. To do this, we must better understand how games
traffic behaves in order to recommend a reservation style to achieve the required latencies.

2 Relevant Game Types

Improving the performance of interactive games requires anunderstanding of games traffic. The
networking requirements of most multiplayer games fit into one of the following categories, and
more recent games may include elements from more than one group:

First Person Shooters (FPS)involve a high percentage of combat that requires low response
times. The number of messages (update events such as players’ position and actions) is
high. Player satisfaction is disturbed mainly by experienced latency, which may be due
to network latency or the need to retransmission. Pantel andWolf (2002) have shown
that this latency becomes detectable at about 100 ms and makes game play impossible
at approximately 200 ms. This game type is the most demandingin terms of latency
requirements.

Role Playing Games (RPGs)are visually similar to FPSs games, but the pace of player in-
teractions in RPGs is usually less intense. The kind of user actions is more varied and
can have a large influence on the game state. Online RPGs oftenaim at supporting a
large number of players making scalability an important issue. This game type is most
demanding in terms of the number of concurrent flows.

Real-Time Strategy (RTS) games are not particularly sensitive to network latency andjitter.
Sheldon et al. (2003) and Bettner and Terrano (2001) studiedthem in more detail and
showed that they have no particular latency or bandwidth requirements, i.e., we ignore
them in this paper.

Today, most commercial multiplayer games are implemented in a client-server fashion, us-
ing either a single server or a server cluster. Clients are not interconnected and have an indi-
vidual connection to the server. In this way, game operatorsreduce the chances for cheating,



they ensure the anonymity of players and simplify administration. Based on two sets of traces
from commercial games, we take a closer look at network resource reservation and at the in-
fluence and limits of traffic shaping in the games scenario. Wefind that server-to-client and
client-to-server communication must be addressed separately, although bandwidth and latency
requirements are similar for both directions. The distinguishing factors are the following:

Server-to-client: Servers identify groups of clients to which they send the same information.
They could use multicast for this, but even if this is lacking, they can determine the
relevance of data and apply shaping and dropping in a cooperative manner for all flows.
It is possible to place servers strategically such that theyare well-connected to relevant
networks and close to ingress nodes of networks that supportreservation.

Client-to-server: Clients may generate events either on behalf of interactingusers or cycli-
cally. They will usually share their access network with a small number of competing
players and a much larger amount of traffic from other applications. Usually, they will
not be close to an ingress of a network that supports reservation.

3 Related Work

Chambers et al. (2005) investigated traces of several gamesconcerning the question of how
predictable game workloads are. They considered mainly FPSgames, but also the massively
multiplayer online role-playing game (MMORPG) Neverwinter NightsTM. Their conclusion is
that games traffic vary strongly with time and with attractiveness of the individual game. They
approach the issue of multiplexing gain as a long-term multiplexing problem, where several
games should be hosted together and with other services. In this paper, we consider multiplexing
on the time-scale of end-to-end delay.

Fitting multi-player game traffic to probability distributions is described by Borella (2000).
The feasibility of aggregating game traffic to achieve statistical multiplexing gains has also
been previously studied. Notably, Busse et al. (2004) present an admission control algorithm
and its suitability for a simple game whose bandwidth usage approximately follows a Poisson
distribution. While this traffic makes resource reservation relatively easy, it is not typical for
games traffic. In contrast to earlier resource reservation approaches via ATM and RSVP, the hot
approaches at this time, DiffServ and/or MPLS, do not leave room for bursty, latency-critical
traffic. However, research is starting to appear that might lead to an understanding of reservation
for traffic aggregates that will allow guarantees for it (Allalouf and Shavitt, 2005). Sharing of
the bottleneck capacity has been investigated by in an environment without resource reservation
has been investigated, e.g. by Balakrishnan et al. (1999). However, this approach requires that
some streams give up bandwidth in favor of others.

4 Experiments

Since the acceptable end-to-end delay is known only to the game designer or developer, we
must use this as a variable in our investigation. Independently of this, burstiness in flows must
be tolerated if events are correlated on the timescale of theacceptable end-to-end delay.

We propose to use resource reservation for aggregates of game flows that connect the net-
work edge of autonomous systems with a large player population to the games server. Such
reservations require the means for formulating application-dependent traffic specifications. Ag-
gregating flows should allow for smoothing of the streams, i.e. a burstiness that is less than and
an average rate that is higher than for the sum of the individual streams. Smoothing streams



with correlated bursts, however, may require considerablebuffering and an increase in end-to-
end delay for the individual flow, which is particularly bad for games.

We analyze packet traces (tcpdump files) from two games. CounterStrike (CS) is a mul-
tiplayer FPS using a client-server architecture to communicate over UDP. The upstream band-
width per client is in the order of 1500 bytes/sec on average,with around 20 packets being sent
per second. More details can be found in Wu-chang Feng et al. (2002). Anarchy Online (AO)
is an MMORPG using a client-server architecture that communicates using TCP. The upstream
bandwidth per client is 250 bytes/sec on average, with about3 packets being sent per second.

4.1 Burstiness

Burstiness is typically expressed as some measure of the arrival rate distributionX, such as the
variation coefficientσ2(X)/E2(X). We deal with flows which may have varying packet rates
and packet sizes. Thus, in order to quantify the arrival distribution, we would need to identify a
relevant time interval∆t over which the arrival rate is measured. Since bandwidth is typically
measured in bitsper second, one second is the typical choice for∆t. However, games require
sub-second delay bounds, and we therefore use a simulated token bucket filter (Wang, 2001) to
characterize burstiness independently of time scale.

The peak rate is set arbitrarily high relative to the arrivalrate; for instance, the line speed of
a core Internet router. The initial token rate is set to the average arrival rateλ of the traffic (in
bytes per second). The initial bucket depth is set to zero bytes. We now systematically increase
the token rate and bucket depth (or FlowSpec), and measure the resulting queuing delays. The
ranges of these parameters are chosen so as to show an eventual convergence of queuing delay
to nearly zero for the given traffic data. In the experiment shown in figures 2 and 3, the token
rate was increased in8 exponentially increasing steps, up to4λ bytes per second. The bucket
depth was increased in20 steps, up toλ ∗ 1sec bytes.

By plotting maximum queuing delay against the token bucket parameters (see for example
Figure 2(a)), we obtain a visualization of the flow’s burstiness. For each scan line in the plot
corresponding to a constant token rate, each drop-off in delay indicates a burst. Specifically, if a
drop-off occurs at depthd, it indicates the presence ofd-byte bursts. This is because a bucket of
depthd allows bursts of up tod bytes to “pass through” at the (significantly higher) peak rate,
so that they no longer contribute to the queue length.

As the token rate is increased, queue lengths gradually converge to nearly zero. The token
rate of interest is the one at which, for some reasonable1 bucket depth, the corresponding queu-
ing delay meets the application-specific delay boundζ . The higher this rate is with respect to
the average arrival rate, the more bursty the flow.

Upstream traffic: Figure 2(a) shows the upstream component of a typical individual client-
server flow of our CS trace, and figure 2(b) shows the same for anAO trace. Consider that the
arrival of eachb-byte packet constitutes a burst of sizeb at a time scale corresponding to the
packet rate. The largest upstream IP packet size in the CS flowis 289 bytes. This corresponds
to the bucket depth at which the ridge in the right rear of Figure 2(a) has rolled off to height (i.e.
queuing delay) zero2. In the AO flow, the largest packet size is704 bytes.

1The definition of “reasonable” depends on what the network operator provides and what we are willing to pay.
2Actually, the delay floor is just above zero, due to the service delay resulting from a finite peak rate.
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Figure 2: Upstream token bucket filter for a single stream
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Figure 3: Downstream token bucket filter for a single stream

Downstream traffic: Figures 3(a) and 3(b) show the downstream components of typical in-
dividual client-server flows in CS and AO, respectively. Thelargest downstream IP packet size
in the CS flow is1428 bytes,1500 bytes in the AO flow. For CS, the ridge in the right rear of
the plots rolls off at bucket depth greater than size of the largest packet, indicating bursts where
two or more packets arrive in rapid succession. For AO, the situation is less clear. The role-off
occurs for packet sizes less than the MTU size, and increasing the token rate case leads to a
visible reduction in queuing delay even for bigger token bucket sizes. This is due to the use of
TCP; packets are not the unit of event generation but packetsare sent in pairs when more data
must be sent than a single TCP segment can hold. The delay bound does therefore correspond
to the length of actual bursts, as soon as the accumulated tokens are consumed.

In both downstream cases, delays converge more slowly alongthe token rate axis than in the
upstream case: a relatively higher rate is required for the token bucket to take effect, indicating
higher overall burstiness with respect to the upstream traffic. However, the effect is much
less pronounced for AO than for CS. We can understand this when we consider that each CS
client requires updated information about many other clients at any given time, while an AO
client receives only updates for the player’s immediate surroundings as well as effects of other
players’ actions.



4.2 Correlation and Multiplexing Gain

Traffic specification in many distributed applications makes the starting assumption that users’
interactions are mutually independent and can be modeled byMarkov processes. In the case of
games, however, it is natural to assume that game events are strongly correlated. Both FPSs and
RPGs lead to co-location of players in the virtual world, andactions are frequently determined
by knee-jerk reactions. However, these reaction are short compared client-server delay and
developer can compensate for a certain amount of delayζ . We must therefore investigate the
correlation to determine whether flow aggregation would yield a relevant multiplexing gain at a
temporal resolution that is implicitly defined by the maximum latency that the games developer
considers acceptable. To do this we consider a limited peak rate that we call theminimal service
rate ρ that upholdsζ . A limited ρ has two effects. First, the bucket depth and token rate alone
are no longer sufficient to stay within the delay boundζ , they have to be defined in such a way
that packets drained from the buffer are processed early enough. Second, if the expressive power
for a resource reservation system is limited, as in the case of DiffServ’s assured forwarding per
hop behavior, the peak rate must be reserved to meet the delayboundζ . The ratioρ/λ gives a
measure of overall burstiness. For one representative gameflow for both CS and AO, figure 4
plots this ratio over different values ofζ . Obviously,ζ must be very large (in the order of1 to
several seconds) to achieve a peak rate close to the average data rate for individual flows.

We are therefore interested in determining whether the minimal service rate for a flow ag-
gregate is closer to the average rate of the aggregate. We do this by looking at the multiplexing
gain. Consider a setS of concurrent flows. Comparingρ(S), the minimal service rate for the
aggregate, with the sum of the minimal service ratesρ(i) for each individual flowi ∈ S gives
us the multiplexing gainmg, 0 ≤ mg < 1: mg = 1 − ρ(S)∑

ρ(i)

One would expect that a set of flows with mutually independentPoisson packet arrival distri-
butions would tend to yield high multiplexing gain. Conversely, highly correlated flows would
offer little multiplexing gain, because their peaks are likely to coincide. As an example, we look
at the 10 largest flows that overlap for at least 5 minutes in both the CS and AO traces, and con-
sider a queuing delay boundζ = 25ms. We consider all combinations of these flows. Figure 5
shows the multiplexing gain as several flows are aggregated.Both graphs show that significant
multiplexing gain is possible, suggesting that peaks in individual flows are not strictly corre-
lated in the aggregate. It does not seem possible to improve downstream aggregation beyond
50% in either game, while aggregation of upstream flows yields an important gain. Especially
the upstream flows in AO are nearly perfectly uncorrelated atthis time-scale.

5 Discussion

For the upstream traffic in games, we would have expected significant burstiness at timescales
of one second or more, due to their interactive nature. Its absence implies that game design
prevents a considerable increase in upstream traffic in highly active situations. At sub-second
resolution, their burstiness results primarily from packetization of the data. Also any correlation
between bursts in several streams is so low that it seems to bea random occurrence. We attribute
this to the observation that expected correlation is hiddenbecause the variations in end-to-end
delays are on the same timescale as human reaction time, which varies as well. Thus, correlation
between the upstream components of concurrent flows is sufficiently limited to allow significant
statistical multiplexing gains.

Downstream traffic, on the other hand, was more bursty than weanticipated. Although the
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Figure 5: Multiplexing gain vs. number of concurrent flows

packet rate of this traffic is fairly constant, the packet sizes can vary between50 − 1500 bytes.
The downstream traffic is similar between flows, presumably because the game state updates
sent out by the server are largely the same for all clients. Thus, the downstream components of
concurrent flows are less suitable for aggregation.

If a games provider intends to exploit multiplexing to protect games traffic from cross-
traffic, a trace of the game traffic can provide the relevant token bucket parameters for a DiffServ
service specification. For upstream traffic, aggregation works well, so reservations can be made
for the aggregate flow. For downstream, a game provider couldestablish proxy servers at the
egress of a reservation. It would then become possible to usemulticast between the server
and the proxies, where traffic could be converted to unicast streams for the individual client.
However, the alternative would be not to perform upstream aggregation at all because the traffic
is reasonably smooth, and only use reservation for downstream traffic. In the latter case, no
proxy would be required, only DiffServ marking or MPLS labeling.

6 Conclusion and Future Work

We have presented a method for characterizing burstiness and correlation of concurrent game
flows at different time resolutions. We applied this method to the FPS game CounterStrike and
the MMORPG Anarchy Online, which use the UDP and TCP protocols, respectively. The ap-



proach, can determine the multiplexing gain and minimal service rate for aggregate game flows
at these resolutions. We find that upstream flows are only weakly correlated, allowing resource
reservation with little overhead. Downstream flows are highly correlated. Through aggregation,
a considerable multiplexing gain is still achievable, which makes it possible to reservation a
higher average rate in favor of a low peak reservation compared to the unaggregated streams.

In future work, we will takes closer look at the issues that lie in very thin TCP streams.
For the game flows that we observed, neither congestion control nor fast retransmission work
because of it, and remedies must be investigated. We will also look at kernel enhancements and
off-loading engines that make fast packet aggregation and filtering on servers and proxy servers
possible.
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