Translating latency requirements into resource requiremats
for game traffic

Chris Majewski, Carsten Griwod?z?> and Pal Halvorser?

IFI, University of Oslo, Norway 2Simula Research Lab., Norway
e-mail: {krzys, griff, paalt} @ifi.uio.no

Abstract

Networked multi-player games constitute a demanding déisgeractive distributed multimedia applications with
very high commercial relevance. As such, they attract a grgwumber of researchers in multimedia networking.
Most games use a client-server architecture, largely tegmtecheating. By analyzing the traffic of such games,
we confirm that individual client-server flows consume tieldy little bandwidth. Thus latency, rather than band-
width, is the critical parameter when provisioning thisssaf applications. In order for commercial game services
to ensure low-latency operation, resource reservatiort beigexplored. In this paper, we investigate options for
a DiffServ-style reservation on part of the path betweenraggaerver and sets of clients. We show how a token
bucket shaper can be parameterized based on a target end-tatency, and discuss the implications for a network
infrastructure. We use the shaper to quantify the bursdioégame traffic and the correlation between individual
flows, with a view to the limitations this imposes on resoueservation for aggregate (multiplexed) flows.

Keywords

Networked games, packet traces, resource requirements

1 Introduction

Networking researchers have recently demonstrated a gganterest in networked multiplayer
games as a demanding example for distributed interactidémadia applications. The com-
puter games industry is large and has been a more importaat fa home computer develop-
ment than other multimedia applications including confiereg, Internet telephony and media
streaming. In the context of networking research, gamesaggly interesting because the kind
of traffic that they create highlights possible developraémfuture, highly interactive applica-
tions. The uptake was initiated by the work on MiMaze (Gawred Diot, 1998) and has led to
the NetGames workshops (Wolf, 2002). In this paper, we inyate the considerations that are
necessary to use reservation for aggregate game flows.

The public Internet offers no service guarantees to endgsu3éus, neither available band-
width nor limits to end-to-end latency are guaranteed. Boghmainly due to router queues that
grow until packets must be dropped. Usually, each indiMidata stream backs off in order to
alleviate congestion. For games traffic, this is impossilolédnarchy Online (AO) for example,
every single client-server stream is so thin that it is arepional occurrence when two packets

12 T T T T T T T T RTT statistics for all packets that are never retransmitted
3000

min
avg - H
2500 max -

2000

1500 -

number of packets

RTT/ms

1000 -

500 i

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
connection RTTs sorted by packets/RTT connection RTTs sorted by average RTT

(a) Packets per average RTT (b) Average client RTTs
Figure 1: Packets per average RTT and standard deviationanchy Online

of the same stream are sent within the same round-trip tim@ \Kigure 1). It is therefore
necessary to look differently at gaming traffic. Games hawveal concurrent flows that might
contribute to congestion in the vicinity of the server. Witempeting for the bottleneck band-
width, these flows will experience considerable packet.|ds% large-scale games, network
resources reservation, for example under a DiffServ regoueld alleviate the problems by
separating games traffic from other traffic. To do this, we tnves$ter understand how games
traffic behaves in order to recommend a reservation styleh@eae the required latencies.

2 Relevant Game Types

Improving the performance of interactive games requiragaerstanding of games traffic. The
networking requirements of most multiplayer games fit imte of the following categories, and
more recent games may include elements from more than one:gro

First Person Shooters (FPS)involve a high percentage of combat that requires low respon
times. The number of messages (update events such as playston and actions) is
high. Player satisfaction is disturbed mainly by expereshlatency, which may be due
to network latency or the need to retransmission. PantelVeolfl (2002) have shown
that this latency becomes detectable at about 100 ms andsngakee play impossible
at approximately 200 ms. This game type is the most demanidibgrms of latency
requirements.

Role Playing Games (RPGs)are visually similar to FPSs games, but the pace of player in-
teractions in RPGs is usually less intense. The kind of usiores is more varied and
can have a large influence on the game state. Online RPGs afteat supporting a
large number of players making scalability an importaniéssThis game type is most
demanding in terms of the number of concurrent flows.

Real-Time Strategy (RTS) games are not particularly sensitive to network latency jatet.
Sheldon et al. (2003) and Bettner and Terrano (2001) stutiexh in more detail and
showed that they have no particular latency or bandwidthirements, i.e., we ignore
them in this paper.

Today, most commercial multiplayer games are implememteddlient-server fashion, us-
ing either a single server or a server cluster. Clients atenterconnected and have an indi-
vidual connection to the server. In this way, game operatsce the chances for cheating,

they ensure the anonymity of players and simplify admiatgin. Based on two sets of traces
from commercial games, we take a closer look at network regoeservation and at the in-
fluence and limits of traffic shaping in the games scenario. filethat server-to-client and

client-to-server communication must be addressed seharatthough bandwidth and latency
requirements are similar for both directions. The distisging factors are the following:

Server-to-client: Servers identify groups of clients to which they send theesarformation.
They could use multicast for this, but even if this is lackitigey can determine the
relevance of data and apply shaping and dropping in a cotdgeraanner for all flows.
It is possible to place servers strategically such that #reywell-connected to relevant
networks and close to ingress nodes of networks that supgs®tvation.

Client-to-server: Clients may generate events either on behalf of interaaisegs or cycli-
cally. They will usually share their access network with aamumber of competing
players and a much larger amount of traffic from other appboa. Usually, they will
not be close to an ingress of a network that supports resenvat

3 Related Work

Chambers et al. (2005) investigated traces of several gaoreserning the question of how
predictable game workloads are. They considered mainly g&@?%es, but also the massively
multiplayer online role-playing game (MMORPG) Neverwiniights'™. Their conclusion is
that games traffic vary strongly with time and with attraetiess of the individual game. They
approach the issue of multiplexing gain as a long-term plagiting problem, where several
games should be hosted together and with other servicdsslpaper, we consider multiplexing
on the time-scale of end-to-end delay.

Fitting multi-player game traffic to probability distribans is described by Borella (2000).
The feasibility of aggregating game traffic to achieve statal multiplexing gains has also
been previously studied. Notably, Busse et al. (2004) ptesse admission control algorithm
and its suitability for a simple game whose bandwidth usggeaximately follows a Poisson
distribution. While this traffic makes resource reservatielatively easy, it is not typical for
games traffic. In contrast to earlier resource reservappnaaches via ATM and RSVP, the hot
approaches at this time, DiffServ and/or MPLS, do not leaan for bursty, latency-critical
traffic. However, research is starting to appear that mieggad ko an understanding of reservation
for traffic aggregates that will allow guarantees for it @duf and Shavitt, 2005). Sharing of
the bottleneck capacity has been investigated by in an@mvient without resource reservation
has been investigated, e.g. by Balakrishnan et al. (1998\eMer, this approach requires that
some streams give up bandwidth in favor of others.

4 Experiments

Since the acceptable end-to-end delay is known only to theegdesigner or developer, we
must use this as a variable in our investigation. Indepethdehthis, burstiness in flows must
be tolerated if events are correlated on the timescale ai¢beptable end-to-end delay.

We propose to use resource reservation for aggregates @ fiawvs that connect the net-
work edge of autonomous systems with a large player populat the games server. Such
reservations require the means for formulating applicatiependent traffic specifications. Ag-
gregating flows should allow for smoothing of the streangs,a.burstiness that is less than and
an average rate that is higher than for the sum of the indalidireams. Smoothing streams

with correlated bursts, however, may require considerabfering and an increase in end-to-
end delay for the individual flow, which is particularly baat games.

We analyze packet tracesqpdunp files) from two games. CounterStrike (CS) is a mul-
tiplayer FPS using a client-server architecture to comweateiover UDP. The upstream band-
width per client is in the order of 1500 bytes/sec on averagi, around 20 packets being sent
per second. More details can be found in Wu-chang Feng €@02(. Anarchy Online (AO)
is an MMORPG using a client-server architecture that compates using TCP. The upstream
bandwidth per client is 250 bytes/sec on average, with aBgaickets being sent per second.

4.1 Burstiness

Burstiness is typically expressed as some measure of thalaate distributionX, such as the
variation coefficient?(X)/E?*(X). We deal with flows which may have varying packet rates
and packet sizes. Thus, in order to quantify the arrivatithstion, we would need to identify a
relevant time interval\t over which the arrival rate is measured. Since bandwidtppeally
measured in bitper second, one second is the typical choice fAt. However, games require
sub-second delay bounds, and we therefore use a simul&dbacket filter (Wang, 2001) to
characterize burstiness independently of time scale.

The peak rate is set arbitrarily high relative to the arrredé; for instance, the line speed of
a core Internet router. The initial token rate is set to therage arrival rate\ of the traffic (in
bytes per second). The initial bucket depth is set to zereshy/e now systematically increase
the token rate and bucket depth (or FlowSpec), and measaireshlting queuing delays. The
ranges of these parameters are chosen so as to show an égenugsgence of queuing delay
to nearly zero for the given traffic data. In the experimermivamin figures 2 and 3, the token
rate was increased Mexponentially increasing steps, up4d bytes per second. The bucket
depth was increased &) steps, up to\ x 1sec bytes.

By plotting maximum queuing delay against the token buckeameters (see for example
Figure 2(a)), we obtain a visualization of the flow’s buresn. For each scan line in the plot
corresponding to a constant token rate, each drop-off mydaticates a burst. Specifically, if a
drop-off occurs at deptfd, it indicates the presence @fbyte bursts. This is because a bucket of
depthd allows bursts of up ta@ bytes to “pass through” at the (significantly higher) pedk ra
so that they no longer contribute to the queue length.

As the token rate is increased, queue lengths graduallyecgevto nearly zero. The token
rate of interest is the one at which, for some reasondhleket depth, the corresponding queu-
ing delay meets the application-specific delay bogndhe higher this rate is with respect to
the average arrival rate, the more bursty the flow.

Upstream traffic: Figure 2(a) shows the upstream component of a typical iddadiclient-
server flow of our CS trace, and figure 2(b) shows the same f&Catrace. Consider that the
arrival of eachh-byte packet constitutes a burst of sizat a time scale corresponding to the
packet rate. The largest upstream IP packet size in the C34I289 bytes. This corresponds
to the bucket depth at which the ridge in the right rear of Fegi(a) has rolled off to height (i.e.
queuing delay) zeré. In the AO flow, the largest packet size784 bytes.

1The definition of “reasonable” depends on what the netwoekator provides and what we are willing to pay.
2Actually, the delay floor is just above zero, due to the serdelay resulting from a finite peak rate.

upstream, single flow

(a) Counterstrike traffic (b) Anarchy online traffic

Figure 2: Upstream token bucket filter for a single stream

downstream, single flow

it
AR
e

100 “““‘ “‘ ““
N “"?\‘%&\“‘&‘3‘\%“‘\
i —

(a) Counterstrike traffic (b) Anarchy online traffic

Figure 3: Downstream token bucket filter for a single stream

Downstream traffic: Figures 3(a) and 3(b) show the downstream components afalyini-
dividual client-server flows in CS and AO, respectively. Térgest downstream IP packet size
in the CS flow is1428 bytes,1500 bytes in the AO flow. For CS, the ridge in the right rear of
the plots rolls off at bucket depth greater than size of thgelst packet, indicating bursts where
two or more packets arrive in rapid succession. For AO, thumson is less clear. The role-off
occurs for packet sizes less than the MTU size, and incrgdbmtoken rate case leads to a
visible reduction in queuing delay even for bigger tokenkatisizes. This is due to the use of
TCP; packets are not the unit of event generation but paeketsent in pairs when more data
must be sent than a single TCP segment can hold. The delayl ldo@s therefore correspond
to the length of actual bursts, as soon as the accumulatedgae consumed.

In both downstream cases, delays converge more slowly aéh@nigken rate axis than in the
upstream case: a relatively higher rate is required fordkert bucket to take effect, indicating
higher overall burstiness with respect to the upstreanficraHowever, the effect is much
less pronounced for AO than for CS. We can understand thiswieeconsider that each CS
client requires updated information about many other tdiett any given time, while an AO
client receives only updates for the player’'s immediateaurdings as well as effects of other
players’ actions.

4.2 Correlation and Multiplexing Gain

Traffic specification in many distributed applications makee starting assumption that users’
interactions are mutually independent and can be modelddlov processes. In the case of
games, however, it is natural to assume that game events@mgly correlated. Both FPSs and
RPGs lead to co-location of players in the virtual world, actions are frequently determined
by knee-jerk reactions. However, these reaction are sloonipared client-server delay and
developer can compensate for a certain amount of delaje must therefore investigate the
correlation to determine whether flow aggregation woulddygerelevant multiplexing gain at a
temporal resolution that is implicitly defined by the maximiatency that the games developer
considers acceptable. To do this we consider a limited petaktinat we call theninimal service
rate p that upholds]. A limited p has two effects. First, the bucket depth and token rate alone
are no longer sufficient to stay within the delay boygnthey have to be defined in such a way
that packets drained from the buffer are processed earlyggn&econd, if the expressive power
for a resource reservation system is limited, as in the ceBdf&erv’s assured forwarding per
hop behavior, the peak rate must be reserved to meet the loi@leyl. The ratiop/)\ gives a
measure of overall burstiness. For one representative §amdor both CS and AO, figure 4
plots this ratio over different values gf Obviously,(must be very large (in the order dfto
several seconds) to achieve a peak rate close to the aveategeate for individual flows.

We are therefore interested in determining whether themahservice rate for a flow ag-
gregate is closer to the average rate of the aggregate. Wesdoytlooking at the multiplexing
gain. Consider a sef of concurrent flows. Comparing(S), the minimal service rate for the
aggregate, with the sum of the minimal service ratg$ for each individual flowi € S gives
us the multiplexing gaimg, 0 < mg < 1: mg = 1 — %

One would expect that a set of flows with mutually indepené&@mson packet arrival distri-
butions would tend to yield high multiplexing gain. Conways highly correlated flows would
offer little multiplexing gain, because their peaks arelykto coincide. As an example, we look
at the 10 largest flows that overlap for at least 5 minutes th tiee CS and AO traces, and con-
sider a queuing delay bourdd= 25ms. We consider all combinations of these flows. Figure 5
shows the multiplexing gain as several flows are aggreg&teth graphs show that significant
multiplexing gain is possible, suggesting that peaks inviddal flows are not strictly corre-
lated in the aggregate. It does not seem possible to improwastream aggregation beyond
50% in either game, while aggregation of upstream flows gialtdl important gain. Especially
the upstream flows in AO are nearly perfectly uncorrelatetiiattime-scale.

5 Discussion

For the upstream traffic in games, we would have expectedfisigmt burstiness at timescales
of one second or more, due to their interactive nature. Ismate implies that game design
prevents a considerable increase in upstream traffic inyhagive situations. At sub-second
resolution, their burstiness results primarily from pddaion of the data. Also any correlation
between bursts in several streams is so low that it seemsaodmelom occurrence. We attribute
this to the observation that expected correlation is hidigause the variations in end-to-end
delays are on the same timescale as human reaction timey wdries as well. Thus, correlation
between the upstream components of concurrent flows isisuitig limited to allow significant
statistical multiplexing gains.

Downstream traffic, on the other hand, was more bursty thaantieipated. Although the

1000

10000

1000 F

delay bound vs. overprovisioning, single flow

100 | \ 4 g
3

\ z

el

c

@
9 =)
e
&
&

~— T—
L L B S T—— e 1 L L L L T
0.01 01 1 10 100 1000 0.001 0.01 01 1 10 100

delay bound (seconds) delay bound (seconds)

1 -
0.001 1000

(a) CounterStrike (b) Anarchy online

Figure 4: Burstiness of a representative stream

T
upstrea upstream —+— _
downstream downstream——<

g g
o
@

X
g g

°

3

T T

mean multiplexin
o °
w o S
g 8 &
| \ ‘ ‘
\
\
\
\
\
\
\
\
\
\
\
mean multipl
o o
& &

L L L L L L L L
2 3 4 5 6 7 2 3 4 5 6 7 8 9 10
number of flows number of flows

(a) CounterStrike (b) Anarchy Online

Figure 5: Multiplexing gain vs. number of concurrent flows

packet rate of this traffic is fairly constant, the packeesizan vary betweest — 1500 bytes.
The downstream traffic is similar between flows, presumablyalnse the game state updates
sent out by the server are largely the same for all clientssTtine downstream components of
concurrent flows are less suitable for aggregation.

If a games provider intends to exploit multiplexing to peitgames traffic from cross-
traffic, a trace of the game traffic can provide the relevakgnducket parameters for a DiffServ
service specification. For upstream traffic, aggregatiorksemell, so reservations can be made
for the aggregate flow. For downstream, a game provider oestiablish proxy servers at the
egress of a reservation. It would then become possible taruggcast between the server
and the proxies, where traffic could be converted to unidasamsis for the individual client.
However, the alternative would be not to perform upstreagregation at all because the traffic
is reasonably smooth, and only use reservation for dowarstiteaffic. In the latter case, no
proxy would be required, only DiffServ marking or MPLS laipej.

6 Conclusion and Future Work

We have presented a method for characterizing burstinessanelation of concurrent game
flows at different time resolutions. We applied this methmthe FPS game CounterStrike and
the MMORPG Anarchy Online, which use the UDP and TCP promaeispectively. The ap-

proach, can determine the multiplexing gain and minimaliserrate for aggregate game flows
at these resolutions. We find that upstream flows are only lyeakrelated, allowing resource
reservation with little overhead. Downstream flows are lyigbrrelated. Through aggregation,
a considerable multiplexing gain is still achievable, whinakes it possible to reservation a
higher average rate in favor of a low peak reservation coatptr the unaggregated streams.

In future work, we will takes closer look at the issues thatiti very thin TCP streams.
For the game flows that we observed, neither congestionalamtr fast retransmission work
because of it, and remedies must be investigated. We willlatsk at kernel enhancements and
off-loading engines that make fast packet aggregation #edtiig on servers and proxy servers
possible.

Acknowledgments

We are grateful to Wu-chang Feng and his colleagues at Rdrsate University for packet
traces from their highly popular CounterStrike server. Wauld also like to thank Funcom
for the traces of their commercial MMORPG, Anarchy Onlineatcordance with the Condor
license agreement, we acknowledge the Condor clustdriat ui 0. no for performing some
of our simulations.

References

M. Allalouf and Y. Shavitt. Achieving bursty traffic guaram®s by integrating traffic engineering and buffer man-
agement tools. Idoint Conference of the |EEE Computer and Communications Societies (INFOCOM), Student
Workshop, Miami, FL, USA, 2005.

H. Balakrishnan, H. Rahul, and S. Seshan. An integratedeasiiogh management architecture for Internet hosts. In
Proceedings of the ACM International Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (S GCOMM), pages 175-187, September 1999.

P. Bettner and M. Terrano. 1500 archers on a 28.8: Networgraroming in Age of Empires and beyond. In
Game Devel opers Conference, San Jose, CA, USA, 2001.

M. S. Borella. Source models of network game traffitsevier Computer Communications, 23(4):403-410, Feb.
2000.

M. Busse, B. Lamparter, M. Mauve, and W. Effelsberg. LightheQoS-support for networked mobile gaming. In
Proceedings of the Workshop on Network and System Support for Games (NETGAMES), pages 85-92, Portland,
OR, USA, 2004.

C. Chambers, Wu-chang Feng, S. Sahu, and D. Saha. Measu+eased characterization of a collection of on-
line games. InProceedings of the USENIX Internet Measurement Conference (IMC), pages 1-14, Berkeley,
CA, USA, 2005.

L. Gautier and C. Diot. Design and evaluation of MiMaze, atiqlayer game on the Internet. RProc. of IEEE
Multimedia Systems Conference, June 1998.

Wu-chang Feng, F. Chang, Wu-chi Feng, and J. Walpole. Romiig) on-line games: a traffic analysis of a busy
Counter-strike server. IRroceedings of the 2nd ACM S GCOMM Workshop on Internet measurement, pages
151-156, Marseille, France, 2002.

L. Pantel and L. Wolf. On the impact of delay on real-time nipldtyer games. IfProceedings of the | nternational
Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV), Miami Beach,
FL, USA, 2002.

N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. THedfof latency on user performance in Warcraft
lll. In Proceedings of the Workshop on Network and System Support for Games (NETGAMES), pages 3-14,

Redwood City, CA, USA, 2003.

Z. Wang. Internet QoS Architectures and Mechanisms for Quality of Service. Morgan Kaufmann Publishers Inc,
San Francisco, CA, USA, 2001. ISBN 1558606084.

L. Wolf, editor. Proceedings of the Workshop on Network and System Support for Games (NETGAMES), Braun-
schweig, Germany, Apr. 2002. ACM Press.

