
Offloading Multimedia Proxies using Network Processors

Øyvind Hvamstad1, Carsten Griwodz2,3 and Pål Halvorsen2,3

1FAST ASA, Norway 2IFI, University of Oslo, Norway 3Simula Research Lab., Norway
e-mail: hvaoyv@fast.no, {griff, paalh}@ifi.uio.no

Abstract
In this paper, we present a system that aims at offloading multimedia proxies using network processing technology
for applications like media-on-demand and distributed on-line games. In particular, we have designed, imple-
mented and evaluated a proof-of-concept prototype on the Intel IXP1200 network processor. Our results show that
the prototype succeeds in offloading the host machine as no data packets have to be processed by the host CPU,
and the prototype is able to perform application layer forwarding using only a fraction of the cycles compared to a
traditional architecture, where all packets are processed by the host CPU.

Keywords
Proxy server, IXP network processors, workload offloading

1 Introduction
The increasing availability of low-cost bandwidth for regular users and a large improvement
in machine hardware enable new applications, like media-on-demand and distributed on-line
games. These applications have different requirements than traditional applications, in partic-
ular the timely delivery of data. In such a multimedia scenario, like in many others, a proxy
cache aims at reducing the latency, network load and server load, at the prive of an increased
latency for access to uncached content. Such a proxy cache may serve many concurrent clients,
and in addition to traditional proxy cache operations like serving clients from the proxy cache,
forwarding data, making a cache copy of a data element, etc., these intermediate nodes may ex-
perience high processing loads due to transcoding, packet filtering, stream aggregation, protocol
translation or other application-specific processing.

In this paper, we propose to offload a multimedia proxy cache by using network processing
technology and performing both networking and application level operations on-board. As a
first step, we have designed a proxy cache for the Intel Internet Exchange Processors (IXP)
network processor (Intel Corporation, 2001). Our proxy should be able to perform fast low-
level data forwarding for urgent low-latency packets, efficient caching operations to reduce
resource consumption and application layer multicast to enable multiple receivers of a packet.
In our proof-of-concept prototype, we have implemented and evaluated a small subset of the
required operations, i.e., a simple RTSP control/signaling server and an RTP forwarding unit.
Furthermore, we show that the prototype successfully offloads the proxy host in the data-plane,
i.e., no data packets are processed by the host computer during a data forwarding operation,

leaving it free to perform other CPU intensive tasks. Our experiments show that the prototype
is able to do application layer forwarding using only a small fraction of the cycles compared to
a traditional architecture, where all packets are processed by the host CPU.

The rest of this paper is organized as follows: section 2 and 3 give some background on
related work and the IXP network processor, respectively. Section 4 describes our ideas and
the design of the network processor-based proxy architecture. In section 5, we present the
prototype implementation, and a performance evaluation is given in section 6. Finally, we give
a conclusion and directions for future work in section 7.

2 Related Work
On-board network processing units have existed for some time with the initial goal of moving
the networking operations that account for the most CPU time from software to hardware. As
the systems have improved, the fourth generation network processors aim to improve perfor-
mance by integrating specialized packet processing hardware, and reducing costs by making
the specialized hardware programmable (Comer, 2004). However, most existing work on net-
work processors concentrates on more traditional networking operations like routing (Kalin
and Peterson, 2001; Spalink et al., 2001) and active networking (Kind et al., 2003), while only
a few approaches have been proposed in the area of multimedia applications. One example is
the booster boxes from IBM (Bauer et al., 2002) which try to give network support to massive
multiplayer on-line games by combining high-level game specific logic and low-level network
awareness in a single network-based computation platform. Another example is a video qual-
ity adjustment mechanism (Yamada et al., 2002) that is implemented on a network processor,
reducing the transmitted video quality for less capable links and client receivers.

3 IXP1200 Overview
The Intel IXP network processors (Intel Corporation, 2001; Comer, 2004) are examples of
fourth generation network processors. Figure 1 shows the IXP1200 network processor that for
example is integrated on the enp2505 card (Radisys Corporation, 2002) that we have used in our
system. The basic features of this network processor include four 100 Mbps Ethernet interfaces,
a general purpose 232 MHz StrongARM processor, six 232 MHz special-purpose processors
called microengines for packet processing, and three main types of memory that should be used
for different operations according to access time and bus bandwidth, i.e., 256 MB SDRAM for
packet store, 8 MB SRAM for tables and stack manipulation, and 8 MB scratch (on-chip, not
shown in figure 1) for synchronization and inter-process communication. The StrongARM is
running a conventional Linux operating system and can be used as a traditional general purpose
CPU. The microengines are compact RISC processors each running four concurrent threads
where each has an own set of registers to make switches efficient.

4 Design
Multimedia applications are usually characterized by high bandwidth requirements and/or tim-
ing constraints. In our previous and current work on media-on-demand and interactive game
systems, we have seen that the workload on intermediate nodes might be very resource consum-
ing and that the processing results in increased latencies. On the other hand, Mackenzie et al.
(2003) tested and analyzed the enp2505 and found many unused resources on the card. Similar

18 Hardware Reference Manual

Intel® IXP1200 Network Processor Family
Technical Introduction

2.2 IXP1200 Functional Units

Figure 2-1 is a simplified block diagram of the IXP1200 which shows the six main functional units.
These functional units are described briefly below, and are described in more detail in the
following sections. The internal busses are shown as a “cloud” here for the sake of simplicity. The
many internal busses that connect the various functional units are described in more detail in
Section 2.7, “Internal Architecture.

• StrongARM* core - A full 32-bit RISC processor core with integrated caches that can be used
for management functions, running routing protocols, exception handling, and other tasks.

• Six Microengines - These compact, efficient RISC engines can be used for any function
requiring high-speed packet inspection, data manipulation, and data transfer. These are fully
programmable 32-bit engines with a 5-stage execution pipeline and a large (256) register set.
Hardware multithreading, and context-sensitive register windows enable very fast context
switching.

• SDRAM Unit - A shared, intelligent memory interface that can be accessed by the
StrongARM* core, the Microengines, and devices on the PCI bus. A glue-less interface to

Figure 2-1. IXP1200 Block Diagram

A8488-01

64

i.e. MAC
Control

116 MHz

Multiple,
independent,
high speed

internal
busses

(200 MHz)

32

64

116 MHz

10/100/1000 MB
Ethernet MACS

ATM, T1/E1
etc.

Other
IXP1200 Processor

IX Bus 104 MHz

32

Host CPU
(optional)

PCI MAC Device
(optional)

PCI Bus 66 MHz

SDRAM
Unit

StrongARM* Core
232 MHz

PCI Bus Unit

SRAM
Unit

Intel® IXP1200 Processor

SRAM
 up to 8 MB

FlashROM
up to 8 MB

Memory
Mapped I/O

Devices

SDRAM
up to 256 MB

* Other names and brands may be claimed as the property of others.

IX Bus
InterfaceUnit

232 MHz

Microengine 6
Microengine 5

Microengine 4
Microengine 3

Microengine 2
Microengine 1

Figure 1: Simplified block diagram of the IXP1200 (Intel Corporation, 2001)

results have been found by Spalink et al. (2000) using the IXP1200 evaluation board (having
eight 100 Mbps Ethernet interfaces). Their results show that forwarding of IP packets can be
done using only 65% of the available capacity, and the performance could be further improved
by increased memory bandwidth. Thus, these experiments indicate that movement of other
operations like application specific processing to the network processor should be possible.

4.1 Multimedia Proxy Caches

In a traditional architecture (see figure 2A), all packets arriving at a proxy cache are processed
on the host machine. This results in considerable resource consumption and latency due to bus
transfers, interrupts, memory copying, checksumming and possibly application level processing
operations. To increase the efficiency of intermediate nodes, such as proxy cache servers in our
multimedia scenario, we design a system based on the observations above, i.e., programmable
network processor cards are capable of low-latency forwarding and some application-specific
processing while reducing the resource consumption of the host machine. Our proposed compo-
nent (see figure 2B) therefore makes use of the existing on-board memory, the low-level packet
processing microengines and the conventional StrongARM CPU to establish a faster and less
resource-consuming data path in our proxy cache design.

Some of the basic features of our proxy include support for packet forwarding, data caching
and overlay multicast. Each of these are briefly described in the next subsections, before we
present the implementation and the results of our initial prototype.

4.2 Data Forwarding

If a data packet is passed through an unmodified proxy and forwarded directly to clients without
any caching or data manipulating operations, the packet is still sent from the network card to the
host and back to the network card (see thin arrows in figure 2A). Such an operation is resource
demanding and introduces considerable latencies. This can be devastating in applications with
low delay requirements like interactive on-line games or other virtual environments.

�����������

��		
��������
����
	

������

����
	

�����������

��		
��������
����
	

������

����
	

�
������

�
��
������

IXP1200

(A) (B)

caching

forwarding

forwarding by application

Figure 2: Traditional (A) and network processor based (B) data paths

Using a network processor, this operation can be performed much more efficiently and of-
fload the host CPU at the same time. The network processor card’s microengines are special-
ized, low-level units for packet processing and can efficiently identify and classify the packets.
To exploit this, we use a specifically-created fast path forwarding component running on the
microengines that determines whether a packet can be forwarded directly and if possible, sends
it directly to the outgoing network interface (see thin arrows in figure 2B).

4.3 Caching

Obviously, caching a data stream to serve future requests with less access latency, server load
and backbone load must involve the host machine. In an unmodified machine, each received
packet is transfered to the host individually in a data transfer from network card to disk including
several copy operations (see thick arrows in figure 2A) in addition to the processing overhead
mentioned above. These data copy and processing operations are expensive in terms of bus,
disk and memory bandwidth.

If the data can be stored directly on disk (without modification by an application), a first
optimization can be to make a fast in-kernel data path on the host. However, an optimal zero-
copy approach can not be used for two reasons. One is that packets are smaller than blocks
that can be written to disk efficiently, and that they must therefore be assembled into a larger
block before the disk write operation, which means that this approach generates one interrupt
per arriving packet and one additional copy operation. The other is that packets can be lost or
arrive out-of-order, which leads to fragmented writing to disk unless the packets are reordered
in memory first.

Our proposed component (see thick arrows in figure 2B) aims at offloading the packet pro-
cessing and supporting an optimized data movement operation by using the on-board hardware.
Packet processing is performed on-board, and to reduce the number of interrupts and to collect
data to be stored as larger items on disk, we queue several packets on the card. When suffi-
cient data is received to make an efficient disk operation, we use one interrupt to inform the
host that data has arrived. As packet processing has already been performed we can also use
scatter-gather DMA to transfer all the fragmented memory objects in one bus operation into a
larger contiguous memory area, and finally, these data can be sent directly, without further copy
operations, to the storage system for large efficient disk write operations.

4.4 Overlay Multicast

In several applications, there might be several receivers of a data element, e.g., in interactive
on-line games where all players want the same updated status information. However, due to
the lack of IP multicast support in most of the Internet today, there exist many approaches to
application level / overlay multicast. To minimize overhead and latency, we wish to perform
this operation on the network processor by having a component that can send a data element to
several receivers.

4.5 Integration

Integrating all this functionality into one system may raise several challenges, but one of the
most important in order to make the operations on the card efficient is to support efficient
sharing of data where packets are to be delivered to several destinations concurrently, e.g., both
forwarding to several clients and caching to disk. These operations can be performed in several
ways. A first step is to do this sequentially by reusing the same data element, but this introduces
large delays for the destinations that are last in the sequence. An alternative is to make copies
of the packet and to send each copy to a separate destination, but this results in overhead for the
copy operation, which is also expensive. Instead, we wish to combine these, use one copy of
the data and send to several destinations in parallel. The problem of having a sub-component
releasing the memory holding the packet is solved by using a reference counter, and releasing
memory only when the packet has been forwarded to all destinations.

5 Initial Implementation
As a proof of concept, we have implemented RTSP signaling and RTP forwarding as depicted
in figure 3. We have used the ingress and egress active computing elements (ACEs) in the
SDK from Intel to receive and send packets on the microengines, respectively. After arriving
at the ingressACE, the packets are classified on the microengines using our classification and
forwarding ACE. If the packet is to be forwarded, it is simply passed on to the egressACE
with the necessary header modifications and from there, sent out onto the network. If a packet
is classified as an RTSP packet, an RTP packet that should be cached (only interface imple-
mented) or other packets requiring more processing, the packet is sent to the StrongARM. On
the StrongARM, the packet is processed using another existing ACE implementing the protocol
stack (stackACE), and finally, if it is an RTSP packet, it is processed in the RTSP server process
running in the Linux environment.

To test the RTSP control functionality and RTP forwarding, we ran a Darwin streaming
server from Apple and used a simple client to request and retrieve a small QuickTime movie
from the server. The server sent the movie using 1024 bytes RTP packets, and in between, we
set our proxy prototype up to see how the offloading performed.

6 Results and Evaluation
Our experiments, using the Darwin server to stream a QuickTime movie and running the RTSP
proxy server and the packet classifier/RTP forwarder on the IXP, show that the prototype can
successfully offload both control and data plane of a proxy cache to the network processor in
a forwarding scenario. The RTSP server runs on the on-board StrongARM which should give
faster responses to requests in addition to offloading the host machine. Additionally and more

IXP1200

��������	

��
�����
�
���	 �����
�
�
���
��
��
��
�
���	

microengine 1

��
�����
�
���	

microengine 2

��
������
���	 �����
�
�
���
��
��
���
���	 ��
������
���	

������
���

strongARM

�
����
����
��

 !��
����
��

Figure 3: ACE layout

importantly, as the number of data packets outnumbers the number of control packets by an
order of magnitude, it also showed that it is possible to build a fast data path using microengines
only. In the forwarding scenario, we offloaded all expensive operations from the host machine,
and it greatly reduced the total time (intermediate node latency) to forward a packet.

To measure the number of cycles to process and forward an RTP packet, we used the on-
board cycle count register. We inserted cycle counter instructions at several places, i.e., looking
at figure 3 we inserted the probes before the ingressACE, between the ingressACE and our
classifier/forwarder ACE, after the classifier/forwarder ACE and after enqueuing the packet for
the egressACE1. Our processing overhead and forwarding latency results are given in table 1 for
each component, and a plot of the experienced cycle consumption of the approximately 3200
first packets of the stream is depicted in figure 4.

Prototype component cycles microseconds
Ingress processing 493 2.13
Classification, forwarding and header modification 644 2.78
Enqueuing for egress 194 0.83

Table 1: Average overhead in the prototype

As seen in the plot, most packets are processed in about 1325 cycles, but to explain the vari-
ation, we performed some more experiments. In these tests, we tested the forwarding operation
as an atomic operation, i.e., no other thread ran on the processor, by blocking on every memory
access on the non-preemptive microengine scheduler, and we experimented with the different
memory queues as this is a resource shared by all microengines. Our results show that only the
maximum r in the original measurement was higher than the atomic execution, and the variation
is slightly reduced when using prioritized memory accesses. Our best explanation for the vari-
ance is therefore a difference in memory latencies and scheduling of the other threads running
on the same microengine. However, there still is some variance that cannot be explained by our
test results, and more experiments should be performed.

1The processing performed by the egress component is not measured, because this is running on a separate
microengine. However, more detailed and comprehensive experiments are scheduled.

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 0 500 1000 1500 2000 2500 3000

m
ic

ro
en

gi
ne

 c
yc

le
s

packets

Figure 4: Experienced packet cycle count consumption

To see the real gain compared to traditional packet processing, we have compared our ex-
periments with the processing and forwarding experiments on a 2.0.34 Linux kernel described
in (Guo and Zheng, 2000)2. As we have not measured the sending operation (egressACE), we
look at the reception, classification and forwarding operation which used about 1150 cycles (or
5 microseconds) on our network processor. Similar operations in the Linux stack, i.e., kernel
communication system processing only, without data movement to the application and applica-
tion specific operations, consume 12250 cycles. Additionally, more recent results also show a
considerable challenge in dealing with forwarding latency on existing systems today. In (Liu
et al., 2005), the average processing delay of overlay nodes in a P2P application was found to be
approximately 30 milliseconds. Compared with the two to ten milliseconds physical network
latency between the hosts in that test, this contributes significantly to the overall end-to-end
delay. Thus, we have a considerable reduction in both processing latency and resource usage
compared to systems involving the host in the packet forwarding operation.

Finally, as in (Spalink et al., 2000; Mackenzie et al., 2003), our tests show that we should
have resources available to perform even more processing on-board. The four 100 Mbps inter-
faces on the enp2505 can sustain a maximum data-rate of 400 Mbps. Furthermore, the maxi-
mum throughput of our forwarder using 7.9 microseconds per 1024 byte packet (assuming equal
ingress and egress processing overhead) is 1036 Mbps, i.e., resources for other processing are
available as we have so far neither employed parallelism, nor utilized more than 2 microengines
– one for ingress, classification and forwarding and one for egress.

7 Conclusion and Future Work
In this paper, we have investigated a design for a multimedia proxy cache offloader using the
Intel IXP1200 network processor. Our prototype successfully offloads the host CPU with RTSP
control functionality and RTP forwarding, i.e., performs operations in both the control and data
plane. Our results show that a lot of resources can be freed on the host and at the same time
make the system as a whole more efficient by enabling a faster, and less resource-demanding
data path. Specifically, we found that a data item can be forwarded in a fraction of the time

2We have an ongoing study of the performance profile of the network stack and the forwarding operation in
Linux and NetBSD, but it is not finished.

compared to traditional systems moving all data through the host CPU.
With respect to ongoing work, we are currently working on adding support for the designed

caching operation3 and are going to perform more extensive tests and evaluations. With respect
to future work, we are looking into the possibility to test the system on much faster versions
of the IXP processors, and there are many possible and interesting areas in which to extend
the current prototype. In addition to adding the caching and multicast services, this includes
efficient communication between the NIC and the host over the PCI bus and looking at the
design in other distribution architectures, such as cooperating proxies, multi-level proxies and
P2P architectures.

References
D. Bauer, S. Rooney, and P. Scotton. Network infrastructure for massively distributed games. In Proceedings of

the Workshop on Network and System Support for Games (NetGames), pages 36–43, Braunschweig, Germany,
Apr. 2002.

D. E. Comer. Network Systems Design using Network Processors - Intel IXP version. Prentice-Hall, 2004.

C. Guo and S. Zheng. Analysis and evaluation of the tcp/ip protocol stack of linux. In Proceedings of the IEEE
International Conference on Communication Technology (WCC-ICCT), pages 444–453, Beijing, China, Aug.
2000.

S. Kalin and L. Peterson. Vera: An extensible router architechture. In Proceedings of the IEEE International
Conference on Open Architectures and Network Programming (OPENARCH), pages 3–14, Anchorage, AK,
USA, Apr. 2001.

A. Kind, R. Pletka, and M. Waldvogel. The role of network processors in active networks. In Proceedings of the
IFIP International Workshop on Active Networks (IWAN), pages 18–29, Kyoto, Japan, Dec. 2003.

L. S. Liu, R. Hampole, B. Seo, and R. Zimmermann. Active: A low latency p2p live streaming architecture. In
Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking (MMCN), San Jose, CA,
USA, Jan. 2005.

K. Mackenzie, W. Shi, A. McDonald, and I. Ganev. An intel ixp1200-based network interface. In Proceedings of
the Workshop on Novel Uses of System Area Networks (SAN-2), Anaheim, CA, USA, Feb. 2003.

Intel Corporation. Intel ixp1200 network processor family – hardware reference manual, Aug. 2001. URL
http://www.intel.com/design/network/manuals/278303.htm.

Radisys Corporation. ENP-2505/2506 data sheet, Jan. 2002. URL http://www.radisys.com/files/-
1160 04 1202.2.pdf.

T. Spalink, S. Kalin, and L. Peterson. Evaluating network processors in ip forwarding. Technical Re-
port TR-626-00, Computer Science Department, Princeton University, NJ, USA, Nov. 2000. URL
ftp://ftp.cs.princeton.edu/techreports/2000/626.pdf.

T. Spalink, S. Kalin, L. Peterson, and Y. Gottlieb. Building a robust software-based router using network proces-
sors. In Proceedings of the ACM Symposium of Operating Systems Principles (SOSP), pages 216–229, Banff,
Alberta, Canada, Oct. 2001.

T. Yamada, N. Wakamiya, M. Murata, and H. Miyahara. Implementation and evaluation of video-quality adjust-
ment for heterogeneous video multicast. In Proceedings of the Asia-Pacific Conference on Communications,
pages 454–457, Bandung, Indonesia, Sept. 2002.

3We also have current activities using the network processor in similar projects, like a server cluster and packet
priority management.

