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Distributed multimedia streaming systems are increasingly popular due to technologi-

cal advances, and numerous streaming services are available today. On servers or proxy
caches, there is a huge scaling challenge in supporting thousands of concurrent users
that request delivery of high-rate, time-dependent data like audio and video, because

this requires transfers of large amounts of data through several sub-systems within a

streaming node. Unnecessary copy operations in the data path can therefore contribute

significantly to the resource consumption of streaming operations. Despite previous re-
search, off-the-shelf operating systems have only limited support for data paths that have

been optimized for streaming. Additionally, system call overhead has grown with newer
operating systems editions, adding to the cost of data movement. Frequently, it is argued

that these issues can be ignored because of the continuing growth of CPU speeds. How-

ever, such an argument fails to take problems of modern streaming systems into account.

The dissipation of heat generated by disks and high-end CPUs is a major problem of

data centers, which would be alleviated if less power-hungry CPUs could be used. The

power budget of mobile devices, which are increasingly used for streaming as well, is
tight, and reduced power consumption an important issue. In this paper, we prove that
these operations consume a large amount of resources, and we therefore revisit the data

movement problem and provide a comprehensive evaluation of possible streaming data
I/O paths in the Linux 2.6 kernel. We have implemented and evaluated several enhanced
mechanisms and show how to provide support for more efficient memory usage and re-

duction of user/kernel space switches for content download and streaming applications.

In particular, we are able to reduce the CPU usage by approximately 27% compared to

the best approach without kernel modifications, by removing copy operations and system

calls for a streaming scenario in which RTP headers must be added to stored data for

sequence numbers and timing.

Keywords: data path enhancements, streaming, content download

1



March 5, 2007 13:4 WSPC/Guidelines ijseke

2 P̊al Halvorsen, Tom Anders Dalseng and Carsten Griwodz

1. Introduction

Improvements in access network connectivity, such as digital subscriber lines, ca-

ble modems and recently passive optical networks, WLAN, as well as UMTS, and

large improvements in machine hardware make distributed multimedia streaming

applications increasingly popular. Numerous streaming services are available today,

e.g., movie-on-demand (Broadpark, SF-anytime), news-on-demand (CNN), media

content download (iTunes), online radio (BBC), Internet telephony (Skype).

The receivers of such media streams are usually well-equipped to handle a small

number of streams. Senders, on the other hand, face scaling challenges. A streaming

media server that is part of a large-scale on-demand streaming application will have

to scale to thousands of concurrent users that request timely delivery of high-rate

media streams. In addition to this, a server will also perform additional tasks such as

stream management, encryption, media transcoding, adaptation and compression.

And in a server cluster setup where distribution of this task to several machines

appear easier, the service provider face increasing problems of power consumption

and heat dissipation. Such a setup will therefore scale better if the CPU can perform

the same operations using less CPU power. In alternative, distributed approaches

such as peer-to-peer systems, resource consumption should be kept low to have less

impact on other applications. Peer-to-peer participants may not have the latest

hardware, and their users may run other applications in the foreground that should

not be disturbed. Finally, it is becoming increasingly common to stream stored

content from mobile devices. These have a very limited lifetime of the batteries.

Reducing the resource consumption in terms of CPU cycles and enabling the use of

a smaller CPU increase the time such a device can operate.

In these and many other media streaming scenarios that do not require data

touching operations, the most expensive operation performed by the sender is mov-

ing data from disk to network including the encapsulation of the data in application-

and network packet headers. A proxy cache may additionally forward data from

the origin server, make a cached copy of a data element, perform transcoding,

etc. Thus, senders that move large amounts of data through several sub-systems

within the node may experience high loads as most of the performed operations are

both resource- and time-consuming. Especially, memory copying and address space

switches consume a lot of resources 21,10,11.

In the last 15 years, the area of data transfer overhead has been a major thread in

operating system research, and several zero-copy 24 data paths have been proposed

to optimize resource-hungry data movement operation. Reducing the number of

consumed CPU cycles per operation may have a large impact on system performance

in several contexts, making this relevant again today. Reducing this cost is highly

desirable to make resources available for other tasks or for enabling the use of

smaller, less power consuming processors for the same tasks.

Therefore, in this paper, we have made a Linux 2.6 case study to determine

whether more recent hardware and commodity operating systems like Linux have
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been able to overcome the problems and how close to more optimized data paths the

existing solutions are. The reason for this is that a lot of work has been performed

in the area of reducing data movement overhead, and many mechanisms have been

proposed using virtual memory remapping and shared memory as basic techniques.

Off-the-shelf operating systems today frequently include data path optimizations

for common applications, such as web server functions. They do not, however, add

explicit support for media streaming where we often interleave user space infor-

mation like timing constraints (e.g., using the real-time protocol (RTP) header),

and consequently, a lot of streaming service providers make their own implementa-

tions. We therefore investigate to which extent the generic functions are sufficient

and whether dedicated support for streaming applications can still considerably

improve performance. Thus, we revisit the data movement problem and provide a

comprehensive evaluation of different mechanisms using different data paths in the

Linux 2.6 kernel.

Our investigation and analysis of the different components in the Linux kernel

show that data movement operation is still the main consumer of CPU cycles.

We have therefore performed several experiments to see the real performance of

retrieving data from disk and sending the data to a remote client, both in a content

download scenario and in a streaming scenario using application level RTP packets.

Additionally, we have implemented and evaluated several enhanced mechanisms,

and we show that they still improve the performance of streaming operations by

providing means for more efficient memory usage and reduction of user/kernel space

switches. In particular, we are able to reduce the CPU usage by approximately 27%

compared to the best existing case by removing copy operations and system calls

for a given stream.

The rest of this paper is organized as follows: In section 2, we briefly look at

the disk-network data path and show that data movement operations are still the

main CPU cycle consumer. Section 3 gives a small overview of examples of existing

mechanisms with respect to the main bottleneck, i.e., data copying and context

switches. In section 4, we present the evaluation of existing mechanisms in the

Linux 2.6 kernel, and section 5 describes and evaluates some new enhanced system

calls improving the disk-network data path for streaming applications. Section 6

gives a discussion, and finally, in section 7, we conclude the paper.

2. Data Path

A typical layered architecture of the current operating systems’ I/O-pipeline for

retrieving data from disk and sending it out on a network is depicted in figure 1.

The file system is responsible for storage and retrieval of digital data, e.g., video

and audio, and provides services for executing requests from the application that

retrieves data from the storage I/O-system. A streaming or download application

handles requests from clients, fetches data from the file system and passes data to

the communication system. The communication system provides services like error
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Fig. 1. Critical data path in a server.

control, flow control, etc. and manages data transfers between the end-systems over

the network. Furthermore, as we can see from figure 1, each of these subsystems

manage their own buffers, i.e., data is moved between the subsystems usually using

data copy operations where data is physically moved through the CPU from one

memory location to another.

2.1. Profiling

To see which system calls used which kernel functions, and to see the respective

resource consumption, we made a test using OProfile
1, a system-wide performance

profiler for Linux systems, on a machine with an Intel 845 chipset, 1.70 GHz Intel

Pentium4 CPU, 400 MHz front side bus and 1 GB PC133 SDRAM. We read stored

data and transmitted the data using UDP, and the results are shown in table 1.

For the read and send combination and the mmap and send combination, we see

that copy operations consume almost 40 % of the CPU resources, and we also see

that switching between kernel and user space is expensive. In the case of mmap, we

also see a large overhead managing page faults. sendfile, on the other hand, works

without data copying (and it is therefore the best alternative for content download

as shown in section 4.3), but we still see some overhead in moving data for the

packet headers. Thus, the layering of components in the operating system structure

(see figure 1) is the reason for two large overheads (copying and switching), and we

therefore look closer at these operations in the next section.

2.2. Copying and Switching Performance

As copying and switching performance are the main bottlenecks in download and

streaming servers, we performed several measurements to see how much each of these

operations costs on our test machine (see above). In figure 2, an overview of the

chipset on our test machine is shown (similar to many other Intel chipsets). Transfers
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Table 1. Profile of the five most expensive operations for different system calls.

system calls samples CPU usage in % image name symbol name

read and send 1281 19.4150 vmlinux copy from user ll

1217 18.4450 vmlinux copy to user ll

537 8.1388 reiserfs.ko search by key

230 3.4859 vmlinux sysenter past esp

210 3.1828 vmlinux ip push pending frames

mmap and send 2595 38.7082 vmlinux copy from user ll

423 6.3097 reiserfs.ko search by key

377 5.6235 vmlinux do page fault

175 2.6104 vmlinux ip append data

172 2.5656 vmlinux ide outb

...

136 2.0286 vmlinux sysenter past esp

sendfile 412 13.5482 vmlinux skb copy bits
178 5.8533 reiserfs.ko search by key

170 5.5903 vmlinux ip append data

165 5.4258 vmlinux ip push pending frames

124 4.0776 vmlinux kmalloc

between device and memory are typically performed using DMA transfers that

move data over the PCI bus, the I/O controller hub, the hub interface, the memory

controller hub and the RAM interfaces. A memory copy operation is performed

moving data from RAM over the RAM interfaces, the memory controller hub, the

system (front side) bus through the CPU and back to another RAM location with

the possible side effect of flushing the cache(s). Data is (possibly unnecessarily)

transferred several times through shared components reducing the overall system

performance.
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Fig. 2. Pentium4 processor and 845 chipset

Data movement performance has been measured several times, for example on

Linux (2.2 and 2.4) and Windows (2000) 4. The conclusion was that memcpy per-



March 5, 2007 13:4 WSPC/Guidelines ijseke

6 P̊al Halvorsen, Tom Anders Dalseng and Carsten Griwodz

forms well (compared to other copy functions/instructions), and Linux is in most

cases faster than Windows depending on data size and used copy instruction. There-

fore, to see the performance on our test machine, we tested memcpy using different

data sizes 11. The results confirm previous experiments 15,21,4,10 and show that the

overhead is growing with the size of the data element.

With respect to switching contexts, system call overhead (and process context

switches) is high on Pentium 4 18. To get an indication of the system call overhead

on our machine, we measured the getpid system call, accessing the kernel and only

returning the process id. Our experiments show that the average time to access the

kernel and return is approximately 920 nanoseconds for each call.

Copy and system call performance has also been an issue for hardware producers

like Intel, who have added new instructions, in particular MMX and SIMD exten-

sions useful for copy operations, and sysenter and sysexit instructions particularly

for system calls. For example, using SIMD instructions, the block copy operation

speed was improved by up to 149% in the Linux 2.0 kernel, but the reduction in

CPU usage was only 2% 15. Thus, both copy and kernel access performance are still

resource consuming and remain possible bottlenecks.

3. Related Work

The concept of using buffer management to reduce the overhead of cross-domain

data transfers to improve I/O performance is rather old. It has been a major issue

in operating systems research where variants of this work have been implemented

in various operating systems mainly using virtual memory remapping and shared

memory as basic techniques. Already in 1972, Tenex 3 used virtual copying, i.e., sev-

eral pointers in virtual memory to one physical page. Later, several systems have

been designed which use virtual memory remapping techniques to transfer data

between protection domains without requiring several physical data copies. An in-

terprocess data transfer occurs simply by changing the ownership of a memory

region from one process to another. Several general purpose mechanisms support-

ing a zero-copy data path between disk and network adapter have been proposed,

including the DASH IPC mechanism 25, Container Shipping 2, Genie 5, IO-Lite 21

and UVM virtual memory system 8 which use some kind of page remapping, data

sharing, or a combination. In addition to mechanisms removing copy operations in

all kinds of I/O, some mechanisms have been designed to create a fast in-kernel

data path from one device to another, e.g., the disk-to-network data path. These

mechanisms do not transfer data between user and kernel space, but keep the data

within the kernel and only map it between different kernel sub-systems. This means

that target applications comprise data storage servers for applications that do not

manipulate data in any way, i.e., no data touching operations are performed by the

application. Examples of such mechanisms are the splice system call 9, the mul-

timedia mbuf (MMBUF) mechanism 6, the stream system call 19, the Hi-Tactix

system 20, KStreams 16 and the sendfile system call (for more references, see 10).
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Besides memory movement, system calls are expensive operations because each

call to the kernel requires two switches. Even though in-kernel data paths remove

some of this overhead, many applications still require application level code that

makes kernel calls. Relevant approaches to increase performance include batched

system calls 7, event batching 22 and making application level code run in the

kernel (e.g., Stream Engine 17 and KStreams 16).

Although these examples show that an extensive amount of work has been per-

formed on copy and system call avoidance techniques, the proposed approaches

have usually remained research prototypes for various reasons, e.g., they are im-

plemented in own operating systems (having an impossible task of competing with

Unix and Windows), small implementations for testing only, not integrated with the

main source tree, etc. Only some limited support is included in the most used op-

erating systems today, including the sendfile system call in Linux, AIX and *BSD,

the sendfilev system call in Solaris and the TransmitFile and the TransmitPacket

system calls in Windows. In the next section, we therefore evaluate the I/O pipeline

performance of the new Linux 2.6 kernel.

4. Evaluation of Existing Mechanisms in Linux

Despite all the proposed mechanisms, only a limited support for various streaming

applications is provided in commodity operating systems like Linux. The existing

solutions for moving data from storage device to network device usually comprise

combinations of the read/write, mmap and sendfile system calls. After a comparison

of these function calls’ performance in the 2.4 and 2.6 kernels in section 4.2, we

present the results of our performance tests using combinations of these for content

download operations (adding no application level information) in section 4.3 and

streaming operations (adding and interleaving application level RTP headers for

timing and sequence numbering) in section 4.4.

The experiments were performed using two machines connected by a point-to-

point Ethernet connection. We used the same test machine as for the tests described

in section 2. The resource usage is measured using the getrusage function measuring

consumed user and kernel time to transfer 1 GB of data stored using the Reiser file

system in Linux 2.6. We have added the user and kernel time values to get the total

resource consumption, and each test was performed 10 times to get more reliable

results. However, the differences between the tests are small.

4.1. Read and Send Functions

The functions used for retrieving data from disk into memory are usually read or

mmap. Data is transferred using DMA from device to memory, and in case of read,

we require an in-memory copy operation to give the application access to data

whereas mmap shares data between kernel and user space. To send data, send (or

similar) can be used. The payload is copied from the user buffer or the page cache,

depending on whether read or mmap is used, to the socket buffer (sk buf ). Then, the
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data is transferred in a DMA operation to the network device. Another approach is

to use sendfile (see for example 24) sending the whole file (or the specified part) in

one operation, i.e., data is sent directly from a kernel buffer to the communication

system using an in-kernel data path. Thus, if gather DMA operations are supported,

which are for example needed to read the payload and the generated headers that

are located in different (sk buf ) buffers in a single operation, data can be sent from

disk to network without any in-memory copy operations.

4.2. Linux 2.4 versus Linux 2.6

Many important changes have been made between the 2.4 and 2.6 Linux kernels,

e.g., the big kernel lock (BKL), a new O(1) scheduler, the new API (NAPI), im-

proved disk read-ahead, optimized block copy, and new versions of TCP. All these

may influence the performance in our scenario. To test the real performance dif-

ference, we performed several measurements of downloading and streaming a 1 GB

data file (all read from disk) using the 2.4.21 and 2.6.5 kernels, and several different

combinations of system calls. As we can see from table 2, the experiments using

UDP and TCP show large improvements for the new 2.6 kernel (except some cases

using UDP with packets larger than the maximum transfer unit (MTU) size). For

UDP, we see improvements between 5 % and 37 % for packets smaller than the

MTU size, and for TCP, the respective improvements are between 6 % and 49 %.

This is probably due to the improved read-ahead mechanism and optimized block

copy. The tables also show that we have similar results for both content download

and streaming operations.

4.3. Content Download Experiments

In a content download scenario, data needs only to be read from disk and sent as

soon as possible without application level control. Thus, there is no need to add ap-

plication level information. To evaluate the performance of the existing mechanisms

in Linux in this context, we performed several tests using the different data paths

and system calls described in section 4.1 and table 3 using both TCP and UDP.

For UDP, we also added three enhanced system calls to be able to test a download

scenario similar to sendfile with TCP:

• mmap msend uses mmap to share data between file system buffer cache

and the application. Then, it uses the enhanced msend system call to send

data from the mapped file data using a virtual memory pointer instead of

a physical copy. This gives no in-memory data transfers and 1 + n system

calls.

• kmsend is similar to the mmap msend combination using mmap and the

enhanced msend system call. However, instead of making system calls for

each send operation, kmsend manages everything in the kernel. This gives

no in-memory data transfers and only 1 system call.



March 5, 2007 13:4 WSPC/Guidelines ijseke

Assessment of Linux’ Data Path Components for Download and Streaming 9

Table 2. Comparison of different kernels using UDP and TCP.

protocol operation system calls send size kernel 2.6.5 kernel 2.4.21 improvement

(bytes) (seconds) (seconds) in 2.6 (%)

UDP download read/send 512 8.714675 11.537200 24.46

1024 5.844012 7.357300 20.57

2048 8.144362 5.499400 -48.10

mmap/send 512 9.399971 11.038000 14.84

1024 7.139615 7.579700 5.81

2048 6.536707 7.431000 12.03

sendfile 512 6.052180 9.030200 32.98

1024 3.951599 6.358000 37.85

2048 5.736328 5.331400 -7.60

streaming read/send 512 8.742471 10.918800 19.93

1024 6.271547 7.439200 15.70

2048 7.825210 5.336900 -46.62

read/writev 512 9.351078 11.135600 16.03

1024 6.622893 7.361700 10.04

2048 7.602744 5.552400 -36.93

sendfile 512 9.064322 13.342500 32.06

1024 8.005983 7.638400 -4.81

2048 7.312389 6.900000 -5.98

TCP download read/send 512 7.105820 10.310800 31.08

1024 5.978091 7.733400 22.70

2048 5.504263 6.509300 15.44

mmap/send 512 7.986786 10.225300 21.89

1024 7.827110 8.615400 9.15

2048 7.640939 8.175900 6.54

sendfile 512 2.776278 4.144200 33.01

1024 1.996097 2.966100 32.70

2048 1.526668 2.132500 28.41

whole file 1.044841 1.308400 20.14

streaming read/send 512 7.381678 10.337000 28.59

1024 5.956495 7.949900 25.07

2048 5.355886 6.733600 20.46

read/writev 512 7.790716 10.422900 25.25

1024 6.038782 7.777100 22.35

2048 5.441773 6.536500 16.75

mmap/send 512 11.453159 19.188100 40.31

1024 9.551148 12.779300 25.26

2048 8.546500 10.701500 20.14

mmap/writev 512 8.184156 10.611900 22.88

1024 7.897200 9.019000 12.44

2048 7.708428 8.373700 7.94

sendfile 512 7.337885 14.399500 49.04

1024 4.230557 7.683300 44.94

2048 2.606704 4.421200 41.04

• ksendfile is a modification of sendfile for UDP where the kernel manages

sending of all the packets instead of having one call per packet. Thus, this

gives no in-memory data transfers and only 1 system call.
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Fig. 3. Content download operations

The results for UDP are shown in figure 3(a). We see, as expected, that removal

of copy operations and system calls both give performance improvements. Further-

more, in figure 3(b), the results using TCP are shown. Again, we see that a quite a

lot of resources can be freed using sendfile compared to the two other approaches

that make several system calls and copy operations per data element.

Table 3. Descriptions of performed content download tests.

copy user-kernel calls to the kernel

calls switches

read write 2n 4n n read and n write calls (TCP will probably gather sev-
eral smaller elements into one larger MTU-sized packet)

mmap send n 2+2n 1 mmap and n send calls (TCP will gather several smaller
elements into one larger MTU-sized packet)

sendfile (UDP) 0 2n n sendfile calls

sendfile (TCP) 0 2 1 sendfile call

mmap msend
∗

0 2+2n 1 mmap and n msend calls (msend sends data over UDP
using the virtual address of a mmap’ed file instead of
copying the data)

kmsend
∗

0 2 1 kmsend call (kmsend combines mmap and msend (see
above) in the kernel until the whole file is sent)

ksendfile
∗

0 2 1 ksendfile call (ksendfile performs sendfile over UDP in
the kernel similar to sendfile for TCP)

n is the number of packets
∗new enhanced system call

From the results, we can see that the existing sendfile over TCP performs very

well compared to the other tests as applications only have to make one single sys-

tem call to transfer a whole file. Consequently, if no data touching operations, no

application level headers or timing support are necessary, sendfile seems to be ef-
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Fig. 4. Streaming operations

ficiently implemented and achieves a large performance improvement compared to

the traditional read and write system calls, especially when using TCP where only

one system call is needed to transfer the whole file.

4.4. Streaming Experiments

Streaming time-dependent data like video to remote clients typically requires adding

per-packet headers, such as RTP headers for sequence numbers and timing informa-

tion. Thus, plain file transfer optimizations are insufficient, because file data must be

interleaved with application generated headers, i.e., additional operations must be

performed. To evaluate the performance of the existing mechanisms, we performed

several tests using the set of data paths and system calls listed in table 4. As shown

above, the application payload can be transferred both with and without user space

buffers, but the RTP header must be copied and interleaved within the kernel. Since

TCP may gather several packets into one segment, i.e., the RTP headers will be

useless, we have only tested UDP. The results of our tests are shown in figure 4(a).

Compared to the ftp-like operations in the previous section, we need many system

calls and copy operations. For example, compared to the sendfile (UDP) and the

enhanced ksendfile tests in figure 3, there are a 21% and a 29% increase in the

measured overhead for the rtp sendfile using Ethernet MTU-sized packets, respec-

tively. This is because we now also need an additional send call for the RTP header.

Thus, the results indicate that there is a potential for improvements. In the next

section, we therefore describe some possible improvements and show that already

minor enhancements can achieve large gains in performance.
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Table 4. Descriptions of performed streaming tests.

copy user-kernel calls to the kernel

calls switches

read send rtp 2n 4n n read and n send calls (RTP header is placed in user
buffer in front of payload, i.e., no extra copy opera-
tion)

read writev 3n 4n n read and n writev calls (RTP header is generated
in own buffer, writev write data from two buffers)

mmap send rtp 2n 2+8n 1 mmap, n cork
β

, n send , n send and n uncork
β

calls
(need one send call for both data and RTP header)

mmap writev 2n 2+2n 1 mmap and n writev calls

rtp sendfile n 8n n cork
β

, n send , n sendfile and n uncork
β

calls

mmap rtpmsend
α

n 2+2n 1 mmap and n rtpmsend calls (rtpmsend copies
RTP headers from user space and adds payload from
mmap’ed files as payload in the kernel)

mmap send msend
α

n 2+8n 1 mmap, n cork
β

, n send , n msend and n un-

cork
β

calls (no data copying using msend, but the
RTP header must be copied from user space)

rtpsendfile
α

n 2n n rtpsendfile calls (rtpsendfile adds the RTP header
copy operation to the sendfile system call)

krtpsendfile
α

0 2 1 krtpsendfile call (krtpsendfile adds RTP headers to
sendfile in the kernel)

krtpmsend
α

0 2 1 krtpmsend call (krtpmsend adds RTP headers to
the mmap/msend combination (see above) in the ker-
nel)

n is the number of packets
αnew enhanced system call
β(un)cork is a setsockopt call using the CORK option to prevent sending incomplete segments,
e.g., allowing RTP headers to be merged with the payload in a single packet

5. Enhancements for RTP Streaming

Looking at the existing mechanisms described and analyzed in section 4, we are

more or less able to remove copy operations (except the small RTP header), but the

number of user/kernel boundary crossings is high. We have therefore implemented

a couple of other approaches listed in table 4:

• mmap rtpmsend uses mmap to share data between file system buffer cache

and the application. Then, it uses the enhanced rtpmsend system call

to send data copying a user-level generated RTP header and adding the

mapped file data using a virtual memory pointer instead of a physical copy.

This gives n in-memory data transfers and 1 + n system calls. (A further

improvement would be to use a virtual memory pointer for the RTP header

as well)

• krtpmsend uses mmap to share data between file system buffer cache and

the application and uses the enhanced msend system call to send data

using a virtual memory pointer instead of a physical copy. Then, the RTP

header is added in the kernel by a kernel-level RTP engine. This gives no

in-memory data transfers and only 1 system call.
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• rtpsendfile is a modification of the sendfile system call. Instead of having an

own call for the RTP header transfer, an additional parameter (a pointer to

the buffer holding the header) is added, i.e., the data is copied in the same

call and sent as one packet. This gives only n in-memory data transfers and

n system calls.

• krtpsendfile uses ksendfile to transmit a UDP stream in the kernel, in con-

trast to the standard sendfile requiring one system call per packet for UDP.

Additionally, the RTP header is added in the kernel having an in-kernel

RTP engine. This gives no in-memory data transfers and only 1 system

call.

Here, mmap rtpmsend and krtpmsend are targeted at applications requiring the pos-

sibility to touch data in user-space, e.g., parsing or sporadic modificationsa, whereas

rtpsendfile and krtpsendfile aim at data transfers without any application-level data

touching. All these enhanced system calls reduce the overhead compared to existing

approaches, and with respect to overhead, mmap rtpmsend, rtpsendfile, krtpmsend

and krtpsendfile look promising. To see the real performance gain, we performed

the same tests as above. Our results, shown in figure 4(b), indicate that simple

mechanisms can remove both copy and system call overhead. For example, in the

case of streaming using RTP, we see an improvement of about 27% when using

krtpsendfile where a kernel engine generates RTP headers instead of rtp sendfile

in the scenario with MTU-sized packets. If we to make one call per packet, the

rtpsendfile enhancement gives at least a 10% improvement compared to existing

mechanisms. In another scenario where the application requires data touching op-

erations, the existing mechanism exhibit only small differences. If comparing the

results for MTU-sized packets, read send rtp (already optimized to read data into

the same buffer as the generated RTP header) performs best in our tests. However,

using a mechanism like krtpmsend gives a performance gain of 36% compared to

read send rtp. Higher user level control that requires making one call per packet is

achieved by mmap rtpmsend which gives a 24% gain. Additionally, similar results

can in general also be seen for smaller packet sizes (of course with higher overhead

due to a larger number of packets), and when the transport level packet exceeds the

MTU size, additional fragmentation of the packet introduces additional overhead.

6. Discussion

The enhancements described in this paper to reduce the number of copy opera-

tions and system calls and their respective evaluations address mainly application

scenarios where data is streamed to the client without any data manipulation at

the server side. However, several of the enhanced system calls allow applications

to share a buffer with the kernel and interleave other information into the stream.

aNon-persistent modifications to large parts of the files require a data copy in user space, voiding

the use of the proposed mechanisms.
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Thus, adding support for data touching operations, like checksumming, filtering,

etc. without copying, and data modification operations, like encryption, transcod-

ing, etc. with one copy operation, should be trivial. The in-kernel RTP engine also

shows that such operations can be performed in the kernel (as kernel stream han-

dlers), reducing copy and system call overhead.

An important question is whether data copying is still a bottleneck in systems

today. The hardware has improved, and one can easily find other possible bottle-

neck components. For example, I/O devices such as disks and network cards are

potential bottlenecks. In our context, most focus has been on storage systems where

a large number of mechanisms targeted at specific applications has been proposed

including scheduling, data placement, replication, prefetching (see for example 12,13

for an overview). Nevertheless, as described in section 2.2, data transfers through

the CPU are time- and resource-consuming and have side effects like cache flushes.

The overhead increases approximately linearly with the amount of data, and as the

gap between memory and CPU speeds increases, so does the problem. Thus, reduc-

ing the number of consumed CPU cycles per operation can a have large impact on

system performance in several contexts (see section 1). Making resources available

for other tasks or enabling the use of smaller, less power consuming processors for

the same tasks.

Our results show that large improvements are possible making only small

changes in the kernel. Figure 5 (note that the y-axis starts at 0.5) shows the per-

formance of the different RTP streaming mechanisms relative to read writev, i.e.,

a straight forward approach for reading data into an application buffer, generating

the RTP header and writing the two buffers to the kernel using the vector write

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

204814561024512256

C
PU

 c
on

su
m

pt
io

n 
no

rm
al

iz
ed

 to
 r

ea
d_

w
ri

te
v

packet payload size (bytes)

mmap_send_rtp
mmap_writev
read_send_rtp

mmap_send_msend
rtp_sendfile

mmap_rtpmsend
rtpsendfile
krtpmsend

krtpsendfile

Fig. 5. Relative performance to read writev



March 5, 2007 13:4 WSPC/Guidelines ijseke

Assessment of Linux’ Data Path Components for Download and Streaming 15

operation. Looking for example at MTU-sized packets, we see that a lot of resources

can be freed for other tasks. We can also see that less intuitive but more efficient

solutions than read writev that do not require kernel changes exist, for example

using sendfile combined with a send for the RTP header (rtp sendfile). However,

the best enhanced mechanism, krtpsendfile, removes all copy operations and makes

only one access to the kernel compared to rtp sendfile which requires several of both

(see table 3). With respect to consumed processor time, we achieve an average re-

duction of 27% using krtpsendfile. Recalculating this into (theoretical) throughput,

rtp sendfile and krtpsendfile can achieve 1.55 Gbps and 2.12 Gbps, respectively.

Assuming a high-end 3.60 GHz CPU like Pentium4 660 and an 800 MHz front side

bus, the respective numbers should be approximately doubled. These and higher

rates are also achievable for network cards (e.g., Force10 Network’s E-Series), PCI

express busses and storage systems (e.g., using several Seagate Cheetah X15.4 in a

RAID). Thus, the transfer and processing overheads are still potential bottlenecks,

and the existing mechanisms should be improved.

Now, having concluded that data transfers and system calls are still potential

bottlenecks and having looked at possible enhancements, let us look at what a gen-

eral purpose operating system like Linux misses. Usually, the commodity operating

systems aim at generality, and new system calls are not frequently added. Thus,

specialized mechanisms like krtpsendfile and krtpmsend that require application-

specific, kernel-level RTP-engines, will hardly ever be integrated into the main

source tree and will have to live as patches for interested parties like streaming

providers, similar to the Red Hat Content Accelerator (tux ) 23 for web services.

However, support for adding application level information (like RTP headers) to

stored data will be of increasing importance in the future as streaming services re-

ally take off. Simple enhancements like mmap rtpmsend and rtpsendfile are gener-

ally useful, performance improving mechanisms that could be of interest in scenarios

where the application does or does not touch the data, respectively.

7. Conclusions

In this paper, we have shown that (streaming) applications still pay a high (un-

necessary) performance penalty in terms of data copy operations and system calls

for applications that require packetization and the addition of headers. We have

therefore implemented several enhancements to the Linux kernel, and evaluated

both existing and new mechanisms. Our results indicate that data transfers still are

potential bottlenecks, and simple mechanisms can remove both copy and system

call overhead if a gather DMA operation is supported. In the case of a simple con-

tent download scenario, the existing sendfile is by far the most efficient mechanism,

but in the case of streaming using RTP, we see an improvement of at least 27%

over the existing methods using MTU-sized packets and the krtpsendfile system

call with a kernel engine that generates RTP headers. Thus, using mechanisms for

more efficient resource usage, like removing copy operations and avoiding unneces-



March 5, 2007 13:4 WSPC/Guidelines ijseke

16 P̊al Halvorsen, Tom Anders Dalseng and Carsten Griwodz

sary system calls, can greatly improve a node’s performance. Such enhancements

free resources like memory, CPU cycles, bus cycles, etc. which either allows a re-

duced power consumption of the sending system, better scalability, or a utilization

of freed resources for other tasks.

Currently, we have other on-going kernel activities and try to offload a node

using programmable sub-systems 14, and we hope to be able to integrate all of our

subcomponents. We will modify the KOMSSYS video server 26 to use the proposed

mechanisms and perform more extensive tests including a workload experiment

looking at the maximum number of concurrent clients able to achieve a timely

video playout. Finally, we will optimize our implementation, because most of the

enhancements are only implemented as proof-of-concepts for removing copy oper-

ations and system calls. We have made no effort in optimizing the code, so the

implementations have large potential for improvement, e.g., moving the send-loop

from the system call layer to the page cache for the krtpsendfile which will remove

several file lookups and function calls (as for the existing sendfile).
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