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There are many scenarios where high resolution, wide field of view video is use-
ful. Such panorama video may be generated using camera arrays where the feeds from

multiple cameras pointing at different parts of the captured area are stitched together.
However, processing the different steps of a panorama video pipeline in real-time is chal-

lenging due to the high data rates and the stringent timeliness requirements. In our

research, we use panorama video in a sport analysis system called Bagadus. This system
is deployed at Alfheim stadium in Tromsø, and due to live usage, the video events must

be generated in real-time. In this paper, we describe our real-time panorama system

built using a low-cost CCD HD video camera array. We describe how we have imple-
mented different components and evaluated alternatives. The performance results from

experiments ran on commodity hardware with and without co-processors like graphics

processing units (GPUs) show that the entire pipeline is able to run in real-time.

Keywords: Real-time panorama video; system integration; camera array.

1. Introduction

A wide field of view (panoramic) image or video is often used in applications like

surveillance, navigation, scenic views, educational exhibits and sports analysis. Here,

video feeds are often captured using multiple cameras capturing slightly overlapping

areas, and the frames are processed and stitched into a single unbroken frame of the

whole surrounding region. To prepare the individual frames for stitching and finally

generating the panorama frame, each individual frame must be processed for barrel

distortion, rotated to have the same angle, warped to the same plane and corrected

for color differences. Then, the frames are stitched to one large panorama image,

where the stitch operation also includes searching for the best possible seam in the
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overlapping areas to avoid seams through objects of interest in the video. Finally,

the panorama frame is encoded to save storage space and transfer bandwidth and,

written to disk. As several of these steps include direct pixel manipulation and

movement of large amounts of data, the described process is very resource hungry.

In [30], we described our implementation of a real-time panorama video pipeline

for an arena sports application called Bagadus [11, 28], and this is an extended

version providing more details. In our panorama setup, we use a static array of

low-cost CCD HD video cameras, each pointing at a different direction, to capture

the wide field of view of the arena. These different views are slightly overlapped

in order to facilitate the stitching of these videos to form the panoramic video.

Several similar non-real-time stitching systems exist (e.g., [23]), and a simple non-

real-time version of this system has earlier been described and demonstrated at

the functional level [11, 26]. Our initial prototype is the first sports application to

successfully integrate per-athlete sensors [17], an expert annotation system [16] and

a video system, but due to the non-real-time stitching, the panorama video was

only available to the coaches some time after a game. The first prototype also did

not use any form of color correction or dynamic seam detection. Hence, the static

seam did not take into account moving objects (such as players), and the seam was
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Figure 1. Overall system architecture.
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therefore very visible. However, new requirements like real-time performance and

better visual quality have resulted in a new and improved pipeline. Using our new

real-time pipeline, such systems can be used during the game. A brief overview of

the architecture and interaction of the different components is given in figure 1.

In this paper we will focus on the details of the whole pipeline from capturing

images from the cameras via various corrections steps for panorama generation to

encoding and storage of both the panorama video and the individual camera streams

on disks. We describe how we have evaluated different implementation alternatives

(both algorithms and implementation options), and we benchmark the performance

with and without using graphics processing units (GPUs) as an co-processors. We

evaluate each individual component, and, we show how the entire pipeline is able to

run in real-time on a low-cost 6-core machine with a GPU, i.e., moving the 1 frame

per second (fps) system to 30 fps enabling game analysis during the ongoing event.

The remainder of the paper is structured as follows. We give a brief overview of

the basic idea of our system in section 2, and then we analyze the state of the art in

section 3 to see if systems exist that meet our requirements. Then, we describe and

evaluate our real-time panorama video pipeline in section 4. Various aspect of the

system are discussed in section 5 before we finally conclude the paper in section 6.

2. Our sports analysis systems

Today, a large number of (elite) sports clubs spend a large amount of resources

to analyze their game performance, either manually or using one of the many ex-

isting analytics tools. For example, in the area of soccer, several systems enable

trainers and coaches to analyze the gameplay in order to improve the performance.

For instance, Interplay-sports, ProZone, STATS SportVU Tracking Technology and

Camargus provide very nice video technology infrastructures. These systems can

present player statistics, including speed profiles, accumulated distances, fatigue,

fitness graphs and coverage maps using different charts, 3D graphics and anima-

tions. Thus, there exist several tools for soccer analysis. However, to the best of our

knowledge, there does not exist a system that fully integrates all desired features

in real-time, and existing systems still require manual work moving data between

different components. In this respect, we have presented Bagadus [11, 26], which

integrates a camera array video capture system with a sensor-based sport track-

ing system for player statistics and a system for human expert annotations. Our

system allows the game analytics to automatically playout a tagged game event or

to extract a video of events extracted from the statistical player data. This means

that we for example can query for all sprints faster than X or all situations where

a player is in the center circle. Using the exact player position provided by sensors,

a trainer can also follow individuals or groups of players, where the videos are pre-

sented either using a stitched panorama view of the entire field or by (manually

or automatically) switching between the different camera views. Our prototype is

currently deployed at an elite club stadium. We use a dataset captured at a premier
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league game to experiment and to perform benchmarks on our system. In previous

versions of the system, the panorama video had to be generated offline, and it had

static seams [11]. For comparison with the new pipeline presented in section 4, we

next present the camera setup and the old pipeline.

2.1. Camera setup

To record the high resolution video of the entire soccer field, we have installed

a camera array consisting of four Basler industry cameras with a 1/3-inch image

sensors supporting 30 fps at a resolution of 1280×960. The cameras are synchro-

nized by an external trigger signal in order to enable a video stitching process that

produces a panorama video picture. The cameras are mounted close to the middle

line (see figure 2), i.e., under the roof of the stadium covering the spectator area

approximately 10 meters from the side line and 10 meters above the ground. With

a 3.5 mm wide-angle lens, each camera covers a field-of-view of about 68 degrees,

and the full field with sufficient overlap to identify common features necessary for

camera calibration and stitching, is achieved using the four cameras. Calibration is

done via a classic chessboard pattern [33].

University of Oslo University of Tromsø Tromsø IL 

Figure 2. Camera setup at the stadium.

2.2. The offline, static stitching pipeline

Our first prototype focused on integrating the different subsystems. We therefore did

not put large efforts into real-time performance resulting in an unoptimized, offline

panorama video pipeline that combined images from multiple, trigger-synchronized

cameras as described above. The general steps in this stitching pipeline are: 1) cor-

rect the images for lens distortion in the outer parts of the frame due to a wide-angle

fish-eye lens; 2) rotate and morph the images into the panorama perspective caused

by different positions covering different areas of the field; 3) rotate and stitch the

video images into a panorama image; and 4) encode and store the stitched video to

persistent storage. Several implementations were tested for the stitching operation
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such as the OpenCV planar projection, cylindrical projection and spherical projec-

tion algorithms, but due to the processing performance and quality of the output

image, the used solution is a homography based algorithm.

The first step before executing the pipeline, is to find corresponding pixel points

in order to compute the homography between the camera planes [12], i.e., the head

camera plane and the remaining camera planes. When the homography is calculated,

the image can be warped (step 2) in order to fit the plane of the second image. The

images must be padded to have the same size, and the seams for the stitching must

be found in the overlapping regions (our first pipeline used static seams). Figure 3

shows the four rotated, wrapped and stitched images. The whole process of stitching

the images is described in [28]. We also calculate the homography between the

sensor data plane and the camera planes to find the mapping between sensor data

coordinates and pixel positions.

Figure 3. The homography-based panorama image stitched from four cameras

As can be seen in the figure, the picture is not perfect, but the main challenge

is the high execution time. On an Intel Core i7-2600 @ 3.4 GHz and 8 GB memory

machine, the stitching operation consumed 974 ms of CPU time to generate each

7000x960 pixel panorama image [11]. Taking into account that the target display

rate is 30 fps, i.e., requiring a new panorama image every 33 ms, there are large

performance issues that must be addressed in order to bring the panorama pipeline

from a 1 fps system to a 30 fps system. However, the stitching operations can be

parallelized and parts of it offloaded to external devices such as GPUs, which, as

we will see in section 4, results in a performance good enough for real-time, online

processing and generation of a panorama video.

3. Related work

Real-time panorama image stitching is becoming common. For example, many have

proposed systems for panorama image stitching (e.g., [6, 14, 19–21]), and modern

operating systems for smart phones like Apple iOS and Google Android support

generation of panorama pictures in real-time. However, the definition of real-time is

not necessarily the same for all applications, and in this case, real-time is similar to

“within a second or two”. For video, real-time has another meaning, and a panorama

picture must be generated in the same speed as the display frame rate, e.g., every

33 ms for a 30 frame-per-second (fps) video.
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One of these existing systems is Camargus [1]. The people developing this system

claim to deliver high definition panorama video in real-time from a setup consisting

of 16 cameras (ordered in an array), but since this is a commercial system, we have

no insights to the details. Another example is Immersive Cockpit [29] which aims

to generate a panorama for tele-immersive applications. They generate a stitched

video which capture a large field-of-view, but their main goal is not to give output

with high visual quality. Although they are able to generate video at a frame rate of

about 25 fps for 4 cameras, there are visual limitations to the system, which makes

the system not well suited for our scenario.

Moreover, Baudisch et al. [5] present an application for creating panoramic im-

ages, but the system is highly dependent on user input. Their definition of real time

is ”panorama construction that offers a real-time preview of the panorama while

shooting”, but they are only able to produce about 4 fps (far below our 30 fps

requirement). A system similar to ours is presented in [4], which computes stitch-

maps on a GPU, but the presented system produces low resolution images (and is

limited to two cameras). The performance is within our real-time requirement, but

the timings are based on the assumption that the user accepts a lower quality image

than the cameras can produce.

Haynes [3] describes a system by the Content Interface Corporation that creates

ultra high resolution videos. The Omnicam system from the Fascinate [2,27] project

also produces high resolution videos. However, both these systems use expensive

and specialized hardware. The system described in [3] also makes use of static

stitching. A system for creating panoramic videos from already existing video clips

is presented in [7], but it does not manage to create panorama videos within our

definition of real-time. As far as we know, the same issue of real-time is also present

in [5, 13,23,31].

In summary, existing systems (e.g., [7,13,23,29,31]) do not meet our demand of

being able to generate the video in real-time, and commercial systems (e.g., [1,3])

as well as the systems presented in [2, 27] do often not fit into our goal to create

a system with limited resource demands. The system presented in [4] is similar to

our system, but we require high quality results from processing a minimum of four

cameras streams at 30 fps. Thus, due to the lack of a low-cost implementations

fulfilling our demands, we have implemented our own panorama video processing

pipeline which utilize processing resources on both the CPU and GPU.

4. A real-time panorama stitcher

In this paper, we do not focus on selecting the best algorithms etc., as this is mostly

covered in [11]. The focus here is to describe the panorama pipeline and how the

different components in the pipeline are implemented in order to run in real-time.

We will also point out various performance trade-offs.

As depicted in figure 4, the new and improved panorama stitcher pipeline is

separated into two main parts: one part running on the CPU, and the other running
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on a GPU using the CUDA framework. The decision of using a GPU as part of

the pipeline was due to the potential high performance and the parallel nature

of the workload. The decision of using the GPU for the pipeline has affected the

architecture to a large degree. Unless otherwise stated (we have tested several CPUs

and GPUs), our test machine for the new pipeline is an Intel Core i7-3930K, i.e., a

6-core processor based on the Sandy Bridge-E architecture, with 32 GB RAM and

an Nvidia GeForce GTX 680 GPU based on the GK104 Kepler architecture.

1) CamReader
2) Converter

YUV422=>RGBA
3) Debarreler 5) Uploader

5) Uploader
6) Background-

subtractor
9) Stitcher

10) Converter

RGBA=>YUV420

6) Background-

subtractor 11) Downloader

11) Downloader

12) Panorama-

Writer

GPU

CPU

4) SingleCam-

Writer

Controller

Player coordinate

database (ZXY)

8) Color-corrector7) Warper

Figure 4. Panorama stitcher pipeline architecture. The orange and blue components run in the

CPU and the green components run on the GPU.

4.1. The Controller module

The single-threaded Controller is responsible for initializing the pipeline, synchro-

nizing the different modules, handling global errors and frame drops, and transfer-

ring data between the different modules. After initialization, it will wait for and get

the next set of frames from the camera reader (CamReader) module (see below).

Next, it will control the transfers of data from the output buffers of module N to

the input buffers of module N + 1. This is done primarily by pointer swapping, and

with memory copies as an alternative. It then signals all modules to process the new

input and waits for them to finish processing. Next, the controller continues looping

by waiting for the next set of frames from the reader. Another important task of

the Controller is to check the execution speed. If an earlier step in the pipeline runs

too slow, and one or more frames has been lost from the cameras, the controller will

tell the modules in the pipeline to skip the delayed or dropped frame, and reuse the

previous frame.

4.2. The CamReader module

The CamReader module is responsible for retrieving frames from the cameras. It

consists of one dedicated reader thread per camera. Each of the threads will wait

for the next frame, and then write the retrieved frame to a output buffer, overwrit-

ing the previous frame. The cameras provide a single frame in YUV 4:2:2 format,

and the retrieval rate of frames in the CamReader is what determines the real

time threshold for the rest of the pipeline. As described above, the camera shutter
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synchronization is controlled by an external trigger box, and in our current config-

uration, the cameras deliver a frame rate of 30 fps, i.e., the real-time threshold and

the CamReader processing time are thus 33 ms.

4.3. The Converter module

The CamReader module outputs frames in YUV 4:2:2 format. However, the stitch-

ing pipeline requires RGBA internally for processing, and the system therefore con-

verts frames from YUV 4:2:2 to RGBA. This is handled by the Converter module

using ffmpeg and swscale. The processing time for these conversions on the CPU,

as seen later in figure 11, is well below the real-time requirement, so this operation

can run as a single thread.

4.4. The Debarreler module

Due to the wide angle lenses used with our cameras in order to capture the entire

field, the images delivered are suffering from barrel distortion which needs to be

corrected. We found the performance of the existing debarreling implementation in

the old stitching pipeline to perform fast enough. The Debarreler module is therefore

still based on OpenCVs debarreling function, using nearest neighbor interpolation,

and is executing as a dedicated thread per camera.

4.5. The SingleCamWriter module

In addition to storing the stitched panorama video, we also want to store the video

from the separate cameras. This storage operation is done by the SingleCamWriter,

which is running as a dedicated thread per camera. As we can see in [11], storing

the videos as raw data proved to be impractical due to the size of uncompressed raw

data. The different CamWriter modules (here SingleCamWriter) therefore encode

and compress frames into 3 seconds long H.264 files, which proved to be very effi-

cient. Due to the use of H.264, every SingleCamWriter thread starts by converting

from RGBA to YUV 4:2:0, which is the required input format by the x264 encoder.

The threads then encode the frames and write the results to disk.

4.6. The Uploader module

Due to the large potential of parallelizing the panorama workload and the high

computing power of modern GPUs, large parts of our pipeline run on a GPU. We

therefore need to transfer data from the CPU to the GPU, i.e., a task performed

by the Uploader module. In addition, the Uploader is also responsible for executing

the CPU part of the BackgroundSubtractor (BGS) module (see section 4.7). The

Uploader consists of a single CPU thread, that first runs the player pixel lookup

creation needed by the BGS. Next, it transfers the current RGBA frames and the

corresponding player pixel maps from the CPU to the GPU. This is done by use of

double buffering and asynchronous transfers.
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4.7. The BackgroundSubtractor module

Background subtraction is the process of determining which pixels of a video that

belong to the foreground and which pixels that belong to the background. The

BackgroundSubtractor module, running on the GPU, generates a foreground mask

(for moving objects like players) that is later used in the Stitcher module later

to avoid seams in the players. Our BackgroundSubtractor can run like traditional

systems searching the entire image for foreground objects. However, we can also

exploit information gained by the tight integration with the player sensor system.

In this respect, through the sensor system, we know the player coordinates which can

be used to improve both performance and precision of the module. By first retrieving

player coordinates for a frame, we can then create a player pixel lookup map, where

we only set the players pixels, including a safety margin, to 1. The creation of these

lookup maps are executed on the CPU as part of the Uploader. The BGS on GPU

then uses this lookup map to only process pixels close to a player, which reduces the

GPU kernel processing times, from 811.793 microseconds to 327.576 microseconds

on average on a GeForce GTX 680. When run in a pipelined fashion, the processing

delay caused by the lookup map creation is also eliminated. The sensor system

coordinates are retrieved by a dedicated slave thread that continuously polls the

sensor system database for new samples.

Even though we enhance the background subtraction with sensor data in-

put, there are several implementation alternatives. When determining which al-

gorithm to implement, we evaluated two alternatives: Zivkovic [34, 35] and Kaew-

TraKulPong [18]. Even though the CPU implementation was slower (see figure 5),

Zivkovic provided the best visual results, and was therefore selected for further

modification. Furthermore, the Zivkovic algorithm proved to be fast enough when

modified with input from the sensor system data. The GPU implementation, based

on [25], proved to be even faster, and the final performance numbers for a sin-

gle camera stream can be seen in figure 5. A visual comparison of the unmodified

Zivkovic implementation and the sensor system-modified version is seen in figure 6

where the sensor coordinate modification reduce the noise as seen in the upper parts

of the pictures.

0 10 20 30 40 50 60 70 80 90 100 110

Execution time (ms)

KaewTraKulPong - CPU - unmodified

Zivkovich - CPU - unmodified

Zivkovich - CPU - coordinate modification

Zivkovich - GPU - coordinate modification

Figure 5. Execution time of alternative algorithms for the BackgroundSubtractor module (1 camera
stream).
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(a) Unmodified Zivkovic. (b) Player sensor data modification of Zivkovic.

Figure 6. Background subtraction comparison.

4.8. The Warper module

The Warper module is responsible for warping the camera frames to fit the stitched

panorama image. By warping we mean twisting, rotating and skewing the images

to fit the common panorama plane. Like we have seen from the old pipeline, this is

necessary because the stitcher assumes that its input images are perfectly warped

and aligned to be stitched to a large panorama. Executing on the GPU, the Warper

also warps the foreground masks provided by the BGS module. This is because the

Stitcher module at a later point will use the masks and therefore expects the masks

to fit perfectly to the corresponding warped camera frames. Here, we use the Nvidia

Performance Primitives library (NPP) for an optimized implementation.

4.9. The Color-corrector module

When recording frames from several different cameras pointing in different direction,

it is nearly impossible to calibrate the cameras to output the exact same colors due

to the different lighting conditions. This means that, to generate the best panorama

videos, we need to correct the colors of all the frames to remove color disparities.

In our panorama pipeline, this is done by the Color-corrector module running on

the GPU.

We choose to do the color correction after warping the images. The reason for

this is that locating the overlapping regions is easier with aligned images, and the

overlap is also needed when stitching the images together. This algorithm is executed

on the GPU, enabling fast color correction within our pipeline. The implementation

is based on the algorithm presented in [32], but have some minor modifications. We

calculate the color differences between the images for every single set of frames

delivered from the cameras. Currently, we color-correct each image in a sequence,

meaning that each image is corrected according to the overlapping frame to the

left. The algorithm implemented is easy to parallelize and does not make use of

pixel to pixel mapping which makes it well suited for our scenario. Figure 7 shows

a comparison between running the algorithm on the CPU and on a GPU.
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Figure 7. Execution time of color correction.

4.10. The Stitcher module

Like in the old pipeline, we use a homography based stitcher where we simply

create seams between the overlapping camera frames, and then copy pixels from the

images based on these seams. These frames need to follow the same homography,

which is why they have to be warped. Our old pipeline used static cuts for seams,

which means that a fixed rectangular area from each frame is copied directly to the

output frame. Static cut panoramas are faster, but can introduce graphical errors

in the seam area, especially when there are movement in the scene (illustrated in

figure 4.10).

To make a better seam with a better visual result, we therefore introduce a

dynamic cut stitcher instead of the old static cut. The dynamic cut stitcher creates

seams by first creating a rectangle of adjustable width over the static seam area.

Then, it treats all pixels within the seam area as graph nodes. The graph is directed

from the bottom to the top in such a way that each pixel points to the three adjacent

ones above (left and right-most pixels only point to the two available). Each of these

edge’s weight are calculated by using a custom function that compares the absolute

color difference between the corresponding pixel in each of the two frames we are

trying to stitch. The weight function also checks the foreground masks from the

BGS module to see if any player is in the pixel, and if so it adds a large weight to

the node. In effect, both these steps will make edges between nodes where the colors

differs and players are present have much larger weights. We then run the Dijkstra

graph algorithm on the graph to create a minimal cost route from the start of the

offset at the bottom of the image to the end at the top. Since our path is directed

upwards, we can only move up or diagonally from each node, and we will only get

one node per horizontal position. By looping through the path, we therefore get our

new cut offsets by adding the node’s horizontal position to the base offset.

An illustration of how the final seam looks can be seen in bottom image in fig-

ure 8, where the seams without and with color correction are shown in the embedded

thumbnails. Timings for the dynamic stitching module can be seen in figure 9. The

CPU version is currently slightly faster than our GPU version (as searches and

branches often are more efficient on traditional CPUs), but further optimization of

the CUDA code will likely improve this GPU performance. Note that the min and

max numbers for the GPU are skewed by frames dropping (no processing), and the

initial run being slower.
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Figure 8. Stitcher comparison - improving the visual quality with dynamic seams and color correc-

tion. The first image shows the original stitch [11] with a fixed cut stitch with a straight vertical

seam. The middle image shows a dynamic stitch with no color correction. The embedded thumb-
nail shows the seam. The bottom image shows a dynamic stitch with color correction, i.e., resulting

in that the seam is no longer visible.

0 5 10 15 20 25

Execution time (ms)

CPU (Intel Core i7-2600)

GPU (Nvidia GeForce GTX 680)

Figure 9. Execution time for dynamic stitching.

4.11. The YuvConverter module

Before storing the stitched panorama frames, we need to convert back from RGBA

to YUV 4:2:0 for the H.264 encoder, just as in the SingleCamWriter module. How-

ever, due to the size of the output panorama, this conversion is not fast enough on

the CPU, even with the highly optimize swscale. This module is therefore imple-

mented on the GPU. In figure 10, we can see the performance of the CPU based

implementation versus the optimized GPU based version.
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0 5 10 15 20 25 30 35 40 45 50 55 60 65

Execution time (ms)

CPU (Intel Core i7-2600)

GPU (Nvidia GeForce GTX 680)

Figure 10. Execution time for RGBA to YUV 4:2:0 conversion.

Nvidia NPP contains several conversion primitives, but not a direct conversion

from RGBA to YUV 4:2:0. The GPU based version is therefore first using NPP to

convert from RGBA to YUV 4:4:4, and then a self written CUDA code to convert

from YUV 4:4:4 to YUV 4:2:0.

4.12. The Downloader module

Before we can write the stitched panorama frames to disk, we need to transfer it

back to the CPU, which is done by the Downloader module. It runs as a single CPU

thread that copies a frame synchronously to the CPU. We could have implemented

the Downloader as an asynchronous transfer with double buffering like the Uploader,

but since the performance as seen in figure 11 is very good, this is left as future

work.

4.13. The PanoramaWriter module

The last module, executing on the CPU, is the Writer that writes the panorama

frames to disk. The conversion from RGBA to YUV has already been done on the

GPU, so the only steps the PanoramaWriter needs to follow, is to first encode the

input frame to H.264, and then write the result to disk as three second H.264 video

files.

4.14. Pipeline performance

In order to evaluate the performance of our pipeline, we used an off-the-shelf PC

with an Intel Core i7-3930K processor and an nVidia GeForce GTX 680 GPU. We

have benchmarked each individual component and the pipeline as a whole capturing,

processing and storing 1000 frames from the cameras.

In the initial pipeline [11], the main bottleneck was the panorama creation (warp-

ing and stitching). This operation alone used 974 ms per frame. As shown by the

breakdown into individual components’ performance in figure 11, the new pipeline

has been greatly improved. Note that all individual components run in real-time

running concurrently on the same set of hardware. Adding all these, however, gives

times far larger than 33 ms. The reason why the pipeline is still running in real-time

is because several frames are processed in parallel. Note here that all CUDA kernels

are executing at the same time on a single GPU, so the performance of all GPU

modules are affected by the performance of the other GPU modules. On earlier
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Figure 11. Improved stitching pipeline performance, module overview (Nvidia GeForce GTX 680

and Intel Core i7-3930K)

GPUs like the GTX 280, this was not allowed, but concurrent CUDA kernel exe-

cution was introduced in the Fermi architecture [24] (GTX 480 and above). Thus,

since the Controller module schedules the other modules according to the input rate

of 30 fps, the amount of resources are sufficient for real-time execution.

For the pipeline to be real-time, the output rate should follow the input rate, i.e.,

deliver all output frames (both 4 single camera and 1 panorama) at 30 fps. Thus, to

give an idea of how often a frame is written to file, figure 12 shows individual and

average frame inter-departure rates. The figures show the time difference between

consecutive writes for the generated panorama as well as for the individual camera

streams. Operating system calls, interrupts and disk accesses will most likely cause

small spikes in the write times (as seen in the scatter plot in figure 12(a) and 12(b)),

but as long as the average times are equal to the real-time threshold, the pipeline

can be considered real-time. As we can see in figures 11, 12(c) and 12(d), the average

frame inter-arrival time (Reader) is equal to the average frame inter-departure time

(both SingleCamWriter and PanoramaWriter). This is also the case testing other

CPU frequencies and number of available cores. Thus, the pipeline runs in real-time.

As said above and seen in figure 12(a) and 12(b), there is a small latency in

the panorama pipeline compared to writing the single cameras immediately. The

total panorama pipeline latency, i.e. the end to end frame delay from read from the

camera until written to disk, is equal to 33 ms per sequential module (as long as

the modules perform fast enough) plus a 5 second input buffer (the input buffer is

because the sensor system has at least 3 second latency before the data is ready

for use, and we have added a 2 second buffer for GPU processing). The 33 ms are

caused by the camera frame rate of 30 fps, meaning that even though a module

may finish before the threshold, the Controller will make it wait until the next set

of frames arrive before it is signaled to re-execute. This means that the pipeline

latency is 5.33 seconds per frame on average.
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(b) Inter-departure time of PanoramaWriter. The inter-

departure frames delayed by five seconds due to the two sec-
ond safety buffer in CPU/GPU transfer and the three second

delay of the sensor data.
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Figure 12. Inter-departure time of frames when running the entire pipeline. In a real-time scenario,
the output rate should follow the input rate (given here by the trigger box) at 30 fps (33ms).

5. Discussion

Our soccer analysis application integrates a sensor system, soccer analytics anno-

tations and video processing of a video camera array. There already exist several
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components that can be used, and we have investigated several alternatives in our

research. Our first prototype aimed at full integration at the system level, rather

than being optimized for performance. In this paper, however, our challenge has

been of an order of magnitude harder by making the system run in real-time on

low-cost, off-the-shelf hardware.

The new real-time capability also enables future enhancements with respect

to functionality. For example, several systems have already shown the ability to

serve available panorama video to the masses [13, 23], and by also generating the

panorama video live, the audience can mark and follow particular players and events.

Furthermore, ongoing work also include machine learning of sensor and video data

to extract player and team statistics for evaluation of physical and tactical perfor-

mance. We can also use this information to make video playlists [15] automatically

giving a video summary of extracted events. Due to limited availability of resources,

we have not been able to test our system with more cameras or higher resolution

cameras. However, to still get an impression of the scalability capabilities of our

pipeline, we have performed several benchmarks changing the number of available

cores, the processor clock frequency and GPUs with different architecture and com-

pute resources. Figure 13a shows the results changing the number of available cores

that can process the many concurrent threads in the CPU-part of pipeline (fig-

ure 12(c) shows that the pipeline is still in real-time). As we can observe from the

figure, every component runs in real-time using more than 4 cores, and the pipeline

as a whole using 8 or more cores. Furthermore, the CPU pipeline contains a large,

but configurable number of threads (86 in the current setup), and due to the many

threads of the embarrassingly parallel workload, the pipeline seems to scale well

with the number of available cores.
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Figure 13. Core count scalability

Similar conclusions can be drawn from figure 14 where the processing time is

reduced with a higher processor clock frequency, i.e., the pipeline runs in real-

aNote that this experiment was run on a machine with more available cores (16), each at a lower
clock frequency (2.0 GHz) compared to the machine installed at the stadium which was used for

all other tests.
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time already at 3.2 GHz, and there is almost a linear scaling with CPU frequency

(figure 12(d) shows that the pipeline is still in real-time). Especially the H.264

encoder scales very good when scaling the CPU frequency. With respect to the

GPU-part of the pipeline, figure 15 plots the processing times using different GPUs.
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Figure 14. CPU frequency scalability

The high-end GPUs GTX 480 and above (Compute 2.x and higher) all achieve

real-time performance on the current setup. The GTX 280 is only compute 1.3

which does not support the concurrent CUDA kernel execution in the Fermi archi-

tecture [24], and the performance is therefore slower than real-time. As expected,

more powerful GPUs reduce the processing time. For now, one GPU fulfills our

real-time requirement, we did therefore not experiment with multiple GPUs, but

the GPU processing power can easily be increased by adding multiple cards. Thus,

based on these results, we believe that our pipeline easily can be scaled up to both

higher numbers of cameras and higher resolution cameras.

6. Conclusions

In this paper, we have presented a prototype of a real-time panorama video pro-

cessing system. The panorama prototype is used as a sub-component in a real sport

analysis system where the target is automatic processing and retrieval of events

at a sports arena. We have described the pipeline in detail, where we use both

the CPU and a GPU for offloading. Furthermore, we have provided experimental

results which prove the real-time properties of the pipeline on a low-cost 6-core

machine with a commodity GPU, both for each component and the combination of

the different components forming the entire pipeline.

The entire system is under constant development, and new functionality is added

all the time, e.g., camera-array-wide synchronized automatic exposure [8], interac-

tive zoom and panning [9, 10], extended search functionality [22] and scaling the

panorama system up to a higher number of cameras and to higher resolution cam-

eras [9]. So far, the pipeline scales nicely with the CPU frequencies, number of

cores and GPU resources. We plan to use PCI Express-based interconnect tech-

nology from Dolphin Interconnect Solutions for low latency and fast data transfers

between machines. Experimental results in this respect is though ongoing work and
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out of scope in this paper.
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