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Abstract—Experience has shown that development using
shared-memory concurrency, the prevalent parallel programming
paradigm today, is hard and synchronization primitives nonintu-
itive because they are low-level and inherently nondeterministic.
To help developers, we propose Kahn process networks, which
are based on message-passing and shared-nothing model, as a
simple and flexible tool for modeling parallel applications. We
argue that they are more flexbile than MapReduce, which is
widely recognized for its efficiency and simplicity. Nevertheless,
Kahn process networks are equally intuitive to use, and, indeed,
MapReduce is implementable as a Kahn process network. Our
presented benchmarks (word count and k-means) show that a
Kahn process network framework permits alternative implemen-
tations that bring significant performance advantages: the two
programs run by a factor of up to ∼ 2.8 (word-count) and ∼ 1.8

(k-means) faster than their implementations for Phoenix, which
is a MapReduce framework specifically optimized for executing
on multicore machines.

I. INTRODUCTION

Developing applications that exploit multiple computing

resources, be it multiprocessors, chip-level multiprocessors

or co-processors is challenging. Since such systems have

become a commodity, the number of developers expected

to face this challenge is increasing. Implicit communication,

through shared data structures, is the reigning paradigm despite

the recognition that standard concurrency control mechanisms

(e.g., mutexes, semaphores and condition variables) are dif-

ficult to use correctly [1]. Their non-deterministic nature

also makes the learning curve steeper – for example, many

newcomers to multithreaded programming are surprised to

learn that mutexes or condition variables wake up threads in

arbitrary instead of FIFO order. Hence, several frameworks

and higher-level abstractions (designed to ease parallelization)

have been proposed, such as software transactional memory

(STM) [2], MapReduce [3] and Dryad [4].

Each of these proposed frameworks, however, has some

drawbacks: STM has large overheads; MapReduce is very

rigid (in the sense that computation steps are predetermined);

Dryad supports non-deterministic constructs and disallows cy-

cles in the communication graph and is thus, like MapReduce,

unable to model iterative algorithms.

We therefore propose that Kahn process networks (KPN)

[5] be used for expressing parallelism in programs. KPNs

are the least restrictive message-passing model that yields

provably deterministic programs, i.e., programs that yield

always the same output given the same input, regardless

of the order in which individual processes are scheduled.

Determinism is achieved by placing restrictions on processes;

it has been proven formally that the resulting model is no

longer deterministic if one or more of these restrictions are

removed. Using KPNs for development of parallel applications

brings several benefits:

• Sequential coding of individual processes. Processes are

written in the usual sequential manner; synchronization

is implicit in explicitly coded communication primitives

(message send and receive).

• Composability. Connecting the output of a network com-

puting function f(x) to the input of a network computing

g(x) guarantees that the result will be g(f(x)). Thus,

components can be developed and tested individually, and

later assembled together to achieve more complex tasks.

• Reliable reproduction of faults. Because of determinism,

it is possible to reliably reproduce faults (otherwise

notoriously difficult), which will greatly ease debugging.

While MapReduce and Dryad also have most of the above

benefits, KPNs have several additional key properties that

make them suitable for modeling and implementing a wider

range of problems than MapReduce and Dryad:

• Arbitrary communication graphs. Whereas MapReduce

and Dryad restrict developers to the structure of figure 1

and directed acyclic graphs (DAGs), respectively, KPNs

allow cycles in the graphs. Because of this, they can

directly model iterative algorithms. With MapReduce and

Dryad this is only possible by manual iteration, which

incurs high setup costs before each iteration [6].

• No prescribed programming model. Unlike MapReduce,

KPNs do not require that the problem be modeled in

terms of processing over key-value pairs. Consequently,

transforming a sequential algorithm into a Kahn process

often requires minimal modifications to the code, con-

sisting mostly of inserting communication statements at

appropriate places.

The flexibility of KPNs allows the implementation of the

full semantics of MapReduce, so they are as easy (or hard) to

use as MapReduce. However, we and others [7] have noticed

that the structure of the MapReduce computation is not always

a good match to the task at hand, and, as we will show in this

paper, can adversely impact performance. Because a single,

multi-core machine has much more limited resources than
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Fig. 1. Structure of MapReduce computation represented as a KPN. Dashed
lines represent connections between all pairs of processes in the two stages.
Merge (M) and split (S) processes can be omitted when several MapReduce
computations are chained.

a large cluster, we deem that it is important to investigate

MapReduce alternatives that will be more efficient on a small

scale.

To investigate whether direct KPN modeling has advantages

over modeling with MapReduce, we have implemented the

word count, which is the canonical MapReduce example, and

k-means applications. Each application is implemented in two

variants, KPN-MR and KPN-FLEX (4 programs in total). The

KPN-MR variant constructs a MapReduce network topology,

while the KPN-FLEX variant constructs a topology tailored

to the problem. In our benchmarks, KPN-FLEX outperforms

KPN-MR by a factor of up to 1.3 for the k-means program, and

by a factor of up to 6.7 in the word count program. Similarly,

KPN-FLEX runs faster by a factor of up to ∼ 2.8 (word-count)

and ∼ 1.8 (k-means) than their equivalents for Phoenix [6],

which is a MapReduce framework specifically optimized for

executing on multicore machines.

II. RELATED WORK

MapReduce [3] is a popular framework for processing of

large amounts of data on a cluster of machines. Its basic

structure is a pipeline, but each stage consists of several

concurrent processes (see figure 1). The splitter process (S)

splits the input into roughly equal chunks and sends them to

m processes in the map stage. Processes in the map stage

apply a user-defined function to each record, consisting of a

key and a value,1 and send the resulting records to n processes

in the reduce stage. Records with identical keys are always

sent to the same reduce process, so that the final value of the

reduce function for the given key can be computed without

communicating with other reduce processes. The reduce stage

first sorts the data items by their key, and then applies another

user-defined function over each group of data items with

identical keys. The final stage of the computation is the merge

process (M) which merges n sorted outputs from reduce

processes into a single sorted output stream of data items.

Dryad [4] is a system for describing and executing, in a

potentially distributed manner, computations whose communi-

cation patterns are expressed by directed acyclic graphs. Main

features, namely message-passing and sequential programming

1The key-value paradigm stems from the MapReduce pattern; it is not
necessary to use it when modeling a problem as a KPN.

model of individual processes, are shared with the KPN model.

However, there are a number of differences. First, Dryad is not

based on any formal foundation. Second, Dryad introduces

asynchronous interfaces which may, as a consequence, result

in nondeterministic programs (indeed, Dryad’s nondetermin-

istic merge is built upon these interfaces). Third, loops in

the communication graph are not allowed, which makes it

impossible to model iterative algorithms such as k-means (see

section V).

While there are other parallel programming models, due

to space constraints we have been able to describe only

MapReduce and Dryad in detail. Other models include shared-

memory concurrency, pipelines, and unstructured point-to-

point communication as available through the MPI program-

ming interface. In this taxonomy, parallel pipelines and DAGs

have limited expressiveness because they do not allow cycles

in the graph. Cycles are possible with unstructured commu-

nication, but inadvertent problems – such as non-determinism

and deadlocks – occur easily. Thus, KPNs are the most flexible

model which still guarantees determinism, which is the reason

for our deeper investigation of their properties.

III. KAHN PROCESS NETWORKS

A KPN [5] has a simple representation in the form of a

directed graph with processes as nodes and communication

channels as edges (see Section V for examples). A process

encapsulates data and a single, sequential control flow, inde-

pendent of any other process. Processes are not allowed to

share data and may communicate only by sending messages

over channels. Channels are infinite FIFO queues that store

discrete messages. Channels have exactly one sender and one

receiver process on each end (1:1), and every process can have

multiple input and output channels. Sending a message to the

channel always succeeds, but trying to receive a message from

an empty channel blocks the process until a message becomes

available. It is not allowed to poll a channel for presence of

data. These properties fully define the operational semantics

of KPNs and make the Kahn model deterministic, i.e., the

history of messages produced on the channels does not depend

on the order in which the processes are executed, provided the

scheduling is fair, i.e., that execution of a ready process will

not be indefinitely postponed.

The theoretical model of KPNs described so far is idealized

in two ways: 1) it places few constraints on process behavior,

and 2) it assumes that channels have infinite capacities. These

assumptions are somewhat problematic because they allow

construction of KPNs which need unbounded space for their

execution, but any real implementation is constrained to run

in finite memory. A common (partial) solution to this is to

assign capacities to channels and redefine the semantics of

send to block the sending process if the delivery would cause

the channel to exceed its capacity. Under such send semantics,

an artificial deadlock may occur, i.e., a situation where a

cyclically dependent subset of processes blocks on send, but

which would continue running in the theoretical model. The

algorithm of Geilen and Basten [8] resolves the deadlock by



Fig. 2. Two-level KPN scheduling

traversing the cycle to find the channel of least capacity and

enlarging it by one message, thus resolving the deadlock.

IV. KPN IMPLEMENTATION

Our KPN execution environment is implemented in C++,

and it runs on Windows and POSIX operating systems (Solaris,

Linux, etc.) Our implementation2 of the run-time environment

for executing KPNs consists of a Kahn process (KP) sched-

uler, message transport and deadlock detection and resolution

algorithms.

To the best of our knowledge, there exist only two other

general-purpose KPN runtime implementations: YAPI [9] and

Ptolemy II [10]. YAPI is not a pure KPN implementation, as

it extends the semantics and thus introduces the possibility

of non-determinism, its code-base is too large for easy exper-

imentation (120 kB vs. 40 kB in our implementation), and

we were unable to make it use multiple CPUs. Ptolemy II

is a Java-based prototyping platform for experimenting with

various models of computation, and it spawns one thread

for each Kahn process, which is rather inefficient for large

networks. The amount of code that the JVM consists of would

make it prohibitively difficult to experiment with low-level

mechanisms, such as context-switch.

A. Process scheduler

The scheduler may be configured, at compile-time, in two

ways. In the first configuration, each KP is run in its own OS-

thread. Channels are protected by blocking mutexes, and noti-

fications are done by using condition variables. However, our

earlier measurements have shown that the native mechanisms

suffer from high overheads, so we have also implemented an

optimized KP scheduler.

The second configuration uses our own work-stealing sched-

uler. When the KPN is started, m runner threads are created

and scheduled by the OS onto n available CPUs (see figure

2). Each runner implements a work-stealing policy [11], i.e.,

it has a private run queue of ready KPs, and if this queue

is empty, it tries to steal a KP from a randomly chosen

runner. For simplicity, we do not use the non-blocking queue

described in [11]; instead we use ordinary mutexes. Context-

switch between KPs is implemented in user-mode. On Solaris

2Available code: http://simula.no/research/networks/software

and Linux running on AMD64 architecture we employ hand-

crafted assembly code; on other platforms we use OS-provided

facilities, which often incur some additional overhead.

The channels are protected with polling mutexes: if a

KP cannot obtain the channel’s lock, it will spin, explicitly

yielding to the scheduler between iterations, until it has finally

obtained the lock. Waiting and signaling are implemented by

a protocol between KPs and the scheduler. The protocol is

optimized for the case of having at most one sleeping KP,

which is possible because channels are 1:1, and at most one

process can ever be blocked on a channel.

B. Message transport

Channels have a two-fold role: to transport messages and to

interact with the scheduler, i.e., block and unblock processes

on either side of the channel. Message send/receive is im-

plemented by copying the messages to/from channel buffers.

Zero-copy transfer would require dynamic memory allocation,

and we have measured that copying is less expensive as long

as messages are smaller than ∼ 256 bytes.

We have also extended channels with EOF indication: the

sender can set the EOF status on the channel when it has

no more messages to send. After EOF on the channel has

been set, the receiver is able to read the remaining buffered

messages, but the next receive will immediately return false

instead of blocking. A further attempt to receive a message

from the channel will permanently block the process.

An alternative approach to EOF signaling is sending a

message with specific contents as the last message on the

channel. The disadvantage is that all values of the channel’s

type (e.g., int) might be meaningful in a given context, so no

value could be used to encode the EOF value. In such cases,

one would be forced to use more cumbersome solutions that

also potentially impose additional overhead.

C. Deadlock detection and resolution

Deadlock detection and resolution is a mechanism which al-

lows execution of KPNs in finite space. Since communication

is 1:1, every cycle of blocked KPs is a ring; a property which

greatly simplifies detection. Whenever the currently running

KP would block on send, the algorithm is invoked to check

whether an artificial deadlock occurred. If no cycle is found,

the current KP is blocked and this fact is recorded in the

blocking graph data structure. Otherwise, the capacity of the

smallest channel in the cycle is increased by one, as suggested

by [8]. If the channel belongs to the current KP, the current

KP is immediately resumed; else the KP on the channel’s send

side is unblocked, and the current KP is blocked. Similarly,

receiving from a full channel unblocks the KP on the sending

side and removes an edge from the blocking graph.

Our current implementation uses a centralized data structure

for the blocking graph, so the above operations must run

while holding a single global mutex. Despite this, we have

not noticed significant scalability issues on up to 8 CPUs on

the workloads described in this paper. This is because of the

interaction of the following elements:



• KPs that do not need to block or wake up another KP

continue to run undisturbed.

• Since the number of KPs is usually much larger than the

number of runners, it is to be expected that many KPs

will be ready and little work will be stalled.

• The time the global mutex is held for in the worst case

is proportional to the size of the largest potential cycle,

which is small in our examples.

V. MODELING WITH KPNS

Parallelizing an application with KPNs (as well as with

Dryad and MapReduce) entails three steps:

1) Identifying independent subtasks (components) and their

corresponding inputs and outputs.

2) Implementing subtasks, possibly by “filling in the

blanks” in off-the-shelf components (e.g., Reduce and

n-way merge).

3) Determining the number of subtasks and communication

between them; the latter will be largely dependent on the

previous step.

We demonstrate this methodology on the word count and k-

means programs. Even though word count is the “canonical”

MapReduce example, its implementation via MapReduce is

rather inefficient, in terms of the amount of unnecessary extra

work done. k-means is an example of an iterative data-parallel

algorithm, and is because of that a rather bad match for

MapReduce, as is also noted in [6].

A. Word count

The word count program counts the number of occurrences

of each word in a given text and outputs them sorted in the

order of decreasing frequency.

The MapReduce and KPN-MR solutions require two

MapReduce instantiations connected in series, such that the

output of the Reduce stage is sent directly to the input of the

Map stage of the second instantiation, without an intervening

merge stage. Schematically, the network looks like this (note

the pipeline structure):

S → MR1 → MR2 → M

where each MapReduce has a structure corresponding to the

one shown in figure 1.

The output of MR1 is a list of word-count pairs sorted

alphabetically by word. MR2 then reverses word-count pairs

to count-word pairs, count now being the key, in order to sort

them by frequency. The reduce function of MR2 is identity

and the only role of this stage is sorting.

The subtasks of our KPN-FLEX solution (see Figure 4)

are operationally identical to those of the KPN-MR solution:

splitting the (memory-mapped, copy-on-write) input file into

chunks, counting word frequency in individual chunks, sum-

ming and sorting partial word frequencies of chunks, and

finally merging partial counts into a single sorted list.

The code that implements the count stage is shown in

Figure 3; note that this is real code, taken from a working

program (see appendix of [3] for Google’s implementation).

void count::parse_word(text_chunk &chunk)

{

char *b = get<0>(chunk), *e = get<1>(chunk);

char *w;

// Skip leading non-letters.

while((b < e) && !inword(*b)) ++b;

// Parse word and convert to uppercase

for(w = b; (w < e) && inword(*w); ++w)

*w -= ((*w >= ’a’) && (*w <= ’z’))*(’a’-’A’);

// Insert new word, or increase count

if(b != w) {

std::pair<count_hash::iterator,bool> rv =

counts_.insert(count_hash::value_type(

word(b, w), 1));

if(!rv.second)

++rv.first->second;

}

get<0>(chunk) = w;

}

void count::behavior()

{

text_chunk chunk;

boost::hash<word> h;

count_hash::iterator it;

in(0).recv(chunk);
while(get<0>(chunk) != get<1>(chunk))

parse_word(chunk);

for(it = counts_.begin();

it != counts_.end(); ++it)
out(h(it->first) % out_count()).send(it);

eof_all();

}

Fig. 3. C++ code for the count stage of the word count program in KPN-
FLEX implementation (see also figure 4). The code in bold font are the only
necessary additions to the sequential version of the algorithm.

S

count sum,sort

M

Fig. 4. KPN-FLEX for solving the word count problem.

Kahn processes are in our framework implemented as classes

which must derive from the actor class and implement the

pure virtual behavior method, which is the entry point.

The count process initially receives a text chunk which is

represented as a (start, end) tuple of pointers. The following

while counts individual words in the text chunk: it keeps

calling the parse_word routine which extracts the next word

from the chunk and updates the hash table of counts. When

all words from the chunk have been extracted, the hash table

is iterated and iterators to each (word, count) pair are sent to

the sum process. To distribute the load approximately evenly,
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Fig. 5. KPN-MR for solving the k-means problem. We had to introduce
additional process (I) to iterate the MR block, whose constituent parts are
shown in Figure 1.

the destination output is calculated by taking the hash of each

word modulo the number of outputs. Finally, the eof_all()

statement sets an EOF indication on all output channels.

B. k-means

k-means is an iterative algorithm used for partitioning a

given set of points in multidimensional space into k groups; it

is used in data mining and pattern recognition. The algorithm

consists of the following steps:

1) Make initial guess for the center of gravity (centroid) of

each of the k groups.

2) Assign each point from the dataset to the group which

centroid is closest to the point.

3) Recalculate new centroids based on the new assignment

of points to clusters.

4) Repeat from step 2, now with new centroid coordinates,

until the process converges (i.e., the centroids do not

move by more than a preset threshold).

In the KPN-MR implementation, the Map stage computes

the index i of the nearest mean for each point p and emits

(i, p) as the intermediate key-value pair. The Reduce stage

computes the new mean values from the intermediate key-

value pairs. Since MapReduce alone cannot model iterative

algorithms, we construct the KPN shown in Figure 5. The

MapReduce implementation is optimized in the same way as

for word count: the Map stage and Reduce stage send out

pointers to vectors instead of individual points.

KPN-FLEX that executes the k-means algorithm is shown in

Figure 7. The I (iterate) process has two phases: initialization

and iteration. The initialization phase generates a vector of

random points, selects new k random points as the starting

centroids, and partitions the point vector into as many approx-

imately equal parts as there are worker processes (unlabeled

in the figure). Then, it sends a partition of the point set to

each worker as a pair of (start, end) iterators, and sends all k

centroids, each in own message, to every worker. When the

initialization phase has finished, the iteration phase, described

below, begins.

A worker receives on its input the current location of the

means and computes the new cluster assignment for its part of

the point set; each time a point is assigned to a new cluster, the

centroid corresponding to the partial point set assigned to the

worker is updated. When a worker has finished with its points,

it sends partial sums for centroids to the iteration process (I).

Since mean is a linear operation, the iteration process can take

the partial sums and counts to compute the new locations of

the centroids. If the new locations are equal to the locations

from the previous iteration, the process has converged and the

program terminates.

void kmeans::behavior()

{
size_t i;

// Receive the point set.

in1.recv(points_);

while(1) {
point_vec partial_sums(cur_means_.size(),

ZEROPOINT);

// New iteration: get recalculated means

for(i = 0; i < cur_means_.size(); ++i)
if(!in2.recv(cur_means_[i]))

return;

point_vec::iterator it;

for(it = get<0>(points_);

it != get<1>(points_); ++it)

{
// Recompute point’s cluster.

int c = std::min_element(

cur_means_.begin(), cur_means_.end(),

bind(&distance, *it, _1) <

bind(&distance, *it, _2))

- cur_means_.begin();

// Assign point to the new cluster and

// update cluster’s partial sum

it->c = c;

for(int k = 0; k < DIM; ++k)

partial_sums[c].v[k] += it->v[k];

++partial_sums[c].c;

}

// Send partial sums to the I process.

for(i = 0; i < partial_sums.size(); ++i)

out.send(partial_sums[i]);
}

}

Fig. 6. C++ code for the worker processes of the k-means program in
KPN-FLEX implementation. The code lines typeset in bold font are the only
necessary additions to the sequential algorithm.

I

Fig. 7. KPN-FLEX for solving the k-means problem. Edges with double
arrows represent two channels, one in each direction. “Parallel” channels are
carrying messages of different types.

The full code executed by the worker process is shown

in Figure 6. The additional code necessary to transform

the sequential algorithm into a Kahn process is shown in

bold text. Also note how the code in bold font resembles

programming with ordinary files: a process reads its input,

item by item, from input ports (files opened for reading), does

some processing, writes results to its output ports (files opened

for writing), and exits when EOF is detected on some input

port (file).



VI. EVALUATION

To evaluate advantages of modeling with KPNs, we have

implemented the word count and k-means programs as KPN-

FLEX and KPN-MR networks (see Section V). All test

programs have been compiled as 64-bit with GCC 4.3.2 and

maximum optimizations (-m64 -O3 -march=opteron).

We have run them on an otherwise idle 2.6 GHz AMD

Opteron machine with 4 dual-core CPUs, 64 GB of RAM

running linux kernel 2.6.27.3. Each program has been run

10 times on 1, 2, 4 and 8 CPUs with differing number of

worker processes. We present the average wall-clock (real)

time of 10 runs together with error lines showing the standard

deviation. Note that we compare the unoptimized (in terms

of the number of exchanged messages) KPN implementations

with the optimized MapReduce (over KPN) implementations.

The wall-clock time metric is most representative because

it accurately reflects the real time needed for task completion,

which is what the end-users are most interested in. We have

also measured system and user times (getrusage), but do

not use them to present our results because 1) they do not

reflect the reduced running time with multiple CPUs, and

2) resource usage does not take into account sleep time,

which nevertheless may have significant impact on the task

completion time.

A. Implementation considerations

Our unoptimized MapReduce implementation of the word

count program was slower by an order of magnitude than the

optimized implementation, for which we present the results. In

the unoptimized case, each key-value pair was sent in its own

message, and the number of sent messages was dominated by

the total number of words in the input file. The optimized

KPN-MR implementation allocates as many vectors holding

key-value pairs as there are outputs from the Map and Reduce

stages. Individual pairs are distributed across the vectors,

taking care that pairs with the same key are placed in the

same vector. Afterwards, a single message with a pointer to

the vector is sent to each output. We could have optimized the

KPN-FLEX implementations in a similar way, but we decided

against it because it would somewhat obscure similarity with

the sequential algorithm.

We have furthermore optimized the KPN-MR k-means

implementation by introducing the extra process that iterates

the MapReduce block (see Figure 5), thus avoiding KPN

startup and shutdown costs which Phoenix suffers in each

iteration.

B. Word count

We have run the word count program on files of size 10,

50 and 100MB, which is also the dataset used to benchmark

Phoenix. Both implementations have been run on 1, 2, 4 and

8 CPUs, and with the number of runners in each stage varying

from 8 to 128 in steps of 8. Figure 8 shows running time of the

KPN-FLEX solution for the three datasets in the left column,

and of KPN-MR solution in the right column; our findings are

also summarized in Table I.

TABLE I
WORD COUNT EXPERIMENT SUMMARY: NUMBER OF WORKERS n THAT

ACHIEVES THE BEST RUNNING TIME t (IN SECONDS), RELATIVE SPEEDUP

OVER ONE CPU (α) AND SPEEDUP FACTOR OF KPN-FLEX OVER

KPN-MR (f ).

Size KPN-MR KPN-FLEX
n t α n t α f

10/1 96 1.24 1.00 8 0.36 1.00 3.41
10/2 64 0.80 1.55 16 0.21 1.71 3.80
10/4 48 0.46 2.70 16 0.14 2.57 3.24
10/8 32 0.32 3.88 16 0.11 3.27 2.95

50/1 120 8.57 1.00 8 1.54 1.00 5.57
50/2 128 5.14 1.67 16 0.87 1.77 5.91
50/4 64 2.92 2.93 24 0.52 2.96 5.57
50/8 48 1.86 4.61 24 0.37 4.16 5.06

100/1 128 20.00 1.00 8 3.17 1.00 6.30
100/2 88 12.22 1.64 32 1.81 1.75 6.74
100/4 104 6.65 3.01 32 1.08 2.94 6.14
100/8 56 4.23 4.73 32 0.74 4.28 5.69

We can see that the running time decreases as more CPUs

are used and that the KPN-FLEX version has several times

better performance than the KPN-MR version. The variation

in running times is rather small between experiments, except

for the KPN-MR solution with 2 runner threads; as of now we

cannot explain this variation. With respect to the number of

workers, the situation is more complicated: the running time

decreases as the number of workers increases up to a certain

point. Word count is a communication-intensive task and

having more workers improves performance by more evenly

distributing the load among CPUs and reducing contention in

the work stealing scheduler: the more processes there are in

the system, the smaller probability that a runner will need to

steal a process from another runner.

Furthermore, as described in Section IV, processes acquire

locks by busy-waiting and yielding between successive at-

tempts. When there are enough ready processes, waiting on

a lock will yield to another ready process which will be able

to perform some useful work. When the number of processes

increases even more, the performance starts dropping again for

two reasons: 1) context-switch overheads (which also increase

pressure on CPU caches), and 2) we conjecture that an even

more important factor is contention over the single deadlock

detection lock.

Table I gives an insight into scalability of KPN-MR and

KPN-FLEX implementations with respect to the number of

CPUs, which turns out to be approximately logarithmic: the

running time decreases linearly with each doubling of the

number of runner threads. We see also that KPN-FLEX is

consistently faster than KPN-MR, by a factor of 3 – 6.7, and

that the speedup is proportional with the problem size.

C. k-means

The k-means program generates a number of 3-dimensional

points with random integer coordinates from the cube

[0, 1000)3. The random number generator is always initialized

with the same seed, so each run executes the same number of

iterations. We have measured performance of the program on

three problem instances differing in the number of points and
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Fig. 8. Running times for the word count program run on three different input files (10, 50 and 100 MB), implemented as KPN-FLEX and KPN-MR;
vertical lines represent standard deviation. The number of workers for the KPN-MR version is per stage, so there are four times as many processes in total
(two MR blocks, each consisting of two stages, each stage having the same number of workers).

groups (see Table II) and on 1, 2, 4, and 8 CPUs. Since this

is a CPU-intensive benchmark with little communication, we

have set the number of workers to be equal to the number

of runner threads; very little experimentation was needed to

establish that this was the optimal choice.

Again, the KPN-FLEX solution outperforms the KPN-MR

solution, although the speedup is not as drastic as in the

word count example. The main reason for this is that, unlike

with word count, very little unnecessary work is performed

by KPN-MR, namely only sorting before computing the new

means for the next iteration. Table III shows speedup of the

KPN-FLEX solution over KPN-MR. We see that the speedup

is ∼ 1.2 (20%) for the benchmarks with 100 groups, and

TABLE II
K-MEANS PROBLEM SIZES AND NUMBER OF ITERATIONS UNTIL

ALGORITHM CONVERGES. THE AMOUNT OF WORK PERFORMED IN EACH

ITERATION IS PROPORTIONAL TO THE PRODUCT OF THE NUMBER OF

POINTS AND GROUPS.

Points Groups Iterations

A 100000 100 97
B 200000 50 140
C 200000 100 139

∼ 1.4 (40%) for the benchmark B with 50 groups. Since KPN-

MR is recalculating means in parallel, this leads us to believe

that the single I process which recalculates new means is the
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Fig. 9. Benchmark results for the k-means program run on three different
problem sizes, implemented as KPN-MR and KPN-FLEX. Vertical lines
(barely visible) represent standard deviation. KPN-FLEX solution has as many
worker process as the number of runners that were used in the benchmark.
Similarly, the KPN-MR solution has the same number of workers as CPUs
in each stage.

bottleneck in the KPN-FLEX solution. Nevertheless, unlike

the word count example, the k-means program shows almost

perfect linear scalability with the number of CPUs.

D. Comparison with Phoenix

We have also benchmarked our KPN-FLEX and KPN-MR

against Phoenix [6], which is a MapReduce implementation

designed specifically for multicore machines. Phoenix is im-

plemented with pthreads and uses by default as many threads

in each of the Map and Reduce stages as there are CPUs on

the machine. We had to compile Phoenix programs in 32-

bit mode because their code uses non-portable casts between

pointers and integers, which causes crashes in 64-bit mode.

This is certainly to Phoenix’s advantage because it allocates

TABLE III
K-MEANS EXPERIMENT SUMMARY: MEAN RUNNING TIME (t), RELATIVE

SPEEDUP OVER ONE CPU (α) AND AND SPEEDUP FACTOR OF KPN-FLEX
OVER KPN-MR (f ).

Size KPN-MR KPN-FLEX
t α t α f

A/1 13.37 1.00 11.45 1.00 1.17
A/2 6.82 1.96 5.79 1.98 1.18
A/4 3.49 3.83 2.93 3.91 1.19
A/8 1.83 7.31 1.51 7.58 1.21

B/1 22.64 1.00 16.74 1.00 1.35
B/2 11.80 1.92 8.44 1.98 1.40
B/4 6.07 3.73 4.35 3.85 1.40
B/8 3.20 7.08 2.24 7.47 1.43

C/1 38.68 1.00 32.83 1.00 1.18
C/2 19.84 1.95 16.39 2.00 1.21
C/4 10.11 3.83 8.35 3.93 1.21
C/8 5.19 7.45 4.26 7.71 1.22

TABLE IV
MEAN RUNNING TIMES IN SECONDS (t) OF THE WORD COUNT AND

K-MEANS PROGRAMS FOR PHOENIX, KPN-MR AND KPN-FLEX; IN

CASE OF KPNS, THE SMALLEST TIME ON 8 CPUS IS SHOWN. σ IS

STANDARD DEVIATION AND f IS SPEEDUP FACTOR OVER PHOENIX.

Size Phoenix KPN-MR KPN-FLEX
t (σ) t f t f

Word Count

10 0.30 (0.02) 0.32 0.94 0.11 2.73
50 0.98 (0.02) 1.86 0.53 0.37 2.65
100 2.04 (0.05) 4.23 0.48 0.74 2.76

k-Means

A 2.39 (0.05) 1.83 1.31 1.51 1.58
B 3.92 (0.21) 3.20 1.23 2.24 1.75
C 5.43 (0.22) 5.19 1.05 4.26 1.28

arrays of pointers, which would take twice as much space in

the 64-bit mode, which causes fewer cache and TLB misses

than in 64-bit mode.

Table IV shows Phoenix, KPN-MR, and KPN-FLEX run-

ning times for word count and k-means programs on all

problem sizes. All Phoenix experiments have been run on the

same machine 10 times, and the mean and standard deviation

has been calculated.

In the word count benchmark, the KPN-MR program is

consistently slower than Phoenix, by a factor of 1.06 on the

10MB file, and by a factor of ∼ 2 on 50MB and 100MB files.

This result is not very surprising since Phoenix is optimized

for running MapReduce programs, while our KPN runtime

assumes nothing about the network topology. However, the

KPN-FLEX program, by having the ability to use data struc-

tures that are more suited to the given task (hash tables)

and avoiding unnecessary work that MapReduce semantics

requires (extra sort), achieves 2.6 times better performance

than Phoenix.

Somewhat more surprisingly, both our KPN-MR and KPN-

FLEX solutions outperform Phoenix on the k-means bench-

mark, by factors of 1.05 – 1.3 and 1.28 – 1.75, respectively.

The KPN-FLEX solution performs better because it avoids

doing unnecessary work. However, we are as of yet unsure

about the reasons for the unexpectedly good performance of

the KPN-MR solution. We believe that the main reason for



good performance of the KPN-MR solution is the elimination

of framework (de)initialization that Phoenix has to perform on

each iteration.

VII. CONCLUSION AND FUTURE WORK

In this paper we have reviewed in detail MapReduce and

Dryad frameworks and KPNs. We have identified KPNs as the

most flexible abstraction that presents a sequential program-

ming model, while still ensuring deterministic execution of

programs. We have also demonstrated that the MapReduce

paradigm, widely recognized for its simplicity, is only a

specially crafted KPN with fixed communication patterns.

To investigate advantages of KPN models, we have im-

plemented the word count and k-means programs using two

KPN topologies: one closely implementing the semantics of

MapReduce (KPN-MR), and another which is specially crafted

to the problem at hand (KPN-FLEX). In our benchmarks, on

a 64-bit 8-core machine, KPN-FLEX implementation always

outperforms the KPN-MR implementation (up to a factor

of 1.3 for the k-means program and up to a factor of 6.7

for the word count program). Compared with Phoenix [6],

KPN-FLEX implementations of word count and k-means

programs are faster by a factor of up to 2.7 and 1.7. KPN-MR

implementation of the word count program is about 2 times

slower than Phoenix, but the KPN-MR implementation of the

k-means program is, surprisingly, up to a factor of 1.3 faster

than Phoenix.

Our future work includes performing more extensive tests

to better understand performance characteristics of KPNs,

especially in relation to the total number of processes and

increasing scalability on machines with many CPUs. Work

on scalability can be done by experimenting in three areas:

using lock-free queues for channel communication (e.g., the

one described in [12]), evaluating trade-offs between using

lock-free queues or locks with exponential backoff in the work

stealing scheduler, as well as implementing a distributed (as

opposed to the current centralized) deadlock detection and

resolution algorithm [13].
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