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ABSTRACT
Nowadays, it has become possible to measure different human
activities using wearable devices. Besides measuring the number
of daily steps or calories burned, these datasets have much more
potential since different activity levels are also collected. Such data
would be helpful in the field of psychology because it can relate to
various mental health issues such as changes in mood and stress.
In this paper, we present a machine learning approach to detect
depression using a dataset with motor activity recordings of one
group of people with depression and one group without, i.e., the
condition group includes 23 unipolar and bipolar persons, and
the control group includes 32 persons without depression. We use
convolutional neural networks to classify the depressed and non-
depressed patients. Moreover, different levels of depression were
classified. Finally, we trained a model that predicts Montgomery-
Åsberg Depression Rating Scale scores. We achieved an average
F1-score of 0.70 for detecting the control and condition groups. The
mean squared error for score prediction was approximately 4.0.
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1 INTRODUCTION
In recent years, the use of wearable devices to monitor mental and
physical health has become quite normal. People are collecting data
every day to improve their lives and to supervise their fitness levels.
Besides measuring the quality of life, the data gathered by these
devices may also be useful from a psychiatric perspective, where
the data can be used to diagnose various mental health issues such
as depression or changes in mood [15]. Currently, depression is
one of the most frequent disorders and is expected to increase in
upcoming years [19].

Mental illness is considered as disturbances in the brain which
may cause changes in a person’s mood, thinking or behaviour [12].
As the relationship between mood and sensor data are not well
understood, it is difficult to predict how changes in sensor data may
be correlated with a person’s change in mood. In 2009, Scheffer et
al. [18] discussed the phenomena of critical slowing down, which
indicates the occurrence of early warning signals in critical transi-
tion periods preceding abrupt noticeable changes of state. Critical
slowing down indicates that the system is unable to recover its
original condition from small disturbances [1]. Unipolar depres-
sion and bipolar disorder are episodic mood disorders, where the
pathological state and the healthy state might be understood as
representing different stable states separated by abrupt changes
between them [5].

Through the recording of motor activity, the biological system’s
state is measurable. It has been noticed that reduced day-time ac-
tivity and increased night-time activity indicates depressive state
as compared to normal state [3].

In the field of mental health, activity and movement measure-
ments have become an emerging topic. Several studies use sensors
to diagnose or self-report patient movement over time [2, 16]. Differ-
ent linear and non-linear statistical methods have been used to ana-
lyze the data. Reported findings include increased auto-correlations
and variances as indicators of a critical slowing down [18], and
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increased skewness is also observed [10]. Such data also holds po-
tential for machine learning applications which is used more in the
context of psychiatry and psychology [11, 14].

In this paper, we use a dataset containing motor activity of de-
pressed and non-depressed patients to perform depression classifica-
tion using machine learning. One-Dimensional convolutional neu-
ral networks (1D-CNNs) are used on motor activity measurements
to detect the depression. Afterwards, three levels of depression (i.e.,
no depression, mild, and severe depression) were detected based on
the Montgomery-Åsberg Depression Rating Scale (MADRS) [13].
Our third model predicts the MADRS score of participants. The
motivation behind using 1D-CNN is that feature extraction would
be done automatically.

We evaluated the performance of classification models using a
leave one participant out cross-validation combined with majority
voting. In depressed vs non-depressed classification, we achieved
an average F1-score of 0.70 and 0.30 for detecting the different
levels of depression. However, this model detects non-depressed
participants with high performance. For the MADRS prediction
model, we achieved an mean squared error (MSE) of 4.0.

The main contributions of this paper is to build 1D-CNN in order
to: (i) Detect whether a participant is depressed or not; (ii) Detect
whether a participant has no depression, mild depression, or severe
depression; (iii) Predict participant’s MADRS score which further
can be used to distinguish between depressed and non-depressed
patients.

The rest of this paper is organized as follows: Section 2 describes
background and related work. Section 3 presents the dataset. Exper-
iments and results are shown in Section 4. The paper is concluded
in Section 5.

2 RELATEDWORK
2.1 Mental Health Monitoring Systems
In the field of Mental Health Monitoring Systems (MHMS), research
has already been done by many. In this section, we discuss some
earlier research about depression and bipolar disorder, where they
also applied machine learning to their study.

In a recent study conducted by Garcia et al. [8], the authors
surveyed recent research works on the use of machine learning
for MHMS. They classified different works by: study type (asso-
ciation/detection/forecasting), study duration (short-term or long
term), and sensor type (wearable/external/software or social media).
Association studies were conducted on those that help understand
the relationships between variables. Methods used include linear
regression, correlation analysis, t-tests and analysis of variance.
Detection studies have a goal to detect/recognize the mental state,
often using methods like classification models. Forecast studies aim
to predict events about patients, for instance, epileptic seizures. The
wearable sensor types include smart-watches and smart-phones.
External sensors could, for example, be cameras or microphones
installed in an institution where the participants are patients. Some
studies used social media or software as a sensor type, where ser-
vices like Instagram were used to collect data [8].

Grunerbl et al. [9] did a detection type study about bipolar dis-
order. The participants consisted of ten bipolar patients in Austria
between 18 and 65 years old. In this study, the recorded data was

phone calls and microphone data which achieved average recogni-
tion accuracy of 76% and precision and recall of over 97% of bipolar
state detection. They also used the accelerometer and GPS as input
data and achieved recognition accuracy of 70% (accelerometer) and
80% (GPS).

Faurholt-Jepsen et al. [4] presented an association type study
about bipolar disorder. The participants were 29 bipolar patients,
where the authors collected various actions from the patients smart-
phones such as the daily usage, the number of incoming calls, and
the number of text messages sent and received. They found corre-
lations between the mental state of the patients and the recorded
information.

Andrew et al. [17] applied machine learning to photos posted on
Instagram. They had 166 participants, who posted a total of 43,950
photos. By extracting statistical features using colors analysis, meta-
data and face detection, they achieved models that outperformed
the average practitioner’s success rate when diagnosing depression
(70% of all depressed cases identified). Research on social media
usage in the field of mental health is interesting because, for many,
those are the platforms that they use to express their feelings.

Garcia-Ceja et al. [7] presented their work on motor activity
based classification of depression in unipolar/bipolar patients. They
applied machine learning for classifying depressed/non-depressed
participants using Random Forest and a deep neural networks.

The main contribution between earlier research within MHMS
and our work is that we apply CNNs to achieve our goal. Motor
activity measurements can be related to mental health issues. How-
ever, the best methods for extracting this type of knowledge is not
explored yet. With our experiments, we want to determine whether
or not CNNs can do this job effectively.

2.2 Depression Rating: MADRS
MADRS is a rating system for telling how depressed a patient is.
It is more sensitive to changes than the Hamilton Rating Scale
(HRS) for Depression for patients that go through antidepressant
medication. The process for calculating a MADRS rating contains
ten statements about the patient’s behavior, where the topics are:
apparent sadness, reported sadness, inner tension, reduced sleep,
reduced appetite, concentration difficulties, lassitude, inability to
feel, pessimistic thoughts, suicidal thoughts [13].

3 DATASET
In our experiments, we used the Depresjon dataset [6], a publicly
available dataset containing motor activity measurements from par-
ticipants wearing an actigraph watch at their right wrist. The acti-
graph watch measures activity by using a piezoelectric accelerom-
eter that is programmed to record the integration of intensity,
amount and duration of movement in all directions. The sampling
frequency was 32Hz. We did not perform any pre-processing of the
data. The participants we focus on are 23 bipolar/unipolar patients
and 32 non-depressed contributors. We label the bipolar/unipolar
group as the condition group, and the non-depressed group as the
control group.



(a) Training accuracy using 10 epochs (b) Training loss using 10 epochs

Figure 1: Experiment 1. Model’s performance using different segment lengths

(a) Training accuracy using 50 epochs (b) Training loss using 50 epochs

Figure 2: Experiment 1. Model’s performance using different segment lengths throughout 50 epochs

4 EXPERIMENTS AND RESULTS
In this section, we explain the performed experiments and discuss
the results. Specifically, we conducted three experiments:

(1) Experiment 1: classify whether a participant belongs to the
control group or the condition group.

(2) Experiment 2: classify how depressed the participants were,
based on their MADRS score.

(3) Experiment 3: predict MADRS score of the participants.

Furthermore, for every model, the optimal segment length was
calculated based on different segment lengths and cross-validation

was performed. The segment length is what we thought was go-
ing to impact the result. Even though we reduced the chance of
over-fitting by keeping aside randomized training and testing data,
there is a high chance that the training data contains samples from
all participants. Garcia-Ceja et al. [7] did leave one participant out
validation, which means that for each participant in the dataset,
keep them outside the training data, train on the rest of the partici-
pants, then make predictions on the participant that was left out.
Each prediction for the left out participant can be different, so to
determine the final label they used majority voting (using the most
common predicted label).



Figure 3: Experiment 1. Confusion matrix for testing the
classifier on unseen data

Figure 4: Experiment 1. Confusion matrix containing de-
tected classes after leave one participant out experiment

4.1 Experiment 1: Control vs Condition groups
To find the optimal segment length, we trained the model with
segment lengths of 1, 2, 4, 8, 16, 24, 48 and 96 hours. The input data
was split into 80% data for training and the rest for testing. 40% of
training data was used as validation data. Initially, the training was
done using 10 epochs for each of the eight different input sets. We
used a batch size of 16 and the Adam optimizer with a learning rate
of 0.001 throughout this experiment.

The primary goal here was to find the best segment length to use,
and not to train the models to be perfect, so these hyper-parameters
were fine for this purpose. As shown in Figure 1, the best results
are achieved with segments of 48 hours. Afterwards the results
were almost similar. To find the best segment length, we needed
to experiment with more epochs. We reran the same experiment
for 50 epochs, with 48, 72 and 96 hour long segments. Herein, we

Table 1: Performance metrics for leave one participant out
experiment for control vs condition

Label Accuracy Precision Recall Specificity F1
Control 0.71 0.74 0.78 0.61 0.76
Condition 0.71 0.67 0.61 0.78 0.64
Mean 0.71 0.71 0.70 0.70 0.70

Table 2: Loss andAccuracy of 3-Fold cross-validation for con-
trol vs condition

Fold Loss Accuracy
1 0.06 0.98
2 0.07 0.98
3 0.06 0.98
Mean 0.063 0.98

see that nothing more was achieved with segments longer than 48
hours, as shown in Figure 2. Figure 3 shows the confusion matrix
of control and condition patients.

To ensure the model is not over-fitting, 3-fold cross-validation
was performed. First, we split the dataset into a train and test set.
Then, we generated three folds containing training and validation
parts, where for each fold a model was trained to fit the inputs.
Each epoch the model was validated against the validation split.
After training a model for a fold, we evaluated them by looking at
the mean accuracy/loss against the global test split. If the accuracy
was still high and the loss was still low, the model would have a
good chance of doing correct classifications on unseen data.

To make this process time efficient, each fold was trained for only
ten epochs. The goal was to prove consistency in the model and not
achieve high performance. As one can see in the cross-validation
results (Table 2), we have a mean loss of 0.06 and a mean accuracy
of 0.98, which means that the model is consistently correct in most
classifications.

In leave one participant out experiment, for each participant, we
generated input data that did not contain any activity data from
the participant. Earlier results were promising, so we expected the
results of this experiment to be better, which we can see in Figure 4.
The model was able to detect true negatives (where the correct label
and the predicted label is control), but the number of false positives
and false negatives were a bit too high. Overall, we calculated a
mean F1-score of 0.70 for this model (see Table 1). We could train
the models for more than ten epochs and hope for better results,
but we assume it would not be much difference in training accuracy
and loss (as shown in Figure 2).

4.2 Experiment 2: Depression Levels
The second experiment was based on classification of depression
levels. We labeled participants with MADRS score 0 to 10 as not
depressed, between 11 and 19 as mildly depressed, and above 20 as
moderately depressed. The steps were similar like before. Initially,
we find the optimal segment length, then use the best segment
length in cross-validation and make sure that the performance is
consistent. We skipped the shortest segments of 1, 2, 4 and 8 hours,



(a) Training accuracy using 50 epochs (b) Training loss using 50 epochs

Figure 5: Experiment 2. Model’s performance using different segment lengths throughout 50 epochs

Figure 6: Experiment 2. Trained model on 96 hour long seg-
ments for classifying the degree of depression

Table 3: Performance metrics for the leave one participant
out experiment for different depression levels

Label Accuracy Precision Recall Specificity F1
Normal 0.69 0.66 0.97 0.30 0.79
Mild 0.70 0.14 0.09 0.86 0.11
Moderate 0.76 0.0 0.0 0.98 0.00
Mean 0.72 0.30 0.35 0.71 0.30

as we were positive these segments would not be any good. We
proceeded to train segment lengths of 16, 24, 48, 72 and 96 hours.
Training accuracy and loss curves in Figure 5 show that the results
for 96-hour segments were promising. We achieved an accuracy

Table 4: Loss and Accuracy of 3-Fold cross-validation for dif-
ferent depression levels

Fold Loss Accuracy
1 0.04 0.989
2 0.01 0.998
3 0.05 0.985
Mean 0.033 0.991

Figure 7: Experiment 2. Confusion matrix of leave one par-
ticipant out for classifying the degree of depression

of 100% on the testing set. Figure 6 presents the confusion matrix
with no error in classification.

For cross-validation, we trained the three models for 15 epochs
each. Table 4 lists the accuracies of all 3 folds. For leave one par-
ticipant out the model was trained on all participants except one.



Figure 8: Experiment 3. Training the MADRS prediction
model for 100 epochs with different segment lengths. The
model trained on 48-hour segments performed best.

Figure 9: Experiment 3.MADRSPrediction: Training history
throughout 2700 epochs. TheMSE is approximately 4.0 after
2000 epochs.

Figure 7 illustrates well at detecting non-depressed participants
(F1-score of 0.79), and terrible at everything else (F1-score of 0.11
for mild depression and the model did not detect any participant
with moderate depression). Overall, we calculated a mean F1-score
of 0.30 for this model (see Table 3).

4.3 Experiment 3: MADRS Score Prediction
For MADRS score prediction, the optimal segment length was 48-
hours (see Figure 8). Before training the model, we did 3-fold cross-
validation to check its consistency. For each fold, the model was
trained for 100 epochs to fit the corresponding training data and
validated on the corresponding validation data. Then, after a model

Figure 10: Running theMADRS predictionmodel on unseen
segments. The predictions are not perfect, but they some-
what follow the line where predictions and correct MADRS
scores are the same.

Table 5: 3-Fold cross-validation for the prediction model.
Only small variation between the folds tells us that the
model is consistent enough.

Fold Mean Squared Error
1 30.18
2 33.61
3 30.40
Mean 31.40

had completed its training, it was evaluated against the global test
data (same procedure as the two previous experiments). Finally, the
Mean Squared Error for each fold was saved and compared with
other folds to see how they averaged (see Table 5). Afterwards, the
model was trained over night (2700 epochs). To summarize, this
model was trained to fit segments of length 48 hours (2880 minutes).
Hyper-parameters were similar as for previous models. We split
the dataset into 60% training data and 40% testing data. Based on
the time it took to train each of the 100-epoch experiments, we
calculated that around 2700 epochs of training would be a realistic
amount.

The training resulted in a mean squared error approximately at
4.0 (on validation data). The training graph (Figure 9) shows that
further training would not necessarily give any better results. It
can be consider as a baseline for comparison. The baseline would
be the average score from the training set without taking any input
features for consideration. Predictions on the test data (Figure 10)
looked very promising. The graph shows correct MADRS scores in
the x-axis and the predicted MADRS scores in the y-axis. Each blue
dot is a prediction, and the dotted black line is a linear guideline
for the perfect predictions (where the predicted and correct scores
are the same).



4.4 Discussion
Overall, we achieved an F1-score of 0.70 for classifying the control
and condition groups, which is slightly better than the F1-scores
from the research of Garcia-Ceja et al. [7] without oversampling.
They achieved 0.66 for the deep neural network and 0.67 for the
random forest.When using SyntheticMinority Over-sampling Tech-
nique (SMOTE) as a technique for generating more data, they in-
creased their random forest F1-score to 0.73. An extension of this
work could be to attempt to use the same sampling strategies as
Garcia-Ceja et al. did on the data passed into our CNN.

Garcia-Ceja et al. also suggested future research to explore classi-
fication based on the MADRS scale, which we executed. The results
were similar to our other findings; overall performance is not ex-
ceptionally high, but we are able to classify most non-depressed
participants correctly from the predicted scores.

5 CONCLUSION
In this paper, we have presented a 1D-CNN to detect depression
using activity measurements. The used dataset contains motor ac-
tivity measurements for each minute in the measured period for
each participant. Three machine learning models are trained to fit
time-sliced segments of these measurements. The first model clas-
sifies participants into a condition group (depressed) and a control
group (non-depressed). We trained another model to classify the de-
pression level of participants (normal,mild ormoderate). Finally, we
trained amodel that predictsMADRS scores.We evaluate the perfor-
mance of the classification models using leave-one-participant-out
validation as a technique, in which we achieved an average F1-score
of 0.70 for detecting the control and condition groups, and 0.30 for
detecting the depression levels. The MADRS score prediction re-
sulted in a mean squared error of approximately 4.0.

The current results indicate that depression detection using very
easy to obtain activity data is definitely possible within a clinical
setting. To make the automatic depression detection possible in a
real world scenario, we would need to collect more data also from
end user devices, for example, Apple or Fitbit smart watches. For
future work, we plan to first collect such a dataset, and secondly, we
will develop models that can be applied to the general population
outside of the clinical setting which will have a much greater impact
and benefit for society as a whole.
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