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1. INTRODUCTION

As the number of multimedia services grows, so does the
computational demands on multimedia data processing. New
multi-core hardware architectures provide the required re-
sources, however, parallel, distributed applications are much
harder to write than sequential programs. Large process-
ing frameworks like Google’s MapReduce [1] and Microsoft’s
Dryad [2] are steps in the right direction, but they are tar-
geted towards batch processing. As such, we present P2G,
which is a framework designed to integrate concepts from
modern batch processing frameworks into the world of real-
time multimedia processing. With P2G we seek to scale
transparently with the available resources (following the cloud
computing paradigm) and to support heterogeneous com-
puting resources, such as GPU processing cores. The idea is
to encourage the application developer to express as fine a
granularity as possible along two axes, data and functional
parallelism, where many of the existing systems sacrifice
flexibility in one axis to accommodate for the other, e.g.,
MapReduce has no flexibility in the functional domain, but
allows for fine-grained parallelism in the data domain. In
P2G, functional blocks are formulated as kernels that oper-
ate on slices of multi-dimensional fields. As such, the fields,
used to storing of the multimedia data, are used to express
data decomposition. The write-once semantics of the fields
provide the needed boundaries and barriers for functional
decomposition to exist in our run-time and ensures deter-
ministic output. P2G has intrinsic support for deadlines,
and the compiler and run-time analyze dependencies dynam-
ically and merge or split kernels based on resource availabil-
ity and performance monitoring. At the time of writing,
we have implemented a prototype of a P2G execution node,
with MJPEG as a primary workload, which we are working
on optimizing as it at the moment is limited by our imple-
mentation of the dependency checker. Once the run-time is
optimized and can scale properly with the number of cores
available, we will also have results to present.

2. ARCHITECTURE

As shown in figure 1, P2G consists of a master node and
an arbitrary number of execution nodes. Each execution
node reports its local topology (i.e., multi-core, GPU, etc)
to the master node, which combines this information to form
a global topology of available resources. As such, the global

Figure 1: Overview of nodes in the P2G system.
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Figure 2: P2G programming model

topology can change during run-time as execution nodes
can be dynamically added and removed to accommodate
for changes in the global load.

As the master node receives workloads, it use its high-



level scheduler to determine which execution nodes to del-
egate partial or complete parts of the workload to. This
process can be achieved in a number of ways. However, as a
workload in P2G forms an implicit dependency graph based
on its store and fetch operations to virtual fields, the high-
level scheduler can utilize graph partitioning algorithms, or
similar, to map such an implicit dependency graph to the
global topology. The utilization of available resources is thus
maximized.
When an implicit graph is split across multiple execution

nodes, communication is achieved through an event-based,
distributed publish-subscribe model. For every input, these
subscriptions are deterministically derived from the code
and the high-level schedulers partitioning decisions. The
subscriptions also make it possible to establish direct com-
munication links between the interacting execution nodes.
P2G uses a low-level scheduler at each execution node to

maximize the local scheduling decisions, i.e., the low-level
scheduler can decide to combine functional and data decom-
position to minimize overhead. During run-time the master
node will collect statistics on resource usage from all exe-
cution nodes, which all run an instrumentation daemon to
acquire this information. The master node can then combine
this run-time instrumentation data with the implicit depen-
dency graph derived from the source code and the global
topology to make continuous refinements to the high-level
scheduling decisions. As such, P2G relies on its combination
of a high-level scheduler, low-level schedulers, instrumenta-
tion data and the global topology to make best use of the
performance of several heterogeneous cores in a distributed
system.
As seen in figure 2, P2G provides a kernel language for

the programmer to write their application in, which they do
by writing isolated, sequential pieces of code called kernels.
Kernels operate on slices of fields through fetch and store

operations and have native code embedded within them. In
the model we encourage the programmer to specify the in-
herent parallelism in their application in as fine a granularity
as possible in the domains of functional and data decompo-
sition, without needing to sacrifice the one for the other.
The multi-dimensional fields offer a natural way to ex-

press multimedia data, and provide a direct way for ker-
nels to fetch slices of data in as fine granularity as possible.
The write-once semantics of the fields provide determinis-
tic output, though not necessarily deterministic execution
of individual kernels. Given write-once semantics, iteration
is supported in P2G by introducing the concept of aging,
as seen in figure 2(b), where storing and fetching to the
same field position, at different ages, makes it possible to
form loops. The write-once semantics also provide natural
boundaries and barriers for functional decomposition, as the
low-level scheduler can analyze the dependencies of a kernel
instance to determine if it is ready for execution. Further-
more, the compiler and the run-time, can analyze dependen-
cies dynamically and merge or split kernels based on resource
availability and performance monitoring.
Given a workload specified using the P2G kernel language,

P2G is designed to compile the source code for a number of
heterogeneous architectures, though it currently only does
so for the x86 architecture. P2G can then distribute this
workload across the resources available to it.
At the time of writing, P2G consists of what we call an

execution node, which is capable of executing entire work-

loads on a single x86 multi-core node. As such, the high-level
scheduler and distribution mechanisms are not yet imple-
mented, though the work is well under way.

3. WORKLOAD

We have implemented a few simple workloads used in mul-
timedia processing to test the prototype implementation,
here we will focus on our Motion JPEG implementation.

Figure 3: Overview of the P2G MJPEG encoding

process

Motion JPEG is a sequence of separately compressed JPEG
images. The MJPEG format provides several layers of par-
allelism, well suited for illustrating the potential of P2G. We
focused on optimizing the discrete cosine transform (DCT)
and quantization part, as this is the most compute-intensive
part of the code. The init kernel starts the looping read

kernel by storing to position and frame’s first age (age=0 ).
The read kernel fetches the most current age of these fields,
utilizes the information, updates it, and stores it in the next
age. This makes the read kernel dependent on itself and
thus implicitly creates a loop. This loops ends when the
kernel stops storing to the next age, e.g. at EOF. The YUV
components can be processed independently, this property
is exploited by creating three different kernels, yDct, uDct,
and vDct. Each DCT kernel works on a single macro-block.
Given a 352x288 resolution, this generates 1584 kernels of Y
(luminance) data and 396 kernels of U and V (chroma) data.
The read kernel stores the YUV data in three global fields,
yInput, uInput, and vInput. From figure 3, we see that the
respective DCT kernels are dependent on one of these fields.

4. POSTER & DEMO

In this poster/demo, we will explain and discuss the P2G
ideas for multimedia processing with deadlines. Addition-
ally, we accompany the poster with a demo of several well
known multimedia workloads and show the entire applica-
tion development and processing pipeline, i.e, the code in
kernel language, the compilation with parallel code genera-
tion and the processing automatically distributing the mul-
timedia load to the available processing cores.
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