To bepublishedin: Computer Communications Journal, Speda Isaue on Interadive Distributed Multimedia
Systems and Telecommunications Services 1998(IDM S 98), Elsevier Science, Winter 99

© Copyright 1999 Elsevier Science, All rights reserved

Operating System Suppat for Multimedia Systems

THOMASPLAGEMANN, VERA GOEBEL , PAL HALVORSEN"
UniK- Center for Techndogy at Kjeller, University of Oslo, Norway
{plageman, goebel, paalh} @unik.no

OTTO ANSHUS
Department of Computer Science, Princeton University, USA
On leare from Computer Science Department, University of Tromsg, Norway
otto@{cs.uit.no|cs.princeton.edu}

Abstract

Distributed multimedia goplications will be an important part of tomorrow’s appli cation mix and require gpropriate operating system
(OS) suppat. Neither hard red-time solutions nor best-effort solutions are diredly well suited for this suppat. One reason is the -
existence of red-time and best effort requirements in future systems. Anacther reason is that the requirements of multimedia gplicaions
are not easily predictable, like variable bit rate cded video data and wser interadivity. In this article, we present a survey of new devel-
opments in OS suppat for (distributed) multimedia systems, which include: (1) development of new CPU and dsk scheduling mecha
nisms that combine red-time and kest effort in integrated solutions; (2) provision d mechanisms to dynamicdly adapt resource reserva
tions to current neels; (3) establishment of new system abstradions for resource ownership to acmournt more acairate resource @nsump-
tion; (4) development of new file system structures; (5) introduction d memory management mechanisms that utili ze knowledge @ou
applicaion kehavior; (6) reduction d major performance battleneds, like mpy operations in 1/0O subsystems; and (7) user-level control

of resources including communicaion.

Keywords. Operating systems, multimedia, Quality of Service red-time

1 INTRODUCTION

Distributed multimedia systems and applicdions play
arealy today an important role and will be one of the cr-
nerstones of the future information society. More spedfi-
cdly, we believe that time-dependent data types will be a
natural part of most future gplications, like time-
independent data types today. Thus, we will not differenti-
ate in the future between multimedia and non-multimedia
applicdions, but rather between hard red-time, soft red-
time, and best effort requirements for performance apeds
like response time, delay jitter, synchronizaion skew, etc.
Obvioudly, al system elements that are used by applica
tions, like networks, end-to-end protocols, database sys-
tems, and operating systems (OSs), have to provide gpro-
priate suppart for these requirements. In this article, we fo-
cus on the OS isaues on which applicaions, end-to-end
protocols, and database systems diredly rely. For simplic-
ity, we use in this article the notion multimedia systems and
applications which comprises also distributed multimedia
systems and applicdions.

The task of traditional OSs can be seen from two per-
spedives. In the top-down view, an OS provides an ab-

* Thisresearch is ponsored by the Norwegian Research Council,
DITS Program, under contrad number 119403431 (INSTANCE project).

stradion over the pure hardware, making programming
simpler and programs more portable. In the bottom-up
view, an OS is responsible for an orderly and controlled
alocation of resources among the various exeauting pro-
grams competing for them. Main emphasis of resource
management in commodity OSs, like UNIX or Windows
systems, is to dstribute resources to applicaions to reah
fairness and efficiency. These time-sharing approacdes
work in a best-eff ort manner, i.e., N0 guarantees are given
for the exeaution of a program other than to exeaute it as
fast as posgble while preserving overal throughput, re-
sponse time, and fairness

Spedadlized red-time OSs in turn emphasize on man-
aging resources in such a way that tasks can be finished
within guaranteed deallines. Multimedia gplicaions are
often charaderized as ft red-time gplicdions, becaise
they require suppart for timely corred behavior. However,
dealline misses do not naturally lead to caastrophic con-
sequences even though the Quality of Service (QoS) de-
grades, perhaps making the user annoyed.

Early work in the aeaof OS suppart for multimedia
systems focussed on the red-time aped to suppat the
QoS requirements of multimedia goplications. Traditional

2 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

Periodic task

>
0 S t
Figure 1: Periodic task model

red-time scheduling algorithms, like Earliest Deadline
First (EDF) and Rate Monotonic (RM), have been adopted
for CPU (and disk) scheduling. These scheduling mecha-
nisms are based on a periodic task model [Liu et a. 73]. In
this model, tasks are charaderized by a start time s, when
the task requires the first exeaution, and a fixed period p in
which the task requires exeaution time e with dealine d
(seeFigure 1). Often, the dealine is equal to the end of the
period.

An 8 hit, 8 KHz PCM encoded audio strean is a good
example for such a periodic task: the constant sampling
rate and the fixed sample size generate a @nstant bit
stream. In order to handle the stream more dficiently,
samples of typicdly 20 ms are gathered in a packet. Thus,
the system has to handle in ead period, i.e., p = 20 ms, a
padket before the next period. The fixed padket size re-
guires a mnstant exeaution time e per period. This periodic
task model is attradive from an engineaing point of view,
because it makes it possble to predict the future: in period
k, which starts at s + (k —1) p, the task with exeaution time
e hasto be finished befores+ (k— 1) p + d.

However, experiences with multimedia gplicaions in-
cluding efficient variable bit rate (VBR) coding schemes
for video, like H.261, H.263 MJPEG, and MPEG, led to
the conclusion that it is not that easy to foresee future re-
guirements. Video frames are generated in a fixed fre-
guency (or period), but the size of the frames and the exe-
cution times to handle these frames are not constant [Goyal
et a. 96a], [Chu et a. 99]. It varies on a short time scae,
between the different frames, e.g., I, B, or P frames in
MPEG, and on a larger time scde, e.g., due to scene shifts
such as from a constant view on a landscgpe to an adion
scene. Furthermore, the degreeof user interadivity is much
higher in recent multimedia gplicaions, e.g., interadive
distance leaning, than in ealier applicaions, like video-
on-demand (VoD). It is very likely that this trend will con-
tinue in the future and make resource requirements even
harder to predict.

Latest developments in the aeaof multimedia OSs gill
emphasize on QoS suppart, but integrate often adaptability
and suppat both red-time and best effort requirements.
Furthermore, new abstradions are introduced, like new
types of file systems and resource principals that decouple
processes from resource ownership. Finaly, main bottle-
neds, like paging, copy operations, and dsk 1/O, have
been tadkled to fulfill the stringent performance require-
ments.

It is the goa of this article to give an overview over
recent developments in OS suppart for multimedia systems.
OS suppat for multimedia is an adive reseach area and

therefore, it is not possble to discuss al particular solu-
tionsin depth. Instead, we introducefor eat OS asped the
basic isales and give an overview and a classficaion of
new approades. Furthermore, we describe afew examples
in more detall to enable the reader to grasp the idea of
some new solutions. However, for an in depth urderstand-
ing, the reader has to refer to the origina literature, be-
cause this article is intended as a survey and to serve & an
“entry-point” for further studies.

The rest of this article is dructured as follows: Sedion
2 discusses general OS developments, and Sedion 3 sum-
marizes the requirements of multimedia gplicaions. The
basic dependency between resource management and QoS
is discused in Sedion 4. Management of the system re-
sources, like CPU, disk, main memory, and cther system
resources, are discussd in the Sedions 5 to 8 New ap-
proaches to overcome the 1/0 battlenedk are presented in
Sedion 9. Sedion 10 gives some conclusions.

2 OPERATING SYSTEM ARCHITECTURES

Traditionally, an OS can be viewed as a resource dlo-
caor or asavirtual machine. The abstradions developed to
suppart the virtual macine view include avirtual proces
sor and virtual memory. These astradions give eab proc-
essthe illusion that it is runnng aone on the computer.
Eadch virtual machine a@nsumes physicd resources like
physicd processor and memory, data-, instruction-, and 1/0
buses, data and instruction cades, and I/O ports. However,
insteal of allowing a processto accessresources diredly, it
must do so throughthe OS. This is typicdly implemented
as ystem cdls. When a process makes a system cdl, the
cdl is given to alibrary routine which exeautes an instruc-
tion sending a software interrupt to the OS kernel. In this
way, the OS gets control in a seaure way and can exeaute
the requested service This is a too costly path for some
services, becaise trapping to the OS involves the st of
crossing the user-supervisor level boundary at least twice,
and paosshly crossng address paces also at least twiceif a
context switch to another processtakes place In addition,
there ae msts aswciated with the housekeeping adivities
of the OS.

When severa processs are exeadting, ead on its own
virtual processor, they will i mplicitly interfere with ead
other through their use of physicd resources. Primarily,
they will affed ead other’s performance, becaise gplica
tions are not aware of physicd resources and of ead other.
A multimedia gplication can face asituation where it does
not get enough resources, becaise the OS is not aware of
ead applicaions short and longer term needs. This will
typicdly happen when the workload increases.

The need to go throughthe OS to accessresources and
the way the OS is designed and implemented results in a
system where low latency communication is difficult to
adhieve. It is also dfficult to either have resources avail-
able when they are needed by a process or have aprocess
realy to exeaute when the resources, including cooperating

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 3

processes on other procesors or computers, are available
or realy.

A traditional general-purpose OS, like UNIX or Win-
dows NT, is not a good gatform for the common case
needs of multimedia gplicaions. In these OSs, resource
dlocaion for eat process is based on general purpose
scheduling agorithms, which are developed to provide a
balance between throughput and response time, and to pro-
vide fairness These dgorithms get some limited feedback
from the goplicaion processes on what they are doing, but
basicdly, the OS has littl e or no understanding of what the
applicdions are doing and what their reguirements are.
Also, the degreeto which an application can diredly con-
trol resourcesin a seaure way, or provide the OS with hints
for its resource requirements, has traditionaly been very
limited.

There ae several OS architedures in use today of
which the monolithic kernel and the pu-kernel architedures,
or their hybrids, are the most common. In a monolithic OS
kernel, all components are part of alarge kernel, exeaute in
a hardware proteded supervisory mode, and can use the
entire instruction set. Consequently, the kernel has total
control over al resources. User processes exeadte in user
mode and can therefore use only a limited instruction set
and have only alimited control over resources. A user pro-
cesscannot exeaute an instruction to switch to supervisory
mode, enable or disable interrupts, or diredly access /0O
ports. When a user process neals OS services, it requests
the service from the OS, and the kernel performs the re-
guested service Two crossngs between user- and kernel-
level take place from the user processto the kernel and
then badk again when the service has finished.

In the p-kernel architedure, the OS is divided into a
small er kernel with many OS services runnng as processes
in user mode. This architedure is flexible, but has tradi-
tionally resulted in an incressed overhead. The kernel
sends a request for serviceto the corred user-level OS pro-
cess This creaes extra overhead, becaise typicdly four
crossngs between user- and kernel-level take place i.e.,
from the user processto the kernel, from the kernel to the
user-level service from the user-level serviceto the kernel,
and finally, from the kernel to the user process This can
also result in memory degradation becaise of reduced in-
struction locdity giving an increased number of cade
mises. In [Chen et a. 96], a wmparative study of three
OSs, including NetBSD (a monolithic UNIX) and Win-
dows NT (a p-kernel like achitedure), is presented. The
monolithic NetBSD has the lowest overhead for accessng
services. However, the overal system performance can
significantly be determined by spedfic subsystems, e.g.,
graphics, file system, and disk buffer cace; and for some
cases Windows NT does as well as NetBSD in spite of the
higher overhead associated with its p-kernel architecure.

Library OSs (also referred to as verticdly structured
systems) like the Exokernel architedure [Engler et al. 95],
[Kaashoek et a. 97] and Nemesis [Ledie d a. 96] have
been propased as an alternative to monolithic and p-kernel

OSs. The basic ideais that those parts of an OS that can
run at user-level are exeauted as part of the gplicaion
proceses. The OS is implemented as a set of libraries
shared by the goplicaions. The OS kernel can be kept very
small, and it basicdly proteds and exports the resources of
the computer to the goplicaions, i.e., leaving it to the g-
plicaions to use the resources wisely. This alows for a
high flexibility with resped to the needs of individual ap-
plicaions. At the same time it gives processes more dired
control over the resources with better performance & a
potential result.

However, the results presented in [Liedtke 95], [Liedtke
96], and [Hartig et al. 97] identify severa areas of signifi-
cancefor the performance of an OS including the switching
overhead between user and kernel mode, switching be
tween address paces, the ast of interprocess communica-
tion (IPC), and the impad of the OS architedure upon
memory behavior including cade misses. These papers
show how a p-kernel OS can be designed and implemented
a least as efficient as g/stems using other architedures.
The SUMO OS [Coulson et al. 94] describes how to im-
prove p-kernels by reducing the number of protedion
crossngs and context switchings even thoughiit is built on
top o the Chorus OS.

Threads can be used as a way of reducing OS induced
overheal. Basicdly, threads can be user-level or kernel-
level supparted. User-level threads have very low overheal
[Anderson et al. 92a]. However, they are not always shed-
uled preemptively, and then the programmer must make
sure to resume threads corredly. User-level threads can
aso result in blocking the whole process if one thread
blocks on a system service Even if user-level threads will
reduce the internal overhead for a process we still have no
resource ontrol between virtual processors. Kernel sup-
ported threads have much higher overhead, but are typi-
cdly scheduled preamptively and will not block the whole
processwhen individual threads block. This makes kernel-
level supparted threads smpler to use in order to achieve
concurrency and overlap processng and communication.
Kernel-level supparted threads can potentialy be sched-
uled acording to the process requirements, but this is
typicdly not done. Split-level scheduling [Govindan et a.
91] combines the alvantages of user and kernel-level
thread scheduling by avoiding kernel-level traps when pos-
sible. Scheduler activations [Anderson et al. 924] is a ker-
nel interface ad a user-level thread padkage that together
combine the functionality of kernel threads with the per-
formance and flexibility of user-level threals.

Low context switching overhead can aso be adieved
when using processes. For example, Nemesis uses a single
address pacefor al processs. This alows for a low con-
text-switching overhead, becaise only protedion rights
must be dhanged.

The rapid development of commodity multi procesors
and clusters of commodity computers provides a scdable
approach to separating \rtua macines onto physicd
procesors and memories and thereby reduces the interfer-

4 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

ence between them. However, there ae still shared re-
sources that must be scheduled, including retworks, gate-
ways, routers, servers, file systems, and disks.

3 MULTIMEDIA APPLICATION REQUIREMENTS

In this dion, we briefly discussthe regquirements that
multimedia gplicdions impose onto OSs. First, we exem-
plify typicd requirements by introducing a multimedia gp-
plication that is in productive use since 1993 for teading
reguar courses at the University of Oslo. Afterwards, we
give amore general charaderization of multimedia gpli-
cdion requirements.

3.1 EXAMPLE: INTERACTIVE DISTANCE LEARNING

The main goa of the eledronic dassooms is to crede
adistributed teating environment which comes as close &
posshle to a traditional (non-distributed) classoom
[Bringsrud et a. 93]. The dasgoom system is compaosed
out of threemain parts. eledronic whiteboards, audio sys-
tem, and video system. At ead site there is at least one
large eledronic whiteboard to display transparencies. The
ledurer can write, draw, and erase comments on displayed
transparencies by using a light-pen.

Main element of the audio system is a set of micro-
phones that are mounted evenly distributed on the ceiling
in order to cegpture the voice of al the participants. The
video system comprises in ead classoom three caneras
and two sets of monitors. One canera focuses on the lec-
turer, and two cameras focus on the students. A video-
switch seleds the canera rresponding to the microphone
with the loudest input signal. Two monitors are placed in
the front and two monitors are placel in the badk of eat
clasgoom displaying the incoming and outgoing \video in-
formation. All video data is compressed acording to the
compresson standard H.26 1

During aledure, at least two eledronic dassooms are
conneded. Teader and students can fredy interad with
ead other regardlessof whether they are in the same or in
different classooms. Audio, video, and whiteboard events
are distributed in red-time to all sites, allowing al partici-
pants to see eah other, to talk to ead other, and to use the
shared whiteboard to write, draw, and present prepared
material from ead site.

Detailed measurements are reported in [Plagemann et
a. 99 and show that the audio system with 8 hit, 16 KHz
PCM encoding generates a constant bitstream of 128
Kbit/s. The video stream, however, varies between 100
Kbit/s and 1.4 Mbit/s, because it depends on the adivity in
the dasgoom. The traffic pattern of the whiteboard fluctu-
ates even more, because it solely depends on the interac-
tivities of the users, i.e., teader and students (see Figure
2). The large peds are generated by downloading trans-
parencies and range between 30 Kbit/s up to 125 Khit/s.
The small peeks of approximately 10 Khit/s are generated
by light-pen adivities, like eiting and marking text on
transparencies.

These measurement results $ow that the size of video
frames and corresponding exeaution times are not constant
and that the whiteboard stream cannot be dharaderized as
periodic task. Treding both as periodic tasks would require
to perform pessmistic resource dlocation for video and to
install a periodic processthat pals for aperiodic user inter-
adions. However, both solutions result in poa resource
utili zation.

Kbit/s

195 koo U e
100
75

50

25

ol 0 gt el AMMMMA MA

240z 3003 360s 4208 4803 Gd0s B0z EEOs s Ta0s

Figure 2: Whiteboard stream

3.2 REQUIREMENTSIN GENERAL

Generaly, we can identify the foll owing three orthogo-
nal requirements of multimedia gplicaions [Nahrstedt et
a. 95], [Schulzrinne 96]:

e High data throughput: audio streams in telephony
quality require 16 Kbit/s and in CD-quality 1.4 Mbit/s.
Typicd video data rates range from approximately 1.2
Mbit/s for MPEG, 64 Kbit/s to 2 Mbit/s for H.261, 20
Mbit/s for compressed HDTV, and over 1 Ghit/s for
uncompressed HDTV.

e Low latency and high responsiveness. end-to-end de-
lay for audio streams (which is a sum of network delay
and two times end-system delay) should be below 150
ms to be accetable for most applicdions. However,
without spedal hardware eto cancdlation, the end-
to-end delay should be below 40 ms. Lip synchroniza-
tion requires to playout corresponding video and audio
data with a maximum skew of 80 ms. The maximum
synchronization skew for music and padnting at the
corresponding rotes is +/- 5 ms. Audio samples are
typicdly gathered in 20 ms padkets, i.e.,, 50 padkets
per second have to be handled per audio stream.

e QoS guarantees. to achieve aquality level that satis-
fies user requirements, the system has to handle and
deliver multimedia data acording to negotiated QoS
parameters, e.g., bounded delay and delay jitter.

Interrupt latency, context switching overhead, and data
movements are the major bottlenedks in OSs that determine
throughput, latency, and responsiveness In [Araki et a.
9g], it is documented that espedally the interrupt handling
is a mgjor overhead. To implement QoS guarantees for

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 5

these performance apeds, advanced management of all
system resources is required. The neal for advanced re-
source management has lea to the development of new OS
abstradions and structures. In the following sedions, we
discuss basic resource management tasks and explain how
the new OS abstradions and structures can reduce ontext
switching overhead and data movement costs.

4 RESOURCE MANAGEMENT AND QOS

A computer system has many resources, which may be
required to solve aproblem: CPU, memory at different lev-
els, bandwidth of 1/O devices, e.g., disk and host network-
interface and bandwidth of the system bus. In Figure 3, the
basic resource types CPU, memory, and bandwidth are
partitioned into concrete system resources.

Cache
Memory Main memory

Disk
Disk I/O
Resources Bandwidth <E Bus
Network
CPU

Figure 3: Operating system resources

One of the primary functions of an OS is to multi plex
these resources among the users of the system. In the al-
vent of conflicting resource requests, the traditional OS
must dedde which requests are dlocaed resources to op-
erate the cmmputer system fairly and efficiently [Peterson et
al. 85]. Fairnessand efficiency are till the most important
goals for resource management in today’s commodity OSs.
However, with resped to multimedia gplicaions, other
goals that are related to timeliness become of central im-
portance For example, user interadions and synchroniza-
tion require short response times with upper bounds, and
multimedia streams require a minimum throughput for a
certain period d time. These gplication requirements are
spedfied as QoS requirements. Typicd application-level
QoS spedficdions include parameter types like frame rate,
resolution, jitter, end-to-end delay, and synchronizaion
skew [Nahrstedt et a. 99]. These high-level parameters
have to be broken down (or mapped) into low-level pa
rameters and resources that are necessary to suppat the
requested QoS, like CPU time per period, amournt of mem-
ory, and average and pe& network bandwidth. A discus-
sion of this mapping processis beyond the scope of this
paper, but we want to emphasize at this point that such a
spedficaion of resource requirements is difficult to
achieve. A constant frame rate does not necessarily require
congtant throughput and constant exeaution time per pe-
riod. Furthermore, user interadions can generate unpre-
dictable resource requirements.

In order to med QoS requirements from applications
and users, it is necessary to manage the system resourcesin

such a manner that sufficient resources are available & the

right time to perform the task with the requested QoS. In

particular, resource management in OS for QoS comprises
the foll owing basic tasks:

o Specification and allocation request for resources that
are required to perform the task with the requested
QoS

e Admission control includes a test whether enough re-
sources are avail able to satisfy the request without in-
terfering with previoudy granted requests. The way
this test is performed depends on requirement spedfi-
cdion and allocaion mechanism used for this re-
source

e Allocation and scheduling mechanisms asaure that a
sufficient share of the resourceis avail able & the right
time. The type of mechanism depends on the resource
type. Resources that can only exclusively be used by a
singe processat a time have to be multiplexed in the
tempora domain. In other words, exclusive resources,
like CPU or disk /O, have to be scheduled. Basicdly,
we can differentiate between fair scheduling, red-time
scheduling, and work and non-work conserving sched-
uling mechanisms. So-cdled shared resources, like
memory, basicdly require multiplexing in the spatial
domain, which can be adieved, e.g., with the help of a
table.

e Accounting tradks down the adua amount of re-
sources that is consumed in order to perform the task.
Accounting information is often used in scheduling
mechanisms to determine the order of waiting re-
quests. Accounting information is also necessary to
make sure that no task consumes more resources than
negotiated and steds them (in overload situations)
from other tasks. Furthermore, acounting information
might trigger system-initi ated adaptation.

e Adaptation might be initiated by the user/application
or the system and can mean to donvngrade QoS and
corresponding resource requirements, or to upgrade
them. Adaptation leads in any case to new allocaion
parameters. Accounting information about the adual
resource ®nhsumption might be used to opimize
resource utili zation.

e Deallocation frees the resources.

Spedficaion, admisson control, and alocdion and
scheduling strongly depend on the particular resource type,
while adaptation and resource acounting represent more
resource type independent principles. Thus, the following
two subsedions introduce alaptation and resource a-
counting, before we discussthe different system resources
in more detail .

4.1 ADAPTATION

There ae two motivations for adaptation in multimedia
systems: (1) resource requirements are hard to predict, e.g.,
VBR video and interadivity; and (2) resource availability
cannot be guaranted if the system includes best-eff ort sub-

6 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

systems, e.g., today’s Internet or mobile systems. In best-
effort systems, it is only posshle to adapt the gplication,
respedively the anount of application data the system has
to handle. In OSs, both situations might occur, and it is
posshble to adapt both appli cation and resource dl ocaions.
In [Gecsel 97], adaptation with feedbadk and adaptation
without feedbadk are distinguished. Adaptation without
feedbadk means that appli caions change only the function-
aity of the user interface ad do not change ay resource
parameters. Therefore, we @nsider in this article only ad-
aptation with feedbad, i.e., feedbad control systems. Fig-
ure 4 shows a simplified view of the ollaboration between
resource @nsumer, e.g. applicaion, and resource provider,
eg., CPU scheduler, in adaptation with feedback
[Lakshman 97]:

Resource

/V consumer \

((B:) M(cj)nitoring results (A) Allocation request
(C) Adapt resource (D) Adapt allocation

requirements
\ Resource A/

Provider

Figure 4: Feedback control for adaptation

(A)The resource @nsumer, or a management entity, esti-
mates its resource requirements and requests the pro-
vider to al ocate the resource acording to its gedfica-
tion.

(B)After admisdon control is siccesully passed, the re-
source utili zation is monitored. The monitoring results
can reflea the general resource utili zaion, e.g., the re-
source is under- or over-utilized, and the acaracgy of
the @mnsumers’ resource requirements estimations, e.g.,
it uses less or more resources than allocated. The
monitoring results might trigger step (C) and/or (D).

(C)The provider requests the mnsumer to adjust its re-
source requirements, e.g., by reducing the frame rate of
avideo.

(D)The mnsumer requests the provider to adjust the dlo-
cdion parameters.

Most of the recent results in the aea of adaptive
resource management discuss CPU management (see
Sedion 5). Monitoring of adua exeaution times is sup-
ported in most of these systems. More general approaches
for adaptive resource management include AQUA
[Lakshman 97], SWIFT [Goel et a. 98], Nemesis[Ledlie et
al. 96], Odyssey [Noble & a. 97], and QualMan [Nahrstedt
et a. 99]. The aucia aspeds of adaptation are the fre-
guency in which feadbadk control (and adaptation) is per-
formed and the related overheal. For example, SCOUT
uses a @murse-grained feedbadk medhanism that operatesin
the order of several semnds [Bavier et al. 98a]. On the
other hand, the work presented in [Bavier et a. 98 aims
to predict the exeaution times of single MPEG frames.
Whether fine-grained adaptation of allocation parameters
results in better QoS and/or better resource utili zaion is

still open. However, it is obvious that it requires frequent
adjustment of alocation parameters, which must not im-
pose much overhead.

4.2 NEW ABSTRACTIONSFOR RESOURCE PRINCIPALS

Resource acounting represents a fundamental problem,
becaise most OSstrea a processas the “chargeable” entity
for alocation of resources, such as CPU time and memory.
In [Banga d a. 99|, it is pointed out that “a basic design
premise of such processcentric systems is that a processis
the unit that constitutes an independent adivity. This gives
the process abstradion a dual function: it serves both as a
protedion domain and as a resource principa.” This stua-
tion is insufficient, becaise there is no inherent one-to-one
mapping between an applicaion task and a process A sin-
gle process might serve multiple gplications, and multiple
proceses might serve together a singe gplicaion. For
example, protocol processngis in most monolithic kernels
performed in the context of software interrupts. The crre-
sponding resource @nsumption is charged to the unlucky
processrunring at that time, or not acaunted at all [Banga
et al. 99. p-kernels implement traditional OS services as
user-level servers. Applicaions might invoke multiple
user-level serversto perform on its behalf, but the resource
consumption is charged to the gplicaion and the user-
level servers instead of charging it to the goplicaion only
[Mercer et a. 94]. It isimportant to note that ownership of
resources is not only important for aceunting reasons, but
aso for scheduling. The resources a process“owns’, e.g.,
CPU time, define dso its <heduling parameter. For exam-
ple, in commodity OSs with priority based CPU schedul-
ing, eat processis asociated with a priority, which in turn
determines when it is <heduled, i.e., recaves its CPU
time. Thus, a server or kernel thread that is performing a
task on behaf of an applicaion with QoS requirements
should inherit the corresponding scheduli ng parameters for
needed resources, e.g., the priority.

In [Jeffay et a. 98], the problem of resource ownership
and the oorresponding scheduling dedsions is partialy
solved for a monolithic kernel by deriving weights of ker-
nel adivities from user weights. By this, the propartional
share scheduling, in the extended FreeBSD kernel, is able
to provide an appropriate share of CPU bandwidth to the
kernel adivity such that QoS requirements of the user pro-
cesscan be met.

We can identify two basic, orthogona approacdes to
handle this problem: (1) introduction of a new abstradion
for resource ownership; and (2) to provide gplicaions as
much control as possble over devices, as it is done in so-
cdled library OSs, like Exokernel [Engler et a. 95,
[Kasshoek et a. 97] and Nemesis [Ledie @ a. 96]. In
these systems, applicaions can diredly control resource
consumption for network 1/0 and file 1/O, because network
device drivers and disk device drivers are acceshle from
the gplicaion in user-space without kernel interference

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 7

Obviously, resource mnsumption can be eaily charged to
the goplication.

In[Banga € al. 99|, aquite extensive discusson of new
abstradions for resource ownership can be found. These
abstradions differ in terms of: (1) which resources are on-
sidered; (2) which relationships between threads and re-
source owners are supparted; and (3) which resource @n-
sumptions are adualy charged to the owner. In Stride and
Lottery scheduling [Waldspurger 95], resource rights are
encgpsulated by tickets. Tickets are owned by clients, and
ticket transfers alow to transfer resource rights between
clients. In Mach [Ford et al. 94], AlphaOS [Clark et a. 92],
and Spring [Hamilton et a. 93], migrating threads respec-
tively shuttles correspond to threads and own resources.
Migration of threads between protedion domains enables
these systems to acmunt resource @nsumption of inde-
pendent adivities to the corred owner, i.e., thread. In [Ford
et a. 96], threals can ad as sheduler for other threads and
can donate CPU time to seleded threads. The reservation
domains [Bruno et al. 98] of Eclipse, the Software Per-
formance Units [Vergehese d al. 98], and the scheduling
domains in Nemesis [Leslie d al. 96] enable the scheduler
to consider the resource @nsumption of a group of proc-
€SES.

The reserve abstradion is introduced in Red-Time
Macd [Mercer et a. 94]. The main purpose of reservesisto
acarately acount CPU time for adiviti es that invoke user-
level services, e.g., client threals that invoke various srv-
ers (which are running in user-space becaise Red-Time
Mad is a p-kernel). Each thread is bound to one reserve,
and multiple threads, potentially runnng in different pro-
tedion domains, can be bound to a single reserve. By this,
computations of server threals that are performed on be-
half of a dient can be charged to the dients reserve and
scheduling of the server computations is performed ac-
cording to the reservations of the reserve. In [Rajkumar et
a. 98], the mncept of reserves is extended to manage a-
ditional resource types such as CPU, disk bandwidth, net-
work bandwidth, and virtual memory.

Resource containers [Banga d@ al. 99] alow explicit
and fine-grained control over resource @nsumption at all
levels in the system, because it alows dynamic relation-
ships between resource principals and processs. The sys
tem provides explicit operations to creae new resource
containers, to bind processs to containers and to release
these bindings, and to share ntainers between resources.
Resource mntainers are asociated with a set of attributes,
like scheduling parameters, memory limitations, and net-
work QoS values, that can be set by applicaions and sup-
port the gpropriate scheduling (decoupled from particular
process information). Furthermore, containers can be
bound to files and sockets, such that the kernel resource
consumption on behalf of these descriptors is charged to
the mntainer.

In the Riato OS, an activity object is the astradion to
which resources are dlocaed and against which resource
usage is charged [Jones et a. 95], [Jones et a. 97]. Appli-

caions run by default in their own adivity and typicdly in
their own process Activities may span over address paces
and machines. Multiple threads of control may be a&ci-
ated with an adivity. The threads exeaute with rights
granted by seaured user credentials asociated with this ac-
tivity. The CPU scheduler treds al threads of an adivity
equal, because the assumption isthat they cooperate toward
a common goal.

The path abstradion in the SCOUT OS [Mosberger et
a. 96] combines low-level de-multiplexing of network
padkets via padcket filter with migrating threads. A path rep-
resents an 1/0 path and is exeauted by athread. One thread
can sequentially exeaute multi ple paths. A newly awakened
thread inherits the scheduling requirements of the path and
can adjust them afterwards. The path objed is extended in
the Escort OS with a mechanism to aceount all resource
consumptions of a path to defend against denial of service
attadks [Spatschedk et a. 99].

Compared to the previously discussed approaches for
resource acourting, a basicdly different approach is in-
troduced in [Steee ¢ a. 99]. Multiple threads, which may
reside in different protedion domains, are gathered in a
job. Instead of measuring the resource @nsumption of
these threads, Steee ¢ al. [Steae @ a. 99 monitor the
progress of jobs and adapt, i.e., increase or deaease, the
alocation of CPU to those jobs. So-cdled symbictic inter-
faces link the notion of progress which is depending on the
applicdion to system netrics, like abuffer’ sfill -level.

5 CPU SCHEDULING

Most commodity OSs, like Windows NT and Solaris,
perform priority scheduling and provide time-sharing and
red-time priorities. Priorities of threads in the red-time
range ae never adjusted from the system. A straightfor-
ward approach to asaure that atime aiticd multimedia task
recaves afficient CPU time would be to assgn ared-time
priority to this task. However, in [Nieh et a. 93], it is
shown for the SVR4 UNIX scheduler that this approach
resultsin uraccetable system performance A high priority
multimedia task, like video, has precadence over al time-
sharing tasks and is nealy always adive. Starvation of
timesharing tasks, e.g., window system and basic system
services, leads to poa QoS for the multimedia gplication
and unacceptable performance for the entire system. Thus,
the usage of red-time priorities does not automaticdly lead
to the desired system behavior. However, other implemen-
tations, like those described in [Wolf et a. 96] and [Chu et
a. 99|, show that fixed red-time priorities can be utili zed
to succesdully schedule red-time and best effort tasksin a
genera purpose UNIX system.

Several new solutions have been recently developed.
The following sedion gves a general overview and class-
ficaion of these solutions, and subsequent sedions present
two solutionsin more detail .

8 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

5.1 CLASSFICATION OF SCHEDULING MECHANISMS

Two o the most popular paradigms for resource dlo-
caion and scheduling to satisfy the contradicting goals of
flexibility, fairness and QoS guarantees are proportional
share resource allocation and reservation-based algo-
rithms [Stoica & al. 97]. In propational share dlocation,
resource requirements are spedfied by the relative share
(or weight) of the resource In a dynamic system, where
tasks dynamicdly enter and leave the system, a share de-
pends on both the arrent system state and the aurrent time.
The resourceis always al ocated in propartion to the shares
of competing requests. Thus, in pure propationa share
resource dlocation, no guarantees can be given, becaise
the share of CPU might be abitrary low. The basis for
most propartional share resource dlocaion medanisms
are dgorithms that have been developed for padket sched-
uling in padket-switched networks, like weighted fair
gueuing [Demers et a. 90|, virtual clock [Zhang 91], and
packet-by-packet generalized processor sharing [Parek et
a. 93]. Examples for systems using propational share
CPU dll ocaion include Adaptive Rate Control (ARC) [Yau
et a. 96], SMART [Nieh et a. 97], Earliest Eligible Vir-
tual Deadline First [Stoica & al. 97], Lottery and Stride
scheduling [Waldspurger 95], and Move-to-Rear List
(MTR-LS) scheduling in Eclipse [Bruno et al. 99].

In contrast to propartional share resource dlocation,
reservation-based algorithms, like RM and EDF schedul-
ing, can be used to implement guaranteed QoS. The mini-
mum share for ead thread is both state and time independ-
ent. However, resource reservation sacaifices flexibility and
fairness [Stoica @ al. 97]. EDF scheduling is used in
Nemesis[Ledie ¢ a. 96], DASH [Anderson et a. 90], and
SUMO [Coulson et a. 95]. The principles of RM schedul-
ing are gplied, for example, in Red-Time Mach [Mercer
et al. 94], Hei'TS [Wolf et a. 96], AQUA [Lakshman 97]
and for the Real-Time Upcall in the MARS system [Bud-
dhikot et a. 98]. To implement a fealbadk driven propar-
tional alocator for red-rate scheduling, the work presented
in[Steaeet a. 99 uses both EDF and RM.

Most modern solutions of CPU scheduling for multi-
media systems are based on either propartional share dlo-
cdion, or are a ombination of different allocaion para-
digms in hierarchies to suppart both red-time and best ef-
fort requirements. For example, the scheduler in the Riato
system [Jones et a. 97] and the soft red-time (SRT) user-
level scheduler from [Chu et a. 99] combine EDF and
round-robin scheduling. The Atropcs scheduler in Nemesis
[Ledlie @ al. 96] also applies EDF to sort waiti ng schedul-
ing domains in different queues. The propationa share
resource dl ocation Start-time Fair Queuing in [Goyal et al.
961 isused in [Goyad et a. 96a] to achieve ahierarchicd
partition of CPU bandwidth in a genera framework. For
eadt of these partitions, arbitrary scheduling mechanisms
can be used. Propartional share scheduling is also the pri-
mary palicy in [Jeffay et a. 98]. When multi ple processes

are digible, they are scheduled acording to EDF. In the
context of the Flux projed, a CPU inheritance scheduling
framework has been developed in which arbitrary threads
can ad as <heduler for other threads and widely diff erent
scheduling policies can co-exist [Ford et a. 96]. The
scheduler in SCOUT, cdled BERT [Bavier et a. 984,
merges reservation-based and propartional share resource
dlocation in a singe pdlicy, instead of combining two or
more policies in a hierarchicd approac. Basicdly, BERT
extends the virtual clock algorithm by considering dead-
lines for the scheduling dedsion and by allowing hgh
priority red-time tasks to sted CPU cycles from low prior-
ity and best effort tasks.

In addition to the resource dlocaion paradigm, i.e.,
propational share (P), reservation-based (R), and hierar-
chicd (H), Table 1 uses the following criteria to classfy
CPU scheduling approacdhes:. (1) whether admisson control
is performed; (2) whether adaptation is suppated; (3)
whether a new abstradion for resource principa is intro-
duced; and (4) what isthe @ntext of the scheduler, i.e., isit
part of a new kernel, integrated in an existing kernel, or
implemented on top o an existing kernel.

Table 1: CPU scheduling approaches

System/Projed - c

£ |9 2. 8% |-

S |3c |Bs |52 | ¥

2|52 |85 (g2 |t

T |<O |<d |¢& |O
AQUA R| Y Y N |Solaris
ARC Pl Y Y N |Solaris
Atropcs H Y Y Y |Nemesis
BERT PRY| Y Y Y |scout
Flux H| N N N |UL prototype®
[Goya etal.96a] | P | N y? N |Framework
Hel TS R| Y N N |AIX
[Jeffay et a. 98] H| N Y3 | N* |FreeBSD
Lottery, Stride P N Y Y |Mad
MTR-LS Pl Y N Y |Eclipse
Ridto H|l Y Y Y |Ridto
RT Mach R| Y Y Y |RT-Mach
RT Upcdls R| N N N |NetBSD
SMART P N Y N |Solaris
SRT H|l Y Y N |UL scheduler
[Steae @ al. 99 R| Y Y N° |UL prototype®
SUMO H Y N N [Chorus

1 BERT merges the feaures of virtual clock and EDF

2 Provides awork around

8 Suppats only monitoring of exeaution times

4 Supparts inheritance of weight from user to kernel processes
5 Prototype that has been implemented in user-level (UL)

In the foll owing subsedions, we describe in more detail
two distinct approadhes, i.e., Riato scheduler and SMART,
that differ in al clasdficaion criteria except adaptation
suppart.

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 9

5.2 RIALTO SCHEDULER

The scheduler of the Rialto OS [Jones et a. 95], [Jones
et a. 96], [Jones et a. 97] is based on three fundamental
abstractions:

e Activities are typicdly an exeauting program or appli-
caion that comprises multiple threads of control. Re-
sources are dlocaed to adivities and their usage is
charged to adivities.

e CPU reservations are made by adivities and are re-
guested in the form: “reserve x units of time out of
every Y units for adivity A”. Basicdly, period length
and reservations for ead period can be of arbitrary
length.

e Time congtraints are dynamic requests from threads to
the scheduler to run a cetain code segment within a
spedfied start time and deadline to completion.

The scheduling dedsion, i.e., which threads to adivate
next, is based on a pre-computed scheduling gaph. Each
time arequest for CPU reservation is issued, this schedul-
ing gaph is recomputed. In this <heduling gaph, eat
node represents an adivity with a CPU reservation, sped-
fied as time interval and period, or represents free @mpu-
tation time. For eat base period, i.e., the lowest common
denominator of periods from al CPU reservations, the
scheduler traverses the tree in a depth first manner, but
badtradks always to the rocot after visiting a led in the
tree Each node, i.e., adivity that is crossed during the tra-
versal, is sheduled for the spedfied amount of time. The
exeadtion time asociated with the schedule graph is fixed.
Free eeadution times are available for non-time-critica
tasks. This fixed schedule graph keeps the number of con-
text switches low and keeps the scheduling algorithm scd-
able.

If threads request time onstraints, the scheduler ana
lyzes their feasibility with the so-cdled time interval as-
signment data structure. This data structure is based on the
knowledge represented in the schedule graph and chedks
whether enoughfree @mputation time is avail able between
start time and deadline (including the dready reserved time
in the CPU reserve). Threads are not all owed to define time
constraints when they might block — except for short
blocking intervals for synchronization or I/0. When during
the @urse of a scheduling gaph traversal an interval as-
signment record for the aurrent time is encountered, a
thread with an adive time onstraint is sleded acwording
to EDF. Otherwise, threads of an adivity are scheduled ac-
cording to round-robin. Free time for non-time-criticd
tasksisaso dstributed acmrding to round-robin.

If threads with time @nstraints block on a synchroniza-
tion event, the thread priority (and its reservations) is
pas<d to the holding thread.

53 SMART

The SMART scheduler [Nieh et a. 97] is designed for
multimedia and red-time goplications and is implemented

in Solaris 2.5.1. The main ideaof SMART isto dfferenti-
ate between importance to determine the overal resource
dlocation for ead task and urgency to determine when
ead task is given its alocaion. Importance is valid for
red-time and conventiona tasks and is gedfied in the
system by a tuple of priority and biased virtual finishing
time. Here, the virtual finishing time, as known from fair-
queuing schemes, is extended with a bias, which is a
bounded dff set measuring the aility of conventional tasks
to tolerate longer and more varied service delays. Applica
tion developers can spedfy time wnstraints, i.e., deadlines
and exeaution times, for a particular block of code, and
they can use the system notification. The system notifica-
tion isan upcdl that informs the gplicdion that a dealine
cannot be met and alows the gplication to adapt to the
situation. Applicaions can query the scheduler for avail-
ability, which is an estimate of processor time @mnsumption
of an applicaion relative to its procesor allocaion. Users
of applicaions can spedfy priority and share to hias the
alocation of resources for the diff erent appli cations.

The SMART scheduler separates importance and ur-
gency considerations. First, it identifies all tasks that are
important enough to exeaute and colleds them in a candi-
date set. Afterwards, it orders the candidate set acording
to urgency consideration. In more detail, the scheduler
works as foll ows: if the tasks with the highest value-tuple is
a aonventional task, schedule it. The highest value-tuple is
either determined by the highest priority or for equa pri-
orities by the ealiest biased virtua finishing time. If the
task with the highest value-tuple is a red-time task, it cre-
ates a candidate set of all red-time tasks that have ahigher
value-tuple than the highest conventional task. The candi-
date set is sheduled acwrding to the so-cdled best-effort
red-time scheduling algorithm. Basicdly, this algorithm
finds the task with the ealiest dealline that can be exe-
cuted without violating deadlines of tasks with higher
value-tuples. SMART noatifies applicaions if their compu-
tation cannot be wmpleted before its dealline. This en-
ables appli caions to implement downscding.

Thereis no admisson control implemented in SMART.
Thus, SMART can only enforce red-time behavior in un-
derload situations.

6 Disk MANAGEMENT

Magnetic and opticd disks enable permanent storage of
data! The file system is the central OS abstraction to han-
dle data on disk. However, in most commodity OSs, it is
possble to by-passthe file system and to use raw disks,
e.g., for database systems. The two main resources that are
of importance for disk management, no matter whether the
file system of an OS or raw disk is used, are:

e Memory space on disk: alocaion of memory space &
the right placeon disks, i.e., appropriate data place-
ment, can strongly influencethe performance

1 Wefocusin this article only on isaes related to magnetic disks.

10 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

e Disk I/O bandwidth: accessto disk has to be multi-
plexed in the temporal domain. CPU scheduling algo-
rithms cannot diredly be gplied for disks, because of
the foll owing reasons [Molano et a. 97]: (1) adisk ac-
cess cannot be preanpted, i.e, it is adways necessary
to read a whole block; (2) accesstimes (which corre-
spond to exeaution time for CPU scheduling) are not
deterministic, because they depend on the position of
the disk head and the position of data on disk; and (3)
disk 1/0 represents the main performance baottlened in
today’s g/stems.

Multimedia data can be managed on disk in two dffer-
ent ways [Steinmetz 95]: (1) the file organization on disk is
not changed and the required red-time suppart is provided
by speda disk scheduling algorithms and large buffers to
avoid jitter; or (2) the data placement is optimized for con-
tinuous multimedia data in distributed storage hierarchies
like disk arrays[Chen et a. 94].

In the following subsedions, we discuss file manage-
ment, data placanent, and dsk scheduling issues of multi-
media fil e systems sparately.

6.1 FILE MANAGEMENT

The traditional accessand control tasks of file systems,
like storing file information in sources, objeds, program
libraries and exeautables, text, and acmurnting records,
have to be extended for multimedia file systems with red-
time charaderistics, coping with larger file sizes (high disk
bandwidth), and with multiple @ntinuous and discrete data
streams in paral el (red-time delivery) [Steinmetz 95]. The
fad that in the last yea's gorage devices have becme only
marginaly faster compared to the exponentialy increased
performance of procesors and networks, makes the dfed
of this discrepancy in speed for handling multimedia data
by file systems even more important. This is documented
by the large reseach adivity to find new storage structures
and retrieval techniques. The &isting approaches can be
caegorized along multiple criteria, and we present a brief
clasdfication along architedural issues and data charader-
istics.

From the achitedural perspedive, multimedia file
systems can be dassfied as[Shenoy et a. 99]:

o Partitioned file systems consist of multiple subfile
systems, ead tail ored to handle data of a spedfic data
type. An integration layer may provide transparent ac-
cessto the data handled by the different subfile sys-
tems. There ae multiple examples of systems using
this approach, e.g., FFS [Leffler et a. 90], Random-
ized 1/O (RIO) [Santos et a. 98], Shark [Haskin 93],
Tiger Shark [Haskin et a. 96], and the combination of
UFSand CMFSin[Ramakrishnan et al. 93].

e Integrated file systems multiplex all avalable re-
sources (storage space disk bandwidth, and buffer
cade) among al multimedia data. Examples of inte-
grated multimedia file systems are the file system of

Nemesis [Barham 97], Fellini [Martin et a. 96], and
Symphony [Shenoy et al. 984].

Another way to classfy multimedia file systems is to
group the systems acarding to the supparted multimedia
data charaderigtics:

o Generd file systems cgpable of handling multimedia
data to a cetain extend, e.qg., FFS[Leffler et al. 90],
and log-structured file systems [Rosenblum 95], [Selt-
zeretal. 93], [Wanget a. 99q].

e Multimedia file systems optimized for continuous
multimedia data (video and audio data), e.g., SBVS
[Vernick et a. 96], Mitra [Ghandeharizadeh et al. 97],
CMFS [Anderson et a. 92b], PFS[Lee ¢ d. 97], Ti-
ger [Bolosky et al. 96], [Bolosky et a. 97], Shark
[Haskin 93], Tiger Shark [Haskin et a. 96], and
CMSS[Lougter et al. 93].

e Multimedia file systems handling mixed-media work-
loads (continuous and discrete multimedia data), e.g.,
Fellini [Martin et a. 96], Symphony [Shenoy et al.
984, MMFS [Niranjan et a. 97], the file system of
Nemesis[Barham 97], and RIO [Santos et a. 98].

The file system of Nemesis [Barham 97] supparts QoS
guarantees using a device driver model. This model red-
izes alow-level abstradion providing separation of control
and data path operations. To enable the file system layers
to be exeauted as unprivil eged code within shared libraries,
data path modules supply translation and protedion of 1/O
requests. QoS guarantees and isolation between clients are
provided by scheduling low-level operations within the de-
vicedrivers.

Fellini [Martin et a. 96] supparts dorage and retrieval
of continuous and dscrete multimedia data. The system
provides rate guarantees for adive clients by using admis-
sion control to limit the number of concurrent adive cli-
ents.

Symphony [Shenoy et al. 98a] can manage heterogene-
ous multimedia data supparting the aexistence of multiple
data type spedfic techniques. Symphony comprises a QoS
aware disk scheduling agorithm for red-time axd non-
red-time requests, and a storage manager supparting mul-
tiple block sizes and data type spedfic placement, falure
recvery, and cading palicies.

MMFS [Niranjan et a. 97] handles interadive multi-
media gplicaions by extending the UNIX file system.
MMFS has a two-dimensiona file structure for single-
medium editing and multimedia playback: (1) a singe-
medium strand abstradion [Rangan et a. 91]; and (2) a
multimedia file onstruct, which ties together multiple
strands that belong logicdly together. MM FS uses applica-
tion-spedfic information for performance optimizaion of
interadive playbad. This includes intelli gent prefetching,
state-based cading, prioritized red-time disk scheduling,
and synchronized multi-stream retrieval.

RIO [Santos et a. 98] provides red-time data retrieval
with statistica delay guarantees for continuous and discrete
multimedia data. The system applies random data dloca-

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 11

tion on heterogeneous disks and pertial data replication to
achieve load balancing and high performance.

In addition to the &ove mentioned aspeds, new
mechanisms for multimedia file organizaion and metadata
handling are needed. For instance in MMFS [Niranjan et
a. 97], eath multimedia file has a unique mnode, and for
every strand in a multimedia file exists a unique inode.
mnodes include metadata of multimedia files and multime-
dia-spedfic metadata of ead strand, e.g., recording rate,
logicd block size, and size of the gopli cation data unit.

M etadata management in Symphony [Shenoy et a. 984
uses a two-level metadata structure (similar to inodes) al-
lowing both data type spedfic structure for files and sup-
porting the traditional byte stream interface Likein UNIX,
fixed size metadata structures are stored on areserved area
of the disk. The file metadata comprises, in addition to the
traditional file metadata, information about block size used
to store the file, type of data stored in the file, and a two-
level index. The first index level maps logicd units, e.g.,
frames, to hyte offsets, and the second index level maps
byte off setsto disk block locations.

Fellini [Martin et al. 96] uses the raw disk interface of
UNIX to store data. It maintains the following information:
raw disk partition headers containing free space amini-
stration information on the disks, file cntrol blocks smil ar
to UNIX inodes describing data layout on disk, and file
data.

Minorca [Wang et a. 99h] divides the file system par-
tition into multiple sedions: super block sedion, cylinder
group sedion, and extent sedion. Metadata such as inodes
and dredory blocks are dlocaed in the ¢linder group
sedion in order to maintain the aontiguity of block aloca
tionin the extent sedion.

6.2 DATA PLACEMENT

Data placement (also dften referred to as disk layout
and data allocation) and disk scheduling are responsible
for the adual values of seek time, rotation time, and trans-
fer time, which are the three major components determin-
ing disk efficiency [Garcia-Martinez & a. 200(Q. There ae
a few general data placement strategies for multimedia gp-
plicaions in which read operations dominate and only few
non-concurrent write operations occur:

e Scattered placement: blocks are alocaed at arbitrary
places on disk. Thus, sequential access to data will
usualy cause a large number of intrafile seeks and
rotations resulting in high disk read times. However, in
RIO [Santos et a. 98], random data placement is used
to suppat mixed-media workloads gored on hetero-
geneous disk configurations. In their spedal scenario,
the reported performance measurements ow similar
results as those for conventional striping schemes
[Berson et al. 94].

e Contiguous placement: al data blocks of a file ae
successvely stored on disk. Contiguous all ocation will
mostly result in better performance mmpared to sca-

tered all ocation. The problem of contiguous all ocaion

isthat it causes external fragmentation.

e Locally contiguous placement (also cdled extent-
based allocation): the file is divided into multiple
fragments (extents). All blocks of a fragment are
stored contiguously, but fragments can be scatered
over 1-n disks. The fragment size is usualy deter-
mined by amount of data required for one service
round. Locdly contiguous placement causes less ex-
ternal fragmentation than contiguous placement.

e Constrained placement: this grategy restricts the aver-
age distance measured in tracks, between a finite se-
quence of blocks [Anderson et a. 92, [Vin et a. 93].
Constrained placement represents a cmpromise of
performance and fragmentation between scatered and
contiguous placement. However, complex agorithms
are needed to obey the defined constraints [Chang et
a. 97]. This grategy takes into acmunt only seek
times and not rotation times.

e VBR compressed data placement: conventional fixed-
sized clusters correspond to varying amourts of time,
depending on the achieved compresson [Bell et al.
95]. Alternatively, the system can store data in clusters
that correspond to a fixed amount of time, with a vari-
able duster size. Additionally, compressed data might
not correspond to an even number of disk sedors,
which introduces the problem of packing data [Gem-
mell et al. 92].

To optimize write operations, log-structured placement
has been developed to reduce disk seeks for write intensive
applicdions [Rosenblum 95], [Seltzer et al. 93], [Wang et
a. 99)]. When modifying blocks of data, log-structured
systems do not store modified blocks in their original posi-
tions. Instead, al writes for al streams are performed se-
quentialy in a large @mntiguous free space Therefore, in-
stead of requiring a seek (and passhly intra-file seeks) for
ead stream writing, only one seek is required prior to a
number of write operations. However, this does not guar-
antee ay improvement for real operations, and the
mechanism is more wmplex to implement.

For systems managing multiple storage devices, there
exist two passbhilities of distributing data anong disks
[Gemmell et al. 95, [Garcia-Martinez & al. 200Q:

o Data dtriping: to redize a larger logicd sedor, many
physicd sedors from multiple disks are accesd in
parallel.

o Datainterleaving: requests of adisk are handled inde-
pendent of requests from other disks. All fragments of
areguest can be stored on 1-n disks[Abbat 84].

Some multi media fil e systems, e.g., Symphony [Shenoy
et al. 98a] and Tiger Shark [Haskin et al. 96], use striping
techniques to interleave both continuous and non-
continuous multimedia data acoss multiple disks. There
are two fadors crucialy determining the performance of
multi-disk systems [Garcia-Martinez & al. 200(Q:

12 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

e Efficiency in using eat disk. The amount of seek and
rotation times dhould be reduced as much as possble
in order to have moretime available for data transfer.

e Fairnessin distributing the load over al disks.

These two fadors largely depend on the data distribu-
tion strategy and the gplicaion charaderistics. They are
very important to achieve synchronization, which means
the tempora relationship between different multimedia
data streams [Steinmetz 95]. Synchronizaion is often
achieved hy storing and transmitting streams interleaved,
e.g., by using a MPEG compresson medhanism. Another
solution is time-stamping of the multimedia data dements
and appropriate buffering at the presentation system to en-
able the OS to synchronize related data elements of con-
tinuous and di screte multimedia data.

6.3 DISK SCHEDULING

Traditional disk scheduling algorithms focused mainly
on reducing seek times [Denning 67], e.g., Shortest Seek
Time First (SSTF) or SCAN. SSTF has high response time
variations and may result in starvation of certain requests.
SCAN reduces the response time variations and optimizes
seek times by serving the requests in an elevator-like way.
There eist many variations and hybrid solutions of the
SSTF and SCAN algorithms that are widely used today
[Geistetd. 87], [Coffmanetal. 90], [Yuetd. 93].

Modern disk scheduling algorithms [Jacobson et al.
91], [Seltzer et a. 9Q] try to minimize the sum of seek and
rotational delays by prioritizing, e.g., the request with the
Smallest Positioning Time First.

However, disk scheduling algorithms for multimedia
data requests need to optimize, beside the traditional crite-
ria, also ather criteria spedal for multimedia data including
QoS guarantees [Steinmetz 95], [Gemmell et a. 95]. The
following list represents an overview of recent multimedia
data disk scheduling algorithms, which are primarily opti-
mized for continuous data streams [Rompogiannakis et al.
98], [Garcia-Martinez & a. 200Q:

e EDF strategy [Liu et a. 73] serves the block request
with the neaest dealine first. Strict EDF may cause
low throughput and very high seek times. Thus, EDF is
often adapted or combined with other disk scheduling
strategies.

e SCAN-EDF strategy [Reddy et al. 94] combines the
seek optimization of SCAN and the red-time guaran-
tees of EDF. Requests are served acording to their
dealline. The request with the ealiest dealline is
served first like in EDF. If multiple requests have the
same (or similar) deadline, SCAN is used to define the
order to handle the requests. The efficiency of SCAN-
EDF depends on how often the dgorithm can be g-
plied, i.e., how many requests have the same (or simi-
lar) deadline, because the SCAN optimization is only
achieved for requests in the same dealline class
[Reddy et al. 93].

e Group Sweeping Strategy (GSS [Chen et al. 93], [Yu
et a. 93] optimizes disk arm movement by using a
variation of SCAN handling the requests in a round-
robin fashion. GSS splits the requests of continuous
media streams into multiple groups. The groups are
handled in a fixed order. Within a group, SCAN is
used to determine time and order of request serving.
Thus, in one service round, a request may be handled
first. In another service round, it may be the last re-
quest served in this group. To guarantee @ntinuity of
playout, a smocthing buffer is needed. The buffer size
is depending of the serviceround time and the required
datarate. Thus, the playout can first start at the end of
the group containing the first retrieval reguests when
enough data is buffered. GSS represents a trade-off
between optimizaions of buffer space ad disk arm
movement. GSS is an improvement compared to
SCAN, which requires a buffer for every continuous
media request. However, GSS may reduce to SCAN
when only one group is built, or in the other extreme
case, GSS can behave like round-robin when every
group contains only one request.

e Scheduling in rounds, e.g., [Berson et a. 94], [Gem-
mell et al. 95], [Ozden et al. 964], and [Triantafill ou et
a. 98], splits every continuous media requests into
multi ple blocks (so-cdl ed fragments) in a way that the
playout duration of ead fragment is of a cetain con-
stant time (normally 1-n seconds). The length of the
round represents an upper time limit for the system to
retrieve the next fragment from disk for al adive re-
quests. For ead round, the anount of buffered data
must not be less than the anount of consumed deta
avoiding that the amount of buffered data effedively
deaeases over the time. Disk scheduling agorithms
with this property are cdled work-ahead-augmenting
[Anderson et a. 92b] or buffer-conserving [Gemmell
et a. 94]. Within around, it is possble to use round-
robin or SCAN scheduling.

However, there has only been done littl e work on disk
scheduling algorithms for mixed multimedia data work-
loads, serving discrete and continuous multimedia data re-
quests at the same time. Some examples are described in
[Rompogiannakis et a. 98], [Lin et a. 91], [Nerjes et al.
98], [Reddy et al. 94], [Ramakrishnan et a. 93], and [Wi-
jayaratne @ al. 99]. These dgorithms have to satisfy three
performance goals. (1) display continuous media streans
with minimal delay jitter; (2) serve discrete requests with
small average response times; and (3) avoid starvation of
discrete request and keep variation of response times low.
In [Rompogiannakis et a. 98], disk scheduling algorithms
for mixed-media workloads are classified by:

e Number of separate scheduling phases per round:
one-phase dgorithms produce mixed schedules, con-
taining both discrete and continuous data requests.
Two-phase dgorithms have two, not timely overlap-
ping, scheduling phases serving discrete and continu-
ous data reguests isolated in the corresponding phase.

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 13

e Number of scheduling levels. hierarchicd scheduling
algorithms for discrete data requests are based on de-
fining clusters. The higher levels of the dgorithms are
concerned with the dficient scheduling of clusters of
discrete requests. The lower levels are dficiently
scheduling the requests within a duster. The most im-
portant task to solve in this context is how to schedule
discrete data requests within the rounds of continuous
data requests, which are mostly served by SCAN
variations.

For instance, Cello [Shenoy et a. 98l uses such atwo-
level disk scheduling architedure. It combines a dass
independent scheduler with a set of classspedfic schedul-
ers. Two time scades are mnsidered in the two levels of the
framework to alocate disk bandwidth: (1) coarse-grain al-
locaion of bandwidth to application classs is performed
by the dassindependent scheduler; and (2) the fine-grain
interleaving of requests is managed by the dassspedfic
schedulers. This sparation enables the w-existence of
multi ple disk scheduling medhanisms at a time depending
on the goplication requirements.

7 MEMORY MANAGEMENT

Memory is an important resource, which hasto be cae-
fully managed. The virtual memory subsystem of com-
modity OSs all ows processes to runin their own virtual ad-
dress paces and to use more memory than physicdly
avail able. Thus, the memory manager has sveral complex
tasks such as bodkkeeping avail able resources and assgn-
ing physicd memory to a single process [Steinmetz 95],
[Tanenbaum 92]. Further key operations of the virtua
memory system include [Cranor 98], [Cranor et a. 99]:

o Allocaion of ead process virtual address pace ad
mapping physicd pages into a virtual address pace
with appropriate protedion.

e The page fault handler manages unmapped and invalid
memory references. Page faults happen when wn-
mapped memory is accesed, and memory references
that are inconsistent with the arrent protedion are in-
valid.

e Loading data into memory and storing them bad to
disk.

e Duplicaingan address pacein case of afork cdl.
Since virtual memory is mapped onto adual available

memory, the memory manager has to do paging or swap-

ping, but due to the red-time performance sensiti veness of

multimedia gplicaions, swapping should not be used in a

multimedia OS [Steinmetz 95]. Thus, we focus on paging

based memory systems. Tecdhniques such as demand-
paging and memory-mapped files have been succesully

used in commodity OSs [Schulzrinne 96], [Hand 99.

However, these techniques fail to suppat multimedia g-

plicaions, becaise they introduce unpredictable memory

access times, cause poar resource utili zation, and reduce
performance. In the foll owing subsedions, we present new
approaches for memory allocaion and utili zation, data re-

placanent, and prefetching wing applicaion-spedfic
knowledge to solve these problems. Furthermore, we give a
brief description of the UVM Virtual Memory System that
replaces the traditional virtual memory system in NetBSD
1.4.

7.1 MEMORY ALL OCATION

Usualy, upon processcredion, a virtual address pace
is al ocaed which contains the data of the process Physi-
cd memory is then al ocated and assgned to a processand
then mapped into the virtual address paceof the process
acording to avail able resources and a global or locd allo-
caion scheme. This approac is aso cdled user-centered
allocation. Each processhas its own share of the resources.
However, traditional memory allocaion on a per client
(procesy basis suffers from a linea increase of required
memory with the number of processes.

In order to better utili ze the available memory, several
systems use so-cdled data-centered allocation where
memory is allocaed to data objeds rather than to a singe
process Thus, the datais ®en as aresourceprincipa. This
enables more st-effedive data-sharing techniques [Garo-
falakis et a. 98], [Krishnan et a. 97]: (1) batching starts
the video transmisson when severa clients request the
same movie and allows svera clients to share the same
data stream; (2) buffering (or bridging) cades data be-
tween conseautive dients omitting rew disk requests for
the same data; (3) stream merging (or adaptive piggy-
backing) displays the same video clip at different speeds to
alow clients to catch up with ead other and then share the
same stream; (4) content insertion is a variation of stream
merging, but rather than adjusting the display rate, new
content, e.g., commercials, isinserted to aignthe conseau-
tive playouts temporally; and (5) perodic services (or en-
hanced pay-per-view) assgns ead clip a retrieval period
where severa clients can start at the beginning of ead pe-
riod to view the same movie and to share resources. These
data-sharing techniques are used in severa systems. For
example, a per movie memory allocaion scheme, i.e, a
variant of the buffering scheme, for VoD applications is
described in [Rotem et a. 95. All buffers are shared
among the dients watching the same movie and work like a
diding window on the @ntinuous data. When the first cli-
ent has consumed nealy all the data in the buffer, it starts
to refresh the oldest buffers with new data. Periodic serv-
ices are used in pyramid broadcasting [Viswanathan et al.
96]. The datais lit in partitions of growing size, because
the mnsumption rate of one partition is assumed to be
lower than the downloading rate of the subsequent parti-
tion. Each partition is then broadcasted in short intervals on
separate channels. A client does not send a request to the
server, but insteal it tunes into the channel transmitting the
required data. The data is caded on the recever side, and
during the playout of a partition, the next partition is
downloaded. In [Hua & a. 97] and [Gao et a. 98], the
same broadcasting idea is used. However, to avoid very

14 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

large partitions at the end of amovie and thus to reduce the
client buffer requirement, the partitioning is changed such
that not every partition increases in size, but only eac n"
partition. Performance evaluations dow that the data-
centered alocaion schemes sde much better with the
numbers of users compared to user-centered allocation.
The total buffer spacerequired is reduced, and the average
response time is minimized by using a small partition size
at the beginning of amovie.

The memory reservation per storage device mechanism
[GarciaMartinez & al. 200Q all ocates a fixed, small num-
ber of memory buffers per storage device in a server-push
VoD server using a ¢ycle-based scheduler. In the simplest
case, only two huffers of identicd size ae dlocaed per
storage device These buffers work co-operatively, and
during eadt cycle, the buffers change task as data is re-
ceved from disk. That is, data from one processis real
into the first buffer, and when all the datais loaded into the
buffer, the system starts to transmit the information to the
client. At the same time, the disk starts to load data from
the next client into the other buffer. In this way, the buffers
change task from receving disk data to transmitti ng data to
the network urtil all clients are served. The amisson
control adjusts the number of concurrent users to prevent
data loss when the buffers switch and ensures the mainte-
nanceof all client services.

In [Nakgjima & al. 97], the traditional allocaion and
page-wiring medhanism in Red-Time Mad is changed. To
avoid that privileged users monopdize memory usage by
wiring urdimited amount of pages, only red-time threads
are dlowed to wire pages, though only within their limited
amount of allocated memory, i.e., if more pages are
needed, a request has to be sent to the reservation system.
Thus, pages may be wired in a seaure way, and the reser-
vation system controls the anount of memory allocaed to
ead process

7.2 DATA REPLACEMENT

When there is need for more buffer space and there ae
no available buffers, a buffer has to be replaced. How to
best choose which buffer to replace depends on the gpli-
caion. However, due to the high data cmnsumption rate in
multimedia gplications, data is often replaced before it
might be reused. The gain of using a cmmplex page re-
placement algorithm might be wasted and a traditional al-
gorithm as described in [Effelsberg et al. 84] or [Tanen-
baum 92] might be used. Nevertheless in some multimedia
applicaions where data often might be reused, proper re-
placement algorithms may increase performance The dis-
tance [Ozden et al. 964, the generalized interval caching
[Dan et a. 97], and the SHR [Kamath et a. 95 schemes,
al replacebuffers after the distance between conseautive
clients playing bad the same data and the anount of avail-
able buffers.

Usually, data replacement is handled by the OS kernel
where most applicaions use the same medanism. Thus,

the OS has full control, but the used medianism is often
tuned to best overall performance ad does not suppart ap-
plicaion-spedfic requirements. In Nemesis [Hand 99,
self-paging has been introduced as a technique to provide
QoS to multimedia gplicaions. The basic idea of self-
paging is to “require every applicaion to ded with al its
own memory faults using its own concrete resources’. All
paging operations are removed from the kernel where the
kernel is only responsible for dispatching fault notifica-
tions. This gives the gplicdion flexibility and control,
which might be needed in multimedia systems, at the st
of maintaining its own virtual memory operations. How-
ever, a mgjor problem of self-paging is to opimize the
global system performance. Allocaingresources diredly to
applicdions gives them more @ntrol, but that means op-
timizations for global performance improvement are not
diredly achieved.

7.3 PREFETCHING

The poa performance of demand-paging is due to the
low disk access peals. Therefore, prefetching data from
disk to memory is better suited to suppart continuous play-
badk of time-dependent data types. Prefetching is a mecda-
nism to preload data from slow, hightlatency storage de-
vices guch as disks to fast, low-latency storage like main
memory. This reduces the response time of a data read re-
quest dramaticaly and increases the disk I/O bandwidth.
Prefetching mechanisms in multimedia systems can take
advantage of the sequential charaderistics of multimedia
presentations. For example, in [Anderson et a. 98], aread-
ahead medhanism retrieves data before it is requested if the
system determines that the acceses are sequential. In [Ng
et al. 94], the utili zation of buffersand disk isoptimized by
prefetching all the shortest database queries maximizing
the number of processes that can be adivated oncethe run-
ning processis finished. In [Teaika € a. 96|, asauming a
linea playout of the cntinuous data strean, the data
needed in the next period (determined by a tradeoff be-
tween the maximum concurrent streams and the initial de-
lay) is prefetched into a shared buffer. Preloading data ac-
cording to the loading and consuming rate and the avail-
able anount of buffersisdescribed in[Zhang et al. 95].

In addition to the @ove mentioned prefetching medha-
nisms designed for multimedia gplicdions, more genera
purpose fadlities for retrieving data in advance ae de-
signed which also could be used for certain multimedia -
plicaions. The informed prefetching and caching strategy
[Patterson et al. 95 preloads a cetain amount of data
where the buffers are dlocaed/dedl ocated acwrding to a
global max-min valuation. This mechanism is further de-
veloped in [Chang et a. 99] where the aitomatic hint gen-
eration, based on speaulative pre-exeautions using mid-
exeaution process sates, is used to prefetch data for poss-
ble future real requests. Moreover, the dependent-based
prefetching, described in [Roth et a. 98], captures the ac-
cess patterns of linked data structures. A prefetch engine

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 15

runs in paralel with the original program using these pat-
ternsto predict future data references. Finaly, in [Lei et al.
97], an analytic goproach to file prefetching is described.
During the exeaution of a processa semantic data structure
is built showing the file acceses. When a program is re-
exeated, the saved accesstrees are mmpared against the
current access tree of the adivity, and if a similarity is
found, the stored treeis used to preload fil es.

Obviously, knowledge (or estimations) about applica
tion behavior might be used for both replacement and pre-
fetching. In [Moser et a. 95], the buffer replacement and
preloading strategy least/most relevant for presentation
designed for interadive @ntinuous data streams is pre-
sented. A multimedia objed is replaced and prefetched ac-
cording to its relevance value computed acwrding to the
presentation point/modus of the data playout. In [Halvorsen
et a. 98], this algorithm is extended for multiple users and
QoS suppart.

74 UVM VIRTUAL MEMORY SYSTEM

The UVM Virtud Memory System [Cranor 98], [Cra-
nor et a. 99| replaces the virtual memory objed, fault han-
dling, and pager of the BSD virtual memory system; and
retains only the macine dependent/independent layering
and mapping structures. For example, the memory mapping
is redesigned to increase dficiency and seaurity; and the
map entry fragmentation is reduced by memory wiring. In
BSD, the memory objed structure is a stand-alone astrac-
tion and under control of the virtual memory system. In
UVM, the memory objed structure is considered as a sec-
ondary structure designed to be enbedded with a handle
for memory mapping resulting in better efficiency, more
flexibility, and less conflicts with external kernel subsys-
tems. The new copy-on-write mechanism avoids unreces-
sary page dlocaions and data copying, and grouping or
clustering the dlocation and use of resources improves per-
formance. Finally, a virtual memory based data movement
mechanism is introduced which alows data sharing with
other subsystems, i.e., when combined with the I/O or IPC
systems, it can reduce the data cpying overhead in the
kernel.

8 MANAGEMENT OF OTHER RESOURCES

This sdion takes a brief look at management aspeds
of OS resources that have not yet been discussed, like
scheduling of system bus and cade management. Further-
more, we describe some medanisms for speed improve-
ments in memory access Padket scheduling mecdhanisms to
share network bandwidth between multiple streams at the
host-network interfaceare not discussed here due to space
considerations. All solutions for padket scheduling in OSs
are alopted from padket schedulingin padket networks.

8.1 BUSSCHEDULING

The SCSI bus is a priority arbitrated bus. If multiple
devices, e.g., disks, want to transfer data, the device with
the highest priority will always get the bus. In systems with
multiple disks, it is possble that red-time streams being
supparted from a low priority disk get starved from high
priority disks that serve best effort requirements [Reddy
95]. DROPS [Hértig et al. 98] schedules requests to the
SCSI subsystem such that the SCSI bandwidth can be fully
exploited. It divides SCSI time into dots where the size of
dots is determined by the worst case seek times of disk
drives.

SCSl is a relatively old technology, and PCl has be-
come the main bus technology for multimedia PCs and
workstations [Nishikawa & al. 97]. However, to the best of
our knowledge, no work has been reported on scheduling
of PCI bus or other advanced bus technologies to suppart
QoS. Probably, because the bus is no longer regarded as
one of the most li miti ng performance bottleneds, except in
massve pardlel 1/0 systems.

8.2 CACHE MANAGEMENT

All red-time gplications rely on predictable schedul-
ing, but the memory cade design makes it hard to forecast
and schedule the processor time [Hértig et a. 97]. Fur-
thermore, memory bandwidth and the general OS perform-
ance has not increased at the same rate & CPU perform-
ance Benchmarked performance can be improved by en-
larging and speeding W static RAM-based cade memory,
but the large anount of multi media data that has to be han-
dled by CPU and memory system will li kely deaeease
cade hit ratios. If two processes use the same cade lines
and are exeauted concurrently, there will not only be an
incresse in context switch overheals, but aso a cade-
interference st that is more difficult to predict. Thus, the
system performance may be dominated by slower main
memory and 1/0 accesses. Furthermore, the busier a system
is, the more likely it is that involuntary context switches
occaur, longer run queues must be seached by the sched-
uler, etc., flushing the cadies even more frequently [Schul-
zrinne 96).

One gproach to improve performance is to partition
the second-level cade & described in [Hartig et a. 97],
[Hartig et a. 98]. Working sets of red-time and time-
sharing applicdions are dlowed to be separated into df-
ferent partitions of the second-level cade. The time-share
applicdions then cannot disrupt the cadied working sets of
red-time applicaions, which leals to better worst case
predictability.

Another approach is discussed in [Philbin et al. 96]. A
very low overheal thread padckage is used letting the gpli-
caion spedfy ead thread’s use of data. The thread sched-
uler then exeaute in turn all threads using the same data. In
this way, the data that is already in the cade is used by all
threads needing it beforeiit is flushed.

16 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

Bershad et al. [Bershad et al. 94] describe an approach
using conflict detedion and resolution to implement a
cheap, large, and fast dired-mapped cade. The nflicts
are deteded by recrding and summarizing a history of
cate misses, and a software palicy within the OS's virtual
memory system removes conflicts by dynamicdly remap-
ping pages. This approach nealy matches the performance
of a two-way set asciative cade, but with lower hard-
ware st and lower complexity.

8.3 SPEED IMPROVEMENTSIN MEMORY ACCESES

The term dynamic RAM (DRAM), coined to indicae
that any random accessin memory takes the same anount
of time, is dightly misleading. Most modern DRAMS pro-
vide spedal capabiliti es that make it possble to perform
some access faster than others [McKee & al. 98]. For ex-
ample, conseautive access to the same row in a page-
mode memory are faster than random accesses, and con-
seautive access that hit different memory banks in a
multi-bank system alow concurrency and are thus faster
than accesses that hit the same bank. The key point is that
the order of the requests grongly affeds the performance
of the memory devices. For certain clases of computa
tions, like those which involve streams of data where ahigh
degreeof spatial locdity is present and where we, at least
in theory, have aperfed knowledge of the future refer-
ences, a reordering of the memory accesses might give an
improvement in memory bandwidth.

The most common method to reduce latency is to in-
crease the cade line size i.e., using the memory band-
width to fill several cade locaions at the same time for
eat access However, if the stream has a non-unit-stride
(stride is the distance between successve strean elements
in memory), i.e., the presentation of successve data de-
ments does not foll ow ead other in memory, the cadie will
load data which will not be used. Thus, lengthening the
cade line size increases the dfedive bandwidth of unit-
stride streams, but deaeases the cabe hit rate for non-
streaned accesses.

Another way of improving memory bandwidth in mem-
ory-cadhe data transfers for streamed accesspatterns is de-
scribed in[McKee ¢ a. 98]. First, since streans often have
no temporal locdlity, they provide aseparate buffer storage
for streamed data. This means that streamed data dements,
which often are replacel before they might be reused, do
not affed the replacement of data dements that might
benefit from cading. Seand, to take alvantage of the or-
der sensitivity of the memory system, a memory-scheduling
unit is added to reorder the acceses. During compil e-time,
information about addresses, strides of a strean, and num-
ber of data dements are wlleded enabling the memory-
scheduling urit to reorder the requests during run-time.

9 |/O TUNING

Traditionally, there ae severa different possble data
transfers and copy operations within an end-system as

shown in Figure 5. These often involve severa different
components. Using the disk-to-network data path as an ex-
ample, a data objed is first transferred from disk to main
memory (A). The data objed is then managed by the many
subsystems within the OS designed with different objec-
tives, runnngin their own domain (either in user or kernel
space, and therefore, managing their buffers differently.
Due to dfferent buffer representations and protedion
mechanisms, data is usually copied, at a high cost, from
domain to damain ((B), (C), or (D)) to alow the different
subsystems to manipulate the data. Finally, the data objed
istransferred to the network interface(E). In addition to all
these data transfers, the data objed is loaded into the cate
(F) and CPU registers (G) when the data objed is manipu-
lated.

Registers Main

©)~.
= \
R] memoryﬂ |:|[| |:| ;J;:Cre
e
ra
»

Memory bus
1/0 bus

Network
interface

Figure 5: Data transfers and copy operations

Figure 5 clealy identifies the reason for the poar per-
formance of the traditional 1/0 system. Data is copied sev-
eral times between different memory address spaces which
also causes svera context switches. Both, copy operations
and context switches represent the main performance bot-
tlenedk. Furthermore, diff erent subsystems, e.g., file system
and communicaion subsystem, are not integrated. Thus,
they include redundant functionality like buffer manage-
ment, and several identica copies of a data objed might be
stored in main memory, which in turn reduces the dfedive
size of the physicd memory. Finaly, when concurrent us-
ers request the same data, the different subsystems might
have to perform the same operations on the same data sev-
eral times.

We distinguish threetypes of copy operations. memory-
CPU, dired 1/O (i.e., memory — /O device), and memory-
memory. Solutions for these types of copy operations have
been developed for general purpose and applicaion spe-
cific systems. The two last subsedions describe a sample
approach for ead.

9.1 MEMORY- CPU CorY OPERATIONS

Data manipulations are time @nsuming and are often
part of different, distinct program modules or communica-

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 17

tion protocol layers, which typicdly accessdata independ-
ently of ead other. Consequently, ead data manipulation
may require accssto uncaded data resulting in loading
the data from memory to a CPU register, manipulating it,
and posshly storing it badk to memory. Thus, these re-
peaed memory-CPU data transfers, denoted (F) and (G) in
Figure 5, can have large impads on the adieved 1/0
bandwidth. To deaease the number of memory-CPU data
transfers, integrated layer processing [Abbadt et a. 93],
[Clark et a. 90] performs all data manipulation steps, e.g.,
cdculating error detedion chedksums, exeauting encryp-
tion schemes, transforming data for presentation, and
moving data between address paces, in one or two inte-
grated processng loops instead of performing them step-
wise &in most systems.

9.2 MEMORY - 1/O DEVICE COPY OPERATIONS

Data is transferred between hardware devices, such as
disks and network adapters, and applicaions physicd
memory. This is often done via an intermediate subsystem,
like the file system or the communication system, adding
an extra memory copy. A mechanism to transfer data with-
out multiple cpying is direct I/O, which in some form is
avail able in several commodity OSs today, e.g., Solaris and
Windows NT. Direct memory access (DMA) or pro-
grammed 1/0O (PIO) is used to transfer data diredly into a
frame buffer where, e.g., the file system’s buffer cade is
omitted in a data transfer from disk to applicaion. Without
involving the CPU in the data transfers, DMA can achieve
transfer rates close to the limits of main memory and the
/O bus, but DMA increasses complexity in the device
adapters, and cades are often not coherent with resped to
DMA [Druschel et a. 93h. Using PIO, on the other hand,
the CPU is required to transfer every word of data between
memory and the I/O adapter. Thus, only a fradion of the
pe&k I/O bandwidth is achieved. Due to high transfer rates,
DMA is often used for dired 1/O data transfers. However,
despite the reduced bandwidth, PIO can sometimes be
preferable over DMA. If data manipulations, e.g., chedk-
sum cdculations, can be integrated with the PIO data trans-
fer, it is posshle to save one memory access and after a
progranmed data movement, the data may still reside in
the cade, reducing further memory traffic.

In case of applicaion-disk transfers, dired 1/O can of-
ten be gplied since the file system usually does not touch
the data itself. However, in case of applicaion-network
adapter transfers, the mmmunication system must generate
padkets, cdculate cedksums, etc., making it harder to
avoid the data transfer through the communication system.
Nevertheless there ae severa attempts to avoid data
touching and copy operation transfers, i.e., reducing the
traditional (B)(E) data path in Figure 5 to only (E). After-
burner [Dalton et al. 93] and medusa[Banks et a. 93] copy
data diredly onto the on-board memory using PIO, with
integrated chedksum and data length caculation, leaving
just enough spacein front of the duster to add a packed

header. Using DMA and a user-level implementation of the
communication software, the application device channel
[Druschel 96], [Druschel et al. 94] gives restricted but di-
red accessto an ATM network adaptor removing the OS
kernel from the aiticd network send/receve path. In [Yau
et a. 96], no memory-to-memory copying is needed using
shared huffers or diredt media streaming by linking the de-
vice ad network connedion together. Finaly, in [Chu 96]
and [Kitamura € al. 95], zero-copy communication system
architedures are reported for TCP and ATM respedively.
Virtual memory page remapping (see next subsedion) is
used to eliminate @pying between applicaions running in
user space ad the OS kernel, and DMA is used to transfer
data between memory and the network buffer.

9.3 MEMORY-MEMORY CoOPY OPERATIONS

Direa 1/0 is typicdly used when transferring data be-
tween main memory and a hardware device & described
above. However, data transfers between different process
address paces is done through well-defined channels, like
pipes, sockets, files, and spedal devices, giving ead proc-
essfull control of its own data [McKusick et al. 96]. Nev-
ertheless such physicd copying is dow and requires at
least two system cdls per transadion, i.e., one on sender
and one on recever side. One way of reducing the IPC
costs is to use virtual page (re)mapping. That is, the data
element is not physicdly copied byte by byte, but only the
addressin virtual memory to the data dement in physicad
memory is copied into the recever’'s address pace Access
rights to the data objed after the data transfer are deter-
mined by the used semantic:

e The copy model copies al data from domain to do-
main gving ead processfull control of its own data
at the ost of cross domain data wpying and main-
taining severa identicd copiesin memory.

e The move model removes the data from the source
domain by virtually remapping the data into the desti-
nation domain avoiding the multiple-copies problem.
However, if the source later needs to re-access the
moved data, e.g., when handling a retransmisson re-
quest, the data must be fetched bad.

e The share model makes the transferred data visible
and accessble to bah the source and the target do-
main by keeping pointers in virtual memory to the
same physicd pages, i.e., by using shared memory
where several processes map the same data into their
address pace Thus, al the sharing proceses may
accessthe same pieceof memory without any system
cdl overhead ather than the initial cost of mapping
the memory.

Severa genera crossdomain data copy avoidance a-
chitedures are suggested trying to minimize respedively to
eliminate dl (C), (B), and (D) copy operations depicted in
Figure 5. Tenex [Bobrow et a. 72] was one of the first
systems to use virtual copying, i.e., several pointersin vir-
tual memory refer to one physica page. Accent [Fitzgerald

18 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

et al. 86|, [Rashid et al. 81] generdized the mncepts of
Tenex by integrating virtual memory management and 1PC
in such a way that large data transfers could use memory
mapping techniques rather than physicd data wpying. The
V disgtributed system [Cheriton 88] and the DASH IPC
mechanism [Tzou et a. 91] use page remapping, and the
container shipping fadlity [Anderson 95|, [Pasquale 4 al.
94] uses virtual inter-domain data transfers based on the
move model where dl in-memory copying is removed.
Furthermore, fast buffers (fbufs) [Druschel 96], [Druschel
et a. 934] is afadlity for 1/O buffer management and data
transfers aaoss protedion domain boundaries primarily
designed for handling retwork streams using shared virtual
memory is combined with virtual page remapping. In
[Thadani et a. 95], fbufs is extended to a zeo-copy 1/0
framework. Fast in-kernel data paths between 1/0 objeds,
increasing throughput and reducing context switch opera-
tions, are described in [Fall 94], [Fal et a. 94]. A new
system cdl, spli ce(), moves data asynchronously and
without user-process intervention to and from 1/O objeds
spedfied by file descriptors. These descriptors edfy the
source and sink of I/O datarespedively. This ystemcdl is
extended in the st r ean() system cdl of the Roadrunner
I/0O system [Miller et a. 984, [Mill er et al. 98k to suppart
kernel data streaming between any pair of 1/0 elements
without crossng any virtual memory boundaries using
techniques derived from stadkable file systems. The Genie
I/O system [Brustoloni 99|, [Brustoloni et al. 96], [Brus-
toloni et a. 97] inputs or outputs data to or from shared
buffers in-place(i.e., diredly to or from application buff-
ers) without touching distinct intermediate system buffers.
Datais dhared by managing reference munters, and a page
is only dedlocaed if there ae no processes referencing
this page. The universal continuous media 1/0 system
[Cranor et a. 94], [Cranor et a. 95 combines al types of
I/O into a single dstradion. The buffer management sys-
tem is alowed to align data buffers on page boundaries
that data can be moved without copying which means that
the kernel and the gplicaion are sharing a data buffer
rather than maintaining their own separate wpy. The UVM
Virtual Memory System [Cranor 98], [Cranor et a. 99
data movement mechanism provides new techniques that
alow processes to exchange and share data in memory
without copying. The page layout and page transfer fadli-
ties give suppart for page loan out and reception of pages
of memory, and the map entry passng enables exchange
chunks of the processes’ virtual address pace

94 |10-LITE

|O-Lite [Pai 97], [Pai et a. 99 is an 1/O buffering and
cadting system for a general purpose OS inspired by the
fouf mechanism. 10-Lite unifies al buffering in a system.
In particular, bufferingin al subsystems are integrated, and
asinge physicd copy of the datais $ared safely and con-
currently. This is achieved by storing buffered 1/O data in
immutable buffers whose locdion in memory never

change. Access control and protedion is ensured at the
granularity of processes by maintaining accesscontrol lists
to caded pods of buffers. For crossdomain data transfers,
IO-Lite combines page remapping and shared memory.

All data is encgpsulated in mutable buffer aggregates,
which are then passed among the diff erent subsystems and
applicdions by reference. The sharing of read-only immu-
table buffers enables efficient transfers of 1/0 data acoss
protedion domain boundaries, i.e., al subsystems may
safely refer to the same physica copy of the data without
problems of synchronization, protedion, consistency, etc.
However, the price to pay is that data cannot be modified
in-place Thisis lved by the buffer aggregate abstradion.
The aygregate is mutable, and a modified value is gored in
anew buffer, and the modified sedions are logicdly joined
with the unchanged data through pointer manipulation.

9.5 MULTIMEDIA MBUF

The multimedia mbuf (mmbuf) [Buddhikot et al. 98],
[Buddhikot 98] is spedally designed for disk-to-network
data transfers. It provides a zeo-copy data path for net-
worked multimedia goplicaions by unifying the buffering
structure in file 1/0 and network 1/0. This buffer system
looks like a ©lledion of clustered mbufs that can be dy-
namicdly alocaed and chained. The mmbuf header in-
cludes references to mbuf header and buffer cade header.
By manipulating the mmbuf healer, the mmbuf can be
transformed either into a traditional buffer, that a file sys-
tem and a disk driver can handle, or an mbuf, which the
network protocols and network drivers can urderstand.

A new interfaceis provided to retrieve and send data,
which coexist with the old file system interface The old
buffer cadhe is bypassed by reading data from afile into an
mmbuf chain. Both synchronous (blocking) and asynchro-
nous (non-blocking) operations are supparted, and read and
send requests for multi ple streams can be bunched together
in asingle cdl minimizing system cal overhead. At setup
time, ead stream all ocates a ring of buffers, ead of which
is an mmbuf chain. The size of ead buffer element, i.e,,
the mmbuf chain, depends on the size of the multimedia
frame it stores, and ead buffer element can be in one of
four states. empty, reading, full, or sending. Furthermore,
to coordinate the data read and send adivities, two pdnters
(read and send) to the ring buffer are maintained. Then, for
ead periodic invocation of the stream process these point-
ers are used to handle data transfers. If the read pdnter is
pointing to a buffer element in the enpty state, datais real
into this chain of mmbufs, and the pointer is advanced to
the next succeealing chain on which the next real is per-
formed. If the send panter is holding a full buffer element,
the data stored in this buffer element is transmitted.

10 CONCLUSIONS

The a@m of this article isto give an overview of recent
developments in the aeaof OS suppart for multimedia -
plicaions. Thisis an adive aea and a lot of valuable re-

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 19

seach results have been published. Thus, we have not dis-

cused o cited all recent results, but tried to identify the

major approaches and to present at least one representative
for ead.

Time-dependent multimedia data types, like audio and
video, will be anatural part of future gplicaions and inte-
grated together with time-independent data types, like text,
graphics, and images. Commodity OSs do not presently
suppart al the requirements of multimedia systems. New
OS abstradions neal to be developed to suppart a mix of
applicaions with red-time and best eff ort requirements and
to provide the necessary performance. Thus, management
of al system resources, including processors, main mem-
ory, network, disk space and disk /O, is an important is-
sue. The management needed encompasses admisson con-
trol, alocaion and scheduling, acounting, and adaptation.
Proposed approadhes for better multimedia suppart in-
clude:

e New OS structures and architedures, like the library
OSs Exokernel and Nemesis.

e New mechanisms that are espedaly tailored for QoS
suppart, like spedalized CPU and disk scheduling.

o New system abstradions, like resource principals for
resource ownership, inheritance of the assciated pri-
orities, and acounting of resource utilization.

e Extended system abstradions to additionaly suppart
new requirements, like synchronization suppat and
metadatain fil e systems.

e Avoiding the mgor system battlenedks, like wpy op-
erations avoidance through page remapping.

e Suppat for user-level control over resources including
user-level communication.

It is not clea how new OS architedures sould look
like or even if they are redly nealed at all. Monolithic and
p-kernel architedures can be developed further, and a cae-
ful design and implementation of such systems can provide
both good performance ad build on time proven ap-
proaches. When propcsing rew architedures, it becomes
very important to demonstrate both comparable or better
performance and better functionality than in existing solu-
tions. Furthermore, it is important to implement and evalu-
ate integrated systems and not only to study one isolated
asped. In this resped, Nemesis is probably the most ad-
vanced system.

To evaluate and compare performance and functionality
of new approaches, more detalled performance measure-
ments and analysis are necessary. This implies designing
and implementing systems, and developing and using a
common set of micro- and applicaion benchmarks for
evauation of multimedia systems. The field is dill very
adive, and much work remains to be done before it be-
comes known how to design and implement multimedia
platforms.

ACKNOWLEDGEMENTS
We would like to thank Frank Eliassen, Liviu Iftode,
Martin Karsten, Ketil Lund, Chuanbao Wang, and Lars

Wolf for reviewing ealier versions of this paper and their
valuable mmments and suggestions.

REFERENCES

[Abbat 84] Abbat, C.: Efficient Editing of Digital Sound on
Disk, Journa of Audio Engineeing, Vol. 32, No. 6, June
1984 pp. 394402

[Abbat et a. 93] Abbat, M.B., Peterson, L.L.: Increasing Net-
work Throughpu by Integrating Protocol Layers,
IEEEACM Transadions on Networking, Vol. 1, No. 5,
October 1993 pp. 600610

[Anderson 95 Anderson, E.W.: Container Shipping: a Uniform
Interfacefor Fast, Efficient, High-Bandwidth I/O, PhD The-
sis, Computer Science and Engineging Department, Univer-
sity of California, San Diego, CA, USA, 1995

[Anderson et a. 90] Anderson, D.P., Tzou, S.Y., Wahbe, R., Go-
vindan, R., Andrews, M.: Suppat for Continuows Media in
the DASH System, Proc. of 10" Int. Conf. on Distributed
Computing Systems (ICDCS' 90), Paris, France, May 199Q
pp. 54-61

[Anderson et a. 924] Anderson, T.E., Bershad, B.N, Lazowska,
E.D, Levy, H.M, Scheduler Activations. Effedive Kernel
Suppat for the User-Level Management of Parallelism,
ACM Transadions on Computer Systems, Vol. 10, No. 1,
February 1992 pp. 53-79

[Anderson et a. 92b] Anderson, D., Osawa, Y., Govindan, R.: A
File System for Continuows Media, ACM Transadions on
Computer Systems, Vol. 10, No. 4, November 1992 pp.
311-337

[Anderson et a. 98] Anderson, D.C., Chase, JS., Gadde, S,
Gallatin, A.J., Yocum, K.G., Fedey, M.J.: Cheaing the I/O
Bottlenedk: Network Storage with TrapezeéMyrinet, Proc. of
1998 USENIX Annua Tedchnicd Conf., New Orleans, LA,
USA, June 1998

[Araki et al. 98] Araki, S., Bilas, A., Dubnicki, C., Edler, J,
Konishi, K., Philbin, J.: User-Space Communicaion. A
Quantitative Study, Proc. of 10" Int. Conf. of High Perform-
ance Computing and Communicaions
(SuperComputing’ 98), Orlando, FL, USA, November 1998

[Banga & a. 99] Banga, G., Drutchel, P., Mogul, J. C.: Resource
Containers: A New Fadlity for Resource Management in
Server Systems, Proc. of 3 USENIX Symp. on Operating
Systems Design and Implementation (OSDI’99), New Or-
leans, LA, USA, February 1999

[Banks et al. 93] Banks, D., Prudence M.: A High-Performance
Network Architedure for a PA-RISC Workstation, IEEE
Journal on Seleded Areas in Communicaions, Vol. 11, No.
2, February 1993 pp. 191-202

[Barham 97] Barham, P.R.: A Fresh Approach to File System
Quality of Service Proc. of 7" Int. Workshop onNetwork
and Operating System Suppat for Digital Audio And Video
(NOSSDAV’'97), St. Louis, MO, USA, May 1997, pp. 119
128

20 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

[Bavier et a. 984 Bavier, A., Peterson, L., Mosberger, D.:
BERT: A Scheduler for Best-Effort and Redtime Paths,
Tedhnicd Report TR 587-98, Princeton University, Prince-
ton, NJ, USA, August 1998

[Bavier et al. 984 Bavier, A., Montz, B. Peterson, L.: Predicting
MPEG Exeaution Times, Proc. of 1998 ACM Int. Conf. on
Measurement and Modding of Computer Systems
(SIGMETRICS 98), Madison, WI, USA, June 1998 pp.
131-140

[Bell et a. 95] Bell, T.C., Moffat, A., Witten, I.H., Zobel, J.: The
MG Retrieval System: Compressng for Space ad Sped,
Communicaions of the ACM, Vol. 38, No. 4, April 1995
pp. 41-42

[Bershad et al. 94] Bershad, B.N., Lee D., Romer , T.H., Chen,
J.B.: Avoiding Conflict Misses Dynamicdly in Large Dired-
Mapped Caches, Proc. of 6" Int. Conf. On Architedural
Suppat for Programming Languages and Operating Systems
(ASPLOS-VI), San Jose, CA, USA, October 1994 pp. 158
170

[Berson et d. 94] Berson, S., Ghandeharizadeh, S., Muntz, R.R.,
Ju, X.: Staggered Striping in Multimedia Information Sys-
tems, Proc. of 1994ACM Int. Conf. on Management of Data
(SIGMOD'94), Minnegadlis, MN, USA, May 1994 pp. 70-
90

[Bobrow et al. 72] Bobrow, D.G., Burchfiel, J.D., Murphy, D.L.,
Tomlinson, R.S., Beranek, B.: Tenex, A Paged Time Sharing
System for the PDP-10, Communications of the ACM, Val.
15, No. 3, March 1972 pp. 135143

[Bolosky et al. 96] Bolosky, W., Barrera, J., Draves, R., Fitz-
gerad, R., Gibson, G., Jones, M., Levi, S., Myhrvold, N.,
Rashid, R.: The Tiger Video File Server, Proc. of 6" Int.
Workshop onNetwork and Operating System Suppat for
Digital Audio and Video (NOSSDAV’96), Zushi, Japan,
April 1996 pp. 212223

[Bolosky et al. 97] Bolosky, W.J., Fitzgerad, R.P., Douceur,
JR.: Distributed Schedule Management in the Tiger Video
File Server, Proc. of 16" ACM Symp. on Operating System
Principles (SOSP'97), St. Malo, France, October 1997, pp.
212-223

[Bringsrud et al. 93] Bringsrud, K.A., Pedersen, G.: Distributed
Eledronic Class Rooms with Large Eledronic White
Boards, Proc. of 4™ Joint European Networking Corf.
(JENC4), Trondreim, Norway, May 1993 pp. 132-144

[Brunoet a. 98] Bruno, J., Gabber, E., Ozden, B., Silberschatz,
A.. The Eclipse Operating System: Providing Quality of
Service via Reservation Domains, Proc. of 1998 USENIX
Annual Technicd Conf., New Orleans, LA, June 1998

[Brustoloni 99] Brustoloni, J.C.: Interoperation d Copy Avoid-
ance in Network and File 1/0, Proc. of 18" IEEE Conf. on
Computer Communicaions (INFOCOM’'99), New York,
NY, USA, March 1999

[Brustoloni et al. 96] Brustoloni, J.C., Steekiste, P.: Effeds of
Buffering Semantics on 1/0 Performance, Proc. of 2™
USENIX Symp. on Operating Systems Design and Imple-

mentation (OSDI’ 96), Sedtle, WA, USA, October 1996 pp.
227-291

[Brustoloni et al. 97] Brustoloni, J.C., Steenkiste, P.: Evaluation
of Data Passng and Scheduling Avoidance, Proc. of 7" Int.
Workshop on Network and Operating System Suppat for
Digital Audio and Video (NOSSDAV’97), St. Louis, MO,
USA, May 1997 pp. 101-111

[Buddhkot et a. 98] Buddhkot, M.M., Chen, X.J., Wu, D., Pa-
rulkar, G.M.: Enhancements to 44BSD UNIX for Efficient
Networked Multimedia in Projed MARS, Procealing of
IEEE Int. Conf. on Multimedia Computing and Systems
(ICMCS'98), Austin, TX, USA, June/July 1998

[Buddtikot 98] Buddtikot, M.M: Projed MARS: Scdable, High
Performance, Web Based Multimedia-on-Demand (MOD)
Services and Servers, PhD Thesis, Sever Institute of Ted-
nology, Department of Computer Science, Washington Uni-
versity, St. Louis, MO, USA, August 1998

[Chang et d. 97] Chang, E., GarciasMoalina, H.: Reducing Initial
Latency in Media Servers, IEEE Multimedia, Vol. 4, No. 3,
July-September 1997, pp. 50-61

[Chang et a. 99 Chang, F., Gibson, G.A.: Automatic I/O Hint
Generation through Speaulative Exeaution, Proc. of 3¢
USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’99), New Orleans, LA, USA, February
1999 pp. 1-14

[Chen et al. 93] Chen, M.-S., Kandlur, D.D., Yu, P.S.: Optimiza-
tion of the Group Sweep Scheduling (GSS with Heteroge-
neous Multimedia Streams, Proc. of 1% ACM Multimedia
Conf. (ACM MM’93), Anaheim, CA, USA, August 1993
pp. 235241

[Chen et a. 94] Chen, P.M., Lee EK., Gibson, G.A., Katz, R.H.,
Patterson, D.A.: RAID: High-Performance, Reliable, Secon-
dary Storage, ACM Computing Surveys, Vol. 26, No. 2,
June 1994 pp. 145185

[Chen et a. 96] Chen, JB., Endg, Y., Chan, K., Mazeéres, D.,
Dias, D., Seltzer, M.I., Smith, M.D.: The Measured Per-
formance of Persona Computer Operating Systems, ACM
Transadions on Computer Systems, Vol. 14, No. 1, Febru-
ary 1996 pp. 3-40

[Cheriton 89 Cheriton, D.R.: The V Distributed System, Com-
municaions of the ACM, Vol. 31, No. 3, March 1988 pp.
314333

[Chu 99 Chu, H.-K.J.: Zero-Copy TCP in Solaris, Proc. of 1996
USENIX Annuwal Technicd Conf., San Diego, CA, USA,
January 1996 pp. 253-264

[Chuet a. 99] Chu, H.-H., Nahrstedt, K.: CPU Service Classes
for Multimedia Applicdions, Proc. of IEEE Int. Conf. on
Multimedia Computing and Systems (ICMCS'99), Florence,
Italy, June 1999

[Clark et a. 90] Clark, D.D., Tennenhowse, D.L.: Architecural
Considerations for a New Generation o Protocols, Proc. of
ACM SIGCOMM’90, Philadelphia, PA, USA, September
199Q pp. 200-208

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 21

[Clark et d. 92] Clark, R.K., Jensen, E.D., Reyndds, F.D.: An
Architedural Overview of the Alpha Red-Time Distributed
Kernel, Workshop onMicro-Kernels and aher Kernel Ar-
chitedures, April 1992

[Coffman et a. 90] Coffman, J., Hofri, M.: Queuing Models of
Sewmndary Storage Devices, Stochastic Analysis of Com-
puter and Communicaion Systems, Takagi, H. (Ed.), North-
Holland, 1990

[Coulson et a. 94] Coulson, G., Blair, G., Robin, P., Shepherd,
D.: Suppating Continuows Media Applicaions in a Micro-
Kernel Environment, in: Spaniol, O. (Ed.): Architedure and
Protocols for High-Speead Networks, Kluwer Academic Pub-
lishers, 1994

[Coulson et a. 95 Coulson, G., Campbell, A., Rohin, P., Blair,
G., Papathomas, M. Hutchinson, D.: The Design of a QoS
Controlled ATM Based Communicaion System in Chorus,
IEEE Journal on Seleded Areas of Communicdions, Vol.
13, No. 4, May 1995 pp. 686-699

[Cranor 98] Cranor, C.D.: The Design and Implementation o the
UVM Virtual Memory System, PhD Thesis, Sever Ingtitute
of Techndogy, Department of Computer Science, Wash-
ington University, St. Louis, MO, USA, August 1998

[Cranor et a. 94] Cranor, C.D., Parulkar, G.M.: Universal Con-
tinuows Media I/0: Design and Implementation, Technicd
Report WUCS-94-34, Department of Computer Science,
Washington University, St. Louis, MO, USA, 1994

[Cranor et a. 95 Cranor, C.D., Parulkar, G.M.: Design of Uni-
versal Continuots Media 1/0, Proc. of 5 Int. Workshop on
Network and Operating Systems Suppat for Digital Audio
and Video (NOSSDAV'95), Durham, NH, USA, April 1995
pp. 83-86

[Cranor et a. 99] Cranor, C.D., Parulkar, G.M.: The UVM Vir-
tual Memory System, Proc. of 1999 USENIX Annua Tedh-
nicd Conf., Monterey, CA, USA, June 1999

[Datonet a. 93] Dalton, C., Watson, G., Banks, D., Calamvokis,
C., Edwards, A., Lumley, J.: Afterburner, IEEE Network,
Vol. 7, No. 4, uly 1993 pp. 36-43

[Dan et d. 97] Dan, A., Sitaram, D.: Multimedia Caching Strate-
gies for Heterogeneous Applicaion and Server Environ-
ments, Multimedia Toadls and Applications, Vol. 4, No. 3,
May 1997 pp. 279 — 312

[Demers et a. 90] Demers, A., Keshav, S., Shenker, S.: Analysis
and Simulation d a Fair Queueing Algorithm, Internet-
working: Reseach and Experience, Vol. 1, No. 1, September
199Q pp. 3-26

[Denning 67] Denning, P.J.: Effeds of Scheduling on File Mem-
ory Operations, Proc. AFIPS Cort., April 1967, pp. 9-21

[Druschel 96] Druschel, P.: Operating System Suppat for High-
Speed Communication, Communicaion d the ACM, Vol.
39, No. 9, September 1996 pp. 41-51

[Druschel et al. 93] Druschel, P., Peterson, L.L.: Fbufs: A High-
Bandwidth CrossDomain Transfer Fadlity, Proc. of 14"

ACM Symp. on Operating Systems Principles (SOSP'93),
Asheville, NC, USA, Decemnber 1993 pp. 189202

[Druschel et a. 930 Druschel, P., Abba, M.B., Pagels, M.A.,
Peterson, L.L.: Network Subsystem Design, IEEE Network,
Vol. 7, No. 4, July 1993 pp. 8-17

[Druschel et a. 94] Druschel, P., Peterson, L.L., Davie, B.S.:
Experiences with a High-Speed Network Adaptor: A Soft-
ware Perspedive, Proc. of ACM SIGCOMM'94, London
UK, September 1994 pp. 2-13

[Effelsberg et a. 84] Effelsberg, W., Hérder, T.: Principles of
Database Buffer Management, ACM Transadions on Data-
base Systems, Vol. 9, No. 4, December 1984 pp. 560-595

[Engler et a. 95 Engler, D., Gupta, SK., Kasshoek, F.. AVM:
Applicaion-Level Virtua Memory, Proc. of 5™ Workshop
on Hot Topics in Operating Systems (HotOS-V), Orcas Is-
land, WA, USA, May 1995

[Fal 94] Fal, K.R.: A Pea-to-Pee 1/0 System in Suppat of 1/0
Intensive Workloads, PhD Thesis, Computer Science and
Engineging Department, University of California, San Di-
ego, CA, USA, 1994

[Fal et a. 94] Fdl, K., Pasquale, J.: Improving Continuous-
Media Playbadk Performance with In-Kernel Data Paths,
Proc. of IEEE Int. Conf. on Multimedia Computing and
Systems (ICMCS 94), Boston, MA, USA, May 1994 pp.
100-109

[Fitzgerald et d. 86] Fitzgerald, R., Rashid, R.F: The Integration
of Virtual Memory Management and Interprocess Commu-
nicaion in Accent, ACM Transadions on Computer Sys-
tems, Val. 4, No. 2, May 1986 pp. 147-177

[Ford et a. 94] Ford, B., Lepreauy, J.: Evolving Mach 3.0 to the
Migrating Thread Model, Proc. of 1994 USENIX Winter
Conf., San Francisco, CA, USA, January 1994

[Ford et d. 96] Ford, B., Susarla, S.: CPU Inheritance Schedul-
ing, Proc. of 2™ USENIX Symp. on Operating Systems De-
sign and Implementation (OSDI’96), Sedtle, WA, USA,
October 1996 pp. 91-105

[Gao et a. 98] Gao, L., Kurose, J., Towdey, D.: Efficient
Schemes for Broadcasting Popuar Videos, Proc. of 8" Int.
Workshop onNetwork and Operating Systems Suppat for
Digita Audio and Video (NOSDAV'98), Cambridge, UK

[Garofalakis et a. 98] Garofalakis, M.N., Ozden, B., Silber-
schatz, A.: On Periodic Resource Sheduling for Continuous-
Media Databases, The VLDB Journd, Vol. 7, No. 4, 1998
pp. 206-225

[GarciaMartinez @ a. 2000 GarciaMartinez A., Fernadez
Condg, J., Vina, A.: Efficient Memory Management in VoD
Servers, to appea in: Computer Communications, 2000

[Gecsei 97] Gecsel, J.: Adaptation in Distributed Multimedia
Systems, IEEE Multimedia, Vol. 4, No. 2, April-June 1997,
pp. 58-66

[Geist et d. 87] Geist, R., Daniel, S.: A Continuum of Disk
Scheduling Algorithms, ACM Transadions on Computer
Systems, February 1987, Vol. 5, No. 1, pp. 77-92

22 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

[Gemmell et a. 92] Gemmell, D.J., Christodouakis, S.: Princi-
ples of Delay Sensitive Multimedia Data Storage and Re-
trieval, ACM Transadions on Information Systems, Vol. 10,
No. 1, January 1992 pp. 51-90

[Gemmell et a. 94] Gemmell, D.J., Han, J.: Multi media Network
File Servers. Multichannel Delay Sensitive Data Retrieval,
Multimedia Systems, Vol. 1, No. 6, April 1994 pp. 240-252

[Gemmell et al. 95 Gemmell, D.J,, Vin, H.M., Kandlur, D.D.,
Rangan, P.V., Rowe, L.A.: Multimedia Storage Servers: A
Tutorial, IEEE Computer, Vol. 28, No. 5, May 1995 pp. 40-
49

[Ghandeharizadeh et a. 97] Ghandeharizadeh, S., Zimmermann,
R., Shi, W., Rgaie, R,, lerardi, D., Li, T.-W.: Mitra. A Scd-
able Continuows Media Server, Multimedia Todls and Ap-
plicaions, Val. 5, No. 1, July 1997, pp. 79-108

[Godl et d. 98] Godl, A., Steee, D., Pu, C., Walpdle, J.: SWIFT:
A Fealbad Control and Dynamic Reoonfiguration Toalkit,
Technicd Report CSE-98-009, Oregon Graduate Institute,
Portland, OR, USA, June 1998

[Govindan et al. 91] Govindan, R, Anderson D. P, Scheduling
and IPC Mechanisms for Continuous Media, Proc. of 13"
ACM Symp. on Operating Systems Principles (SOSP'91),
Padfic Grove, CA, USA, October 1991, pp. 68-80

[Goyd et d. 964 Goyal, P., Guo, X., Vin, H.M.: A Hierarchicd
CPU Scheduler for Multimedia Operating Systems, Proc. of
2™ USENIX Symp. on Operating Systems Design and Im-
plementation (OSDI’96), Sedtle, WA, USA, October 1996
pp. 107-121

[Goyd et a. 96k Goyal, P., Vin, H.M., Cheng, H.: Start-time
Fair Queuing: A Scheduling Algorithm for Integrated Serv-
ices Padket Switching Networks, Proc. of ACM
SIGCOMM’96, San Francisco, CA, USA, August 1996 pp.
157-168

[Halvorsen et a. 98] Halvorsen, P., Goebel, V., Plagemann, T.:
Q-L/MRP: A Buffer Management Mechanism for QoS Sup-
port in a Multimedia DBMS, Proc. of 1998IEEE Int. Work-
shop on Multimedia Database Management Systems (IW-
MM DBMS 98), Dayton, OH, USA, August 1998 pp. 162
171

[Hamilton et a. 93] Hamilton, G., Kougiouris, P.: The Spring
Nucleus: A Microkernel for Objeds, Proc. 1993 USENIX
Summer Conf., Cincinnati, OH, USA, June 1993

[Hand 99 Hand, S.M.: Sdlf-Paging in the Nemesis Operating
System, Proc. of 3@ USENIX Symp. on Operating Systems
Design and Implementation (OSDI’99), New Orleans, LA ,
USA, February 1999 pp. 73-86

[Hartig et a. 97] Hartig, H., Hohmuth, M., Liedtke, J., Schén-
berg, S., Wolter, J.: The Performance of uKernel-Based
Systems, Proc. of 16" ACM Symp. on Operating System
Principles (SOSP' 97), October 1997, St. Malo, France, pp.
66-77

[Hértig et &. 98] Hértig, H., Baumgartl, R., Borriss M., Hamann,
C.-J.,, Hohmuth, M., Mehnert, F., Reuther, L., Schonkerg, S.,

Wolter, J.: DROPS - OS Suppat for Distributed Multi media
Applications, Proc. of 8" ACM SIGOPS European Work-
shop, Sintra, Portugal, September 1998

[Haskin 93 Haskin, R.L.: The Shark Continuows-Media File
Server, Proc. of 38" IEEE Int. Conf.: Techndogies for the
Information Superhighway (COMPCON'93), San Francisco,
CA, USA, February 1993 pp. 12-15

[Haskin et al. 96] Haskin, R.L., Schmuck, F.B.: The Tiger Shark
File System, Proc. of 41% IEEE Int. Conf.: Techndogies for
the Information Superhighway (COMPCON'96), Santa
Clara, CA, USA, February 1996 pp. 226-231

[Hua & al. 97] Hua, K.A., Sheu, S.: Skyscraper Broadcasting: A
New Broadcasting Scheme for Meteropditan Video-on-
Demand System, Proc. of ACM SIGCOMM’97, Cannes,
France, September 1997, pp. 89-100

[Jacmbson et a. 91] Jacbson, D.M., Wilkes, J.: Disk Scheduling
Algorithms Based on Rotational Position, HP Laboratories
Technicd Report HPL-CSP-91-7, Palo Alto, CA, USA, Feb-
ruary 1991

[Jeffay et al. 98] Jeffay, K., Smith, F.D., Moorthy, A., Anderson,
A.: Propational Share Scheduling of Operating System
Services for Red-Time Applicaions, Proc. of 19" IEEE
Red-Time System Symp. (RTSS98), Madrid, Spain, De-
cember 199§ pp. 480-491

[Jones et a. 95] Jones, M.B., Lead, P.J,, Draves, R.P., Barrera,
J.S.: Moduar Red-Time Resource Management in the Ri-
ato Operating System, Proc. of 5" Workshop onHot Topics
in Operating Systems (HotOS-V), Orcas Island, WA, USA,
May 1995 pp. 12-17

[Jones et a. 96] Jones, M.B., Barrera, J.S., Forin, A., Lead, P.J.,
Rosu, D., Rosu, M.-C.: An Overview of the Rialto Red-
Time Architedure, Proc. of 7" ACM SIGOPS European
Workshop, Conremara, Ireland, September 1996 pp. 249
256

[Jones et a. 97] Jones, M.B., Rosu, D., Rosu, M.-C: CPU Reser-
vations and Time Constraints: Efficient, Predictable Sched-
uling of Independent Activities, Proc. of 16" ACM Symp.
on Operating Systems Principles (SOSP'97), St. Malo,
France, October 1997, pp. 198211

[Kaashoek et al. 97] Kaaskoek, M.F., Engler, D.R., Ganger, G.R.,
Briceno, H.M., Hunt, R., Maderes, D., Pinckney, T.,
Grimm, R., Janndati, J., Madkenzie, K.: Applicaion Per-
formance and Flexibility on Exokernel Systems, Proc. of 16"
Symp. on Operating Systems Principles (SOSP'97), St.
Malo, France, October 1997, pp. 52-65

[Kamath et a. 95] Kamath, M., Ramamritham, K., Towsley, D.:
Continuows Media Sharing in Multimedia Database Systems,
Proc. of 4™ Int. Conf. on Database Systems for Advanced
Applicaions (DASFAA’95), Singapore, April 1995 pp. 79
86

[Kitamura @ al. 95] Kitamura, H., Taniguchi, K., Sakamoto, H.,
Nishida T.: A New OS Architedure for High Performance
Communicaion Over ATM Networks: Zero-Copy Archi-
tedure, Proc. of 5 Int. Workshop onNetwork and Operat-

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 23

ing Systems Suppat for Digitd Audio and Video
(NOSSDAV'95), Durham, NH, USA, April 1995 pp. 87-90

[Krishnan et a. 97] Krishnan, R., Venkatesh, D., Little, T.D.C.:
A Failure aand Overload Tolerance Medhanism for Continu-
ous Media Servers, Proc. of 5" ACM Int. Multimedia Conf.
(ACM MM'97), Seatle, WA, USA, November 1997, pp.
131-142

[Lakshman 97 Lakshman, K.: AQUA: An Adaptive Quality of
Service Architedure for Distributed Multimedia Applica
tions, PhD Thesis, Computer Science Departement, Univer-
sity of Kentucky, Lexington, KY, USA, 1997

[Lee & d. 97] Lee W., Su, D., Wijesekera, D., Srivastava, J.,
Kenchammana-Hosekote, D.R., Foresti, M.: Experimental
Evduation d PFS Continuows Media File System, Proc. of
6" ACM Int. Conf. on Information and Knowledge Man-
agement (CIKM'97), Las Vegas, NV, USA, November
1997, pp. 246-253

[Leffler et a. 9Q] Leffler, S.J.,, McKusick, M.K., Karels, M.J.,
Quarterman, J.S.: The Design and Implementation o the
4.3BSD UNIX Operating System, Addison-Wesley Pub-
lishing Company, 1989

[Lei et a. 97] Lei, H., Duchamp, D.: An Anayticd Approac to
File Prefetching, Proc. of 1997 USENIX Annual Tecdhnicd
Conf., Anaheim, CA, USA, January 1997

[Ledlie @ al. 96] Ledlig, I., McAuley, D., Blak, R., Roscoe, T.,
Barham, P., Evers, D., Fairbairns, R., Hyden, E.: The Design
and Implementation o an Operating System to Suppat Dis-
tributed Multimedia Applicaions, IEEE Journal on Seleded
Areas in Communicaions, Vol. 14, No. 7, September 1996
pp. 12801297

[Liedtke 95] Liedtke, J.: On Micro Kernel Construction, Proc. of
15" ACM Symp. on Operating Systems Principles
(SOSP’'95), Cooper Mourtain, Colorado, USA, Decenber
1995 pp. 237-250

[Liedtke 96] Liedtke, J.: Toward Red Microkernels, Communi-
cdion d the ACM, Vol. 39, No. 9, September 1996 pp. 70-
77

[Lin et a. 91 Lin, T.H., Tarng, W.: Scheduling Periodic and
Aperiodic Tasks in Hard Red Time Computing Systems,
Proc. of 1991ACM Int. Conf. on Measurement and Model-
ing of Computer Systems (SIGMETRICS 91), San Diego,
CA, USA, May 1991, pp. 31-38

[Liu et d. 73] Liu, C.L., Layland, JW.: Scheduling Algorithms
for Multiprogramming in a Hard Red Time Environment,
Journal of the ACM, Val. 20, No. 1, January 1973 pp. 46-
61

[Lougher et a. 93] Lougher, P., Shepherd, D.: The Design of a
Storage Server for Continuows Media, The Computer Jour-
na, Vol. 36, No. 1, February 1993 pp. 32-42

[Martin et a. 96] Martin C., Narayanan, P.S., Ozden, B., Rastogi,
R., Silberschatz, A.: The Fellini Multimedia Storage Server,
in: Chung, S.M. (Ed.): Multimedia Information and Storage
Management, Kluwer Academic Publishers, 1996 pp. 117-
146

[McKee @ al. 98] McKee SA., Klenke, R.H., Wright, K.L.,
Wulf, W.A., Sdlinas, M.H., Aylor, JH., Barson, A.P.:
Smarter Memory: Improving Bandwidth for Streamed Refer-
ences, IEEE Computer, Vol. 31, No. 7, July 1998 pp. 54-63

[McKusick et a. 96] McKusick, M.K., Bostic, K., Karels, M.J.,
Quarterman, J.S.: The Design and Implementation o the 4.4
BSD Operating System, Addison Wesley, 1996

[Mercer et a. 94] Clifford, W., Mercer, J.Z., Ragunathan, R.: On
Predictable Operating System Protocol Processng, Techni-
cd Report CMU-CS-94-165, Schod of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, May 1994

[Miller et a. 984 Miller, FW., Keleher, P., Tripathi, SK.: Gen-
eral Data Streaming, Proc. of 19" IEEE Red-Time System
Symp. (RTSS98), Madrid, Spain, December 1998

[Miller et &. 981 Miller, F.W., Tripathi, S.K.: An Integrated In-
put/Output System for Kernel Data Streaming, Proc. of
SPIE/ACM Multimedia Computing and Networking
(MMCN *98), San Jose, CA, USA, January 1998 pp. 57-68

[Molano et a. 97] Molano, A., Juwa, K., Rakumar, R.: Red-
Time Fil esystems Guaranteeng Timing Constraints for Disk
Acces®s in RT-Madh, Proc. of 18" IEEE Red-Time Sys-
tems Symp. (RTSS97), San Francisco, CA, USA, Decanber
1997

[Mosberger et al. 96] Mosberger, D., Peterson, L.L.: Making
Paths Explicit in the Scout Operating System, Proc. of 2nd
USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’ 96), Sedtle, WA, USA, October 1996

[Moser et d. 95 Moser, F., Kraiss A., Klas, W.: LIMRP: A
Buffer Management Strategy for Interadive Continuous
Data Flows in a Multimedia DBMS, Proc. of 21% IEEE Int.
Conf. on Very Large Databases (VLDB’95), Zurich, Swit-
zeland, 1995 pp. 275286

[Nahrstedt et d. 95) Nahrstedt, K., Steinmetz, R.: Resource Man-
agement in Networked Multimedia Systems, |IEEE Com-
puter, Vol. 28, No. 5, May 1995 pp. 52-63

[Nahrstedt et a. 99 Nahrstedt, K., Chu, H., Narayan, S.: QoS-
Aware Resource Management for Distributed Multimedia
Applicaions, Journa on High-Speed Networking, Spedal
Issue on Multimedia Networking, Vol. 7, No. 3/4, Spring 99,
pp. 229258

[Nakgjima & al. 97] Nakajima, T., Teaika, H.: Virtual Memory
Management for Interadive Continuows Media Applicaions,
Proc. of IEEE Int. Conf. on Multimedia Computing and
Systems (ICMCS' 97), Ottawa, Canada, June 1997

[Nerjes et a. 98] Nerjes, G., Rompogiannakis, Y., Muth, P.,
Paterakis, M., Triantafillou, P., Weikum, G.: Scheduling
Strategies for Mixed Workloads in Multimedia Information
Servers, Proc. of IEEE International Workshop onReseach
Issues in Data Engineging (RIDE’98), Orlando, FL, USA,
February 1998 pp. 121-128

[Ng et a. 94] Ng, R.T., Yang, J.: Maximizing Buffer and Disk
Utili zation for News-On-Demand, Proc. of 20" IEEE Int.

24 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

Conf. onVery Large Databases (VLDB’94), Santiago, Chile,
1994 pp. 451-462

[Nieh et a. 93] Nieh, J., Hanko, J.G., Northcutt, J.D., Wall, G.A.:
SVR4 UNIX Scheduler Unacceptable for Multimedia Appli-
cations, Proc. of 4™ Int. Workshop onNetwork and Operat-
ing System Suppat for Digital Audio and Video
(NOSSDAV’'93), Lancaster, UK, November 1993

[Nieh et al. 97] Nieh, J., Lam, M.S.: The Design, Implementation
and Evaluation d SMART: A Scheduler for Multimedia
Applicaions, Proc. of 16" ACM Symp. on Operating Sys-
tem Principles (SOSP'97), St. Mao, France, October 1997,
pp. 184197

[Niranjan et a. 97] Niranjan, T.N., Chiueh, T., Schloss G.A.:
Implementation and Evaluation o a Multimedia Fil e System,
Proc. of IEEE Int. Conf. on Multimedia Computing and
Systems (ICMCS 97), Ottawa, Canada, June 1997

[Nishikawa ¢ a. 97] Nishikawa, J., Okabayashi, I., Mori, Y., Sa
saki, S., Migita, M., Obayashi, Y., Furuya, S., Kaneko, K.:
Design and Implementation o Video Server for Mixed-rate
Streams, Proc. of 7" Int. Workshop onNetwork and Oper-
ating System Suppat for Digital Audio and Video
(NOSDAV'97), St. Lotis, MO, USA, May 1997, pp. 3-11

[Noble & a. 97] Noble, B., Satyanarayanan, M., Narayanan, D.,
Tilton, JE., Flinn, J.,, Walker, K.: Agile Applicaion-Aware
Adaptation for Mohility, Proc. of the 16" ACM Symp. on
Operating System Principles (SOSP'97), St. Malo, France,
October 1997, pp. 276:287

[Oparah 9§ Oparah, D.: Adaptive Resource Management in a
Multi media Operating System, Proc. of 8" Int. Workshop on
Network and Operating System Suppat for Digital Audio
and Video (NOSDAV'’98), Cambridge, UK, July 1998

[Ozden et a. 964] Ozden, B., Rastogi, R., Silberschatz, A.: Disk
Striping in Video Server Environments, Proc. of IEEE Int.
Conf. on Multimedia Computing and Systems (ICMCS 96),
Hiroshima, Japan, June 1996

[Ozden et d. 968 Ozden, B., Rastogi, R., Silberschatz, A.:
Buffer Replacement Algorithms for Multimedia Storage
Systems, Proc. of IEEE Int. Conf. on Multimedia Computing
and Systems (ICMCS' 96), Hiroshima, Japan, June 1996

[Pa 97] Pai, V.S: IO-Lite: A Copy-free UNIX 1/O System,
Master of Science Thesis, Rice University, Houston, TX,
USA, January 1997

[Pai et d. 99 Pai, V.S., Druschel, P., Zwaenepoel, W.: |O-Lite:
A Unified 1/O Buffering and Caching System, Proc. of 3
USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI'99), New Orleans, LA, USA, February
1999 pp. 15-28

[Parek et a. 93] Parek, A.K., Galager, R.G.: A Generalized
Processor Sharing Approach to Flow Control in Integrated
Services Networks: The Single-Node Case, IEEEHACM
Transadions on Networking, Vol. 1, No. 3, June 1993 pp.
344357

[Pasquale & a. 94] Pasgude, J., Anderson, E., Muller, PK.:
Container Shipping - Operating System Suppat for 1/O-

Intensive Applicaions, IEEE Computer, Vol. 27, No. 3,
March 1994 pp. 84-93

[Patterson et al. 95] Patterson, R.H., Gibson, G.A., Ginting, E.,
Stoddsky, D., Zelenka, J.: Informed Prefetching and Cach-
ing, Proc. of 15" ACM Symp. on Operating System Princi-
ples (SOSP'95), Cooper Mourtain, CO, USA, Decenber
1995 pp. 79-95

[Peterson et al. 85] Peterson, J.L., Silberschatz, A.: Operating
System Concepts, Addison-Wesley, 1985

[Philbin et a. 96] Philbin, J., Edler, J., Anshus, O.J.,, Douglas,
C.C., Li, K.: Threa Scheduling for Cache Locdity, Proc. of
7" Int. Conf. on Architedural Suppat for Programming
Languages and Operating Systems (ASPLOS-VII), Cam-
bridge, MA, USA, October 1996 pp. 60-71

[Plagemann et a. 97] Plagemann, T., Goebdl, V.. INSTANCE:
The Intermediate Storage Node Concept, Proc. of 3% Asian
Computing Science Conf. (ASIAN’97), Kathmandu, Nepal,
December 1997, pp. 151-165

[Plagemann et al. 99] Plagemann, T., Goebel, V.: Analysis of
Quality-of-Service in a Wide-Area Interadive Distance
Leaning System, in: Wolf, L. (Ed.): Spedal Isaue on Euro-
pean Activities in Interadive Distributed Multimedia Sys-
tems and Teleommmunication Services, Telecommunicdion
Systems, Val. 11, No. 1-2, 1999 pp. 139160

[Rajkumar et a. 98] Rajkumar, R., Juvva, K., Molano, A., Oi-
kawa, S.: Resource Kernels: A Resource-Centric Approach
to Red-Time Systems, Proc. of SPIE/ACM Conf. on Multi-
media Computing and Networking (MM CN’'98), San Jose,
CA, USA, January 1998

[Ramakrishnan et a. 93] Ramakrishnan, K.K., Vaitzblit, L.,
Gray, C., Vahdia, U., Ting, D., Tzdnic, P., Glaser, S., Duso,
W.: Operating System Suppat for a Video-on-Demand File
Service, Proc. of 4" Int. Workshop onNetwork and Operat-
ing System Suppat for Digital Audio and Video
(NOSSDAV’'93), Lancaster, U.K., 1993 pp. 216-227

[Rangan et d. 91] Rangan, P.V., Vin, H.: Designing File Systems
for Digital Video and Audio, Proc. of the 13" Symp. on Op-
erating Systems Principles (SOSP'91), Padfic Grove, CA,
USA, October 1991, pp. 81-94

[Rashid et al. 81] Rashid, R., Robertson, G.: Accent: A Commu-
nicaion-Oriented Network Operating System Kernel, Proc.
of 8" ACM Symp. on Operating System Principles
(SOSP'81), New York, NY, USA, 1981, pp. 64-75

[Reddy 95] Reddy, A.L.N.: Scheduling in Multimedia Systems,
in: Design and Applications of Multimedia Systems, Kluwer
Academic Publishers, August 1995

[Reddy et a. 93] Reddy, A.L.N., Wyllie, J.: Disk Scheduling in a
Multimedia /0 System, Proc. of 1% ACM Multimedia Contf.
(ACM MM'93), Anaheim, CA, USA, August 1993 pp. 225
233

[Reddy et a. 94] Reddy, A.L.N., Wyllie, J.C.: I/O Isaes in a
Multimedia System, IEEE Computer, Vol. 27, No. 3, March
1994 pp. 69-74

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 25

[Rompogiannakis et al. 98] Rompogiannakis, Y., Nerjes, G.,
Muth, P., Paterakis, M., Triantefill ou, P., Weikum, G.: Disk
Scheduling for Mixed-Media Workloads in a Multimedia
Server, Proc. of 6" ACM Multimedia Cort. (ACM MM '98),
Bristol, UK, September 1998 pp. 297-302

[Rosenblum 95] Rosenblum, M.: The design and Implementation
of a Log-Structured File System, Kluwer Academic Publish-
ers, 1995

[Rotem et a. 95] Rotem, D., Zhao, J.L.: Buffer Management for
Video Database Systems, Proc. of 11" Int. Conf. on Data
Engineging (ICDE'95), Tapei, Taiwan, March 1995 pp.
439448

[Roth et al. 98] Roth, A., Moshovos, A., Sohi, G.S.: Dependence
Based Prefetching for Linked Data Structures, Proc. of 8th
Int. Conf. on Architecural Suppat for Programming Lan-
guages and Operating Systems (ASPLOS-VIII), San Jose,
CA, USA, October 1998 pp. 115126

[Santos et a. 98] Santos, JR., Muntz, R.: Performance Analysis
of the RIO Multimedia Storage System with Heterogeneous
Disk Configurations, Proc. of 6™ ACM Multimedia Conf.
(ACM MM’98), Bristol, UK, September 1998 pp. 303-308

[Schulzrinne 96] Schulzrinne, H.: Operating System Issues for
Continuowts Media, ACM/Springer Multimedia Systems,
Vol. 4, No. 5, October 1996 pp. 269-280

[Seltzer et d. 90] Seltzer, M., Chen, P., Ousterhou, J.: Disk
Scheduling Revisited, Proc. of 1990 USENIX Tednicd
Conf., Washington, D.C., USA, January 199Q pp. 313-323

[Seltzer et a. 93] Sdtzer, M., Bostic, K., McKusick, M K.,
Stadin, C.: An Implementation o a Log-Structured File
System for UNIX, Proc. of 1993USENIX Winter Conf., San
Diego, CA, USA, January 1993

[Shenoy et a. 99] Shenoy, P.J., Goyal, P., Vin, H.M.: Architec-
tural Considerations for Next Generation Fil e Systems, to be
published in Proc. of 7" ACM Multimedia Conf. (ACM
MM’ 99), Orlando, FL, USA, October 1999

[Shenoy et a. 984] Shenoy, P.J., Goydl, P., Rao, S.S,, Vin, HM.:
Symphory: An Integrated Multimedia File System, Proc. of
ACM/SPIE Multimedia Computing and Networking 1998
(MMCN’'98), San Jose, CA, USA, January 1998 pp. 124
138

[Shenoy et a. 98H Shenoy, P.J, Vin, HM.: Celo: A Disk
Scheduling Framework for Next Generation Operating Sys-
tems, Proc. of 1998 ACM Int. Conf. on Meaurement and
Modeling of Computer Systems (SIGMETRICS 98), Madi-
son, WI, USA, June 1998

[Spatscheck et a. 99] Spatschedk, O., Peterson, L.L.: Defending
Against Denial of Service Attads in Scout, Proc. of 3
USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI'99), New Orleans, LA, USA, February
1999 pp. 59-72

[Steee @ a. 99 Steae, D.C., God, A., Gruenenberg, J.,
McNamee D., Pu, C., Walpoale, J.: A Feedbadk-driven Pro-
portion Allocator for Red-Rate Scheduling, Proc. of 3

USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI'99), New Orleans, LA, USA, February
1999 pp. 145158

[Steinmetz 95] Steinmetz, R.: Analyzing the Multimedia Operat-
ing System, IEEE Multimedia, Vol. 2, No. 1, Spring 1995
pp. 68-84

[Stoica & a. 97] Stoica I., Abdel-Wahab, W., Jeffay, K.: On the
Duality between Resource Reservation and Propationa
Share Resource Allocaion, Multimedia Computing and
Networking 1997, SPIE Proc. Series, Volume 302Q San
Jose, CA, USA, February 1997, pp. 207-214

[Tanenbaum 92] Tanenbaum, A.S.: Modern Operating Systems,
PrenticeHall, 1992

[Teaikka & al. 96] Teaika, H., Nakgima, T.: Simple Continuows
Media Storage Server on Red-Time Mad, Proc. of 1996
USENIX Annuwal Technicd Conf., San Diego, CA, USA,
January 1996

[Thadani et al. 95] Thadani, M.N., Khdlidi, Y.A.: An Efficient
Zero-Copy /0O Framework for UNIX, Technicd Report
SMLI TR-95-39, Sun Microsystems Laboratories Inc., May
1995

[Tzouet d. 91] Tzou, S.-Y., Anderson, D.P.: The Performance of
Message-passng using Restricted Virtua Memory Remap-
ping, Software - Pradice and Experience Vol. 21, No. 3,
March 1991 pp. 251-267

[Verghese @ al. 98] Vergehese, B., Gupta, A., Rosenblum, M.:
Performance Isolation: Sharing and Isolation in Shared
Memory Multiprocesors, Proceeading of 8" Int. Conf. on
Architedural Suppat for Programming Languages and Op-
erating Systems (ASPLOS-VIII), San Jose, CA, USA, Octo-
ber 1998

[Vernick et a. 96] Vernick, M., Venkatramani, C., Chiueh, T.:
Adventures in Buil ding the Stony Brook Video Server, Proc.
of 4" ACM Multimedia Conf. (ACM MM '96), Boston, MA,
USA, November 1996 pp. 287-295

[Vineta. 93 Vin, H.M., Rangan, V.: Admisson Control Algo-
rithm for Multimedia On-Demand Servers, Proc. of 4™ Int.
Workshop onNetwork and Operating System Suppat for
Digita Audio and Video (NOSSDAV’93), La Jolla, CA,
USA, 1993 pp. 56-68

[Viswanathan et al. 96] Viswanathan, S., Imielinski, T.: Metro-
pditan area Video-on-Demand Service Using Pyramid
Broadcasting, Multimedia Systems, Vol 4., No. 4, 1996 pp.
197-208

[Waldspurger 95 Waldspurger, C.A.: Lottery and Stride Sched-
uling: Flexible Propartional-Share Resource Management,
PhD thesis, Department of Eledricd Engineaing and Com-
puter Science, Massachusetts Institute of Tecdhndogy, Cam-
bridge, MA, USA, September 1995

[Wang et a. 99a] Wang, R.Y., Anderson, T.E., Patterson, D.A.:
Virtual Log Based File Systems for a Programmable Disk,
Proc. of 3 USENIX Symp. on Operating Systems Design
and Implementation (OSDI'99), New Orleans, LA, USA,
February 1999 pp. 29-43

26 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

[Wang et a. 99 Wang, C., Goebdl, V., Plagemann, T.: Tech-
niques to Increase Disk Access Locdity in the Minorca
Multimedia File System (Short Paper), to be pulished in
Proc. of 7" ACM Multimedia Conf. (ACM MM’99), Or-
lando, FL, USA, October 1999

[Wijayaratne @ a. 99] Wijayaratne, R., Reddy, A.L.N.: Inte-
grated QoS Management for Disk I/O, Proc. of IEEE Int.
Conf. on Multimedia Computing and Systems (ICMCS' 99),
Florence Italy, June 1999

[Wolf et d. 96] Wolf, L.C., Burke, W., Vogt, C.: Evaluation d a
CPU Scheduling Medhanism for Multimedia Systems, Soft-
ware - Pradice and Experience Vol. 26, No. 4, April 1996
pp. 375398

[Yau et a. 96] Yau, D.K.Y., Lam, S.S.: Operating System Tech-
niques for Distributed Multimedia, Technicd Report TR-95
36 (revised), Department of Computer Sciences, University
of Texas at Austin, Austin, TX, USA, January 1996

[Yu et a. 93] Yu, P.S, Chen, M.S., Kandlur, D.D.: Grouped
Sweeping Scheduling for DASD-Based Multimedia Storage
Management, ACM Multimedia Systems, Vol. 1, No. 3,
1993 pp. 99-109

[Zhang 91] Zhang, L.: Virtua Clock: A New Traffic Control Al-
gorithm for Padket Switching Networks, ACM Transadions
on Computer Systems, Vol. 9, No. 3, May 1991, pp. 101-
124

[Zhang et a. 95] Zhang, A., Gollapud, S.: QoS Management in
Educetional Digita Library Environments, Technicd Report
CS-TR-9553, State University of New York at Buffao,
New York, NY, USA, 1995

