
To be published in: Computer Communications Journal, Special Issue on Interactive Distributed Multimedia
Systems and Telecommunications Services 1998 (IDMS’98), Elsevier Science, Winter 99
© Copyright 1999, Elsevier Science, All rights reserved

Operating System Support for Multimedia Systems

THOMAS PLAGEMANN, VERA GOEBEL , PÅL HALVORSEN
� �

UniK- Center for Technology at Kjeller, University of Oslo, Norway
{plageman, goebel, paalh}@unik.no

OTTO ANSHUS
Department of Computer Science, Princeton University, USA

On leave from Computer Science Department, University of Tromsø, Norway
otto@{cs.uit.no|cs.princeton.edu}

Abstract

Distributed multimedia applications will be an important part of tomorrow’s application mix and require appropriate operating system
(OS) support. Neither hard real-time solutions nor best-effort solutions are directly well suited for this support. One reason is the co-
existence of real-time and best effort requirements in future systems. Another reason is that the requirements of multimedia applications
are not easily predictable, li ke variable bit rate coded video data and user interactivity. In this article, we present a survey of new devel-
opments in OS support for (distributed) multimedia systems, which include: (1) development of new CPU and disk scheduling mecha-
nisms that combine real-time and best effort in integrated solutions; (2) provision of mechanisms to dynamically adapt resource reserva-
tions to current needs; (3) establishment of new system abstractions for resource ownership to account more accurate resource consump-
tion; (4) development of new file system structures; (5) introduction of memory management mechanisms that utili ze knowledge about
application behavior; (6) reduction of major performance bottlenecks, li ke copy operations in I/O subsystems; and (7) user-level control
of resources including communication.

Keywords: Operating systems, multimedia, Quality of Service, real-time

 �
 This research is sponsored by the Norwegian Research Council,

DITS Program, under contract number 119403/431 (INSTANCE project).

1 INTRODUCTION

Distributed multimedia systems and applications play
already today an important role and will be one of the cor-
nerstones of the future information society. More specifi-
cally, we believe that time-dependent data types will be a
natural part of most future applications, like time-
independent data types today. Thus, we will not differenti-
ate in the future between multimedia and non-multimedia
applications, but rather between hard real-time, soft real-
time, and best effort requirements for performance aspects
like response time, delay jitter, synchronization skew, etc.
Obviously, all system elements that are used by applica-
tions, like networks, end-to-end protocols, database sys-
tems, and operating systems (OSs), have to provide appro-
priate support for these requirements. In this article, we fo-
cus on the OS issues on which applications, end-to-end
protocols, and database systems directly rely. For simplic-
ity, we use in this article the notion multimedia systems and
applications which comprises also distributed multimedia
systems and applications.

The task of traditional OSs can be seen from two per-
spectives. In the top-down view, an OS provides an ab-

straction over the pure hardware, making programming
simpler and programs more portable. In the bottom-up
view, an OS is responsible for an orderly and controlled
allocation of resources among the various executing pro-
grams competing for them. Main emphasis of resource
management in commodity OSs, like UNIX or Windows
systems, is to distribute resources to applications to reach
fairness and eff iciency. These time-sharing approaches
work in a best-effort manner, i.e., no guarantees are given
for the execution of a program other than to execute it as
fast as possible while preserving overall throughput, re-
sponse time, and fairness.

Specialized real-time OSs in turn emphasize on man-
aging resources in such a way that tasks can be finished
within guaranteed deadlines. Multimedia applications are
often characterized as soft real-time applications, because
they require support for timely correct behavior. However,
deadline misses do not naturally lead to catastrophic con-
sequences even though the Quality of Service (QoS) de-
grades, perhaps making the user annoyed.

Early work in the area of OS support for multimedia
systems focussed on the real-time aspect to support the
QoS requirements of multimedia applications. Traditional

2 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

real-time scheduling algorithms, like Earliest Deadline
First (EDF) and Rate Monotonic (RM), have been adopted
for CPU (and disk) scheduling. These scheduling mecha-
nisms are based on a periodic task model [Liu et al. 73]. In
this model, tasks are characterized by a start time s, when
the task requires the first execution, and a fixed period p in
which the task requires execution time e with deadline d
(see Figure 1). Often, the deadline is equal to the end of the
period.

An 8 bit, 8 KHz PCM encoded audio stream is a good
example for such a periodic task: the constant sampling
rate and the fixed sample size generate a constant bit
stream. In order to handle the stream more eff iciently,
samples of typically 20 ms are gathered in a packet. Thus,
the system has to handle in each period, i.e., p = 20 ms, a
packet before the next period. The fixed packet size re-
quires a constant execution time e per period. This periodic
task model is attractive from an engineering point of view,
because it makes it possible to predict the future: in period
k, which starts at s + (k –1) p, the task with execution time
e has to be finished before s + (k – 1) p + d.

However, experiences with multimedia applications in-
cluding eff icient variable bit rate (VBR) coding schemes
for video, like H.261, H.263, MJPEG, and MPEG, lead to
the conclusion that it is not that easy to foresee future re-
quirements. Video frames are generated in a fixed fre-
quency (or period), but the size of the frames and the exe-
cution times to handle these frames are not constant [Goyal
et al. 96a], [Chu et al. 99]. It varies on a short time scale,
between the different frames, e.g., I, B, or P frames in
MPEG, and on a larger time scale, e.g., due to scene shifts
such as from a constant view on a landscape to an action
scene. Furthermore, the degree of user interactivity is much
higher in recent multimedia applications, e.g., interactive
distance learning, than in earlier applications, like video-
on-demand (VoD). It is very likely that this trend will con-
tinue in the future and make resource requirements even
harder to predict.

Latest developments in the area of multimedia OSs still
emphasize on QoS support, but integrate often adaptabilit y
and support both real-time and best effort requirements.
Furthermore, new abstractions are introduced, like new
types of file systems and resource principals that decouple
processes from resource ownership. Finally, main bottle-
necks, like paging, copy operations, and disk I/O, have
been tackled to fulfill t he stringent performance require-
ments.

It is the goal of this article to give an overview over
recent developments in OS support for multimedia systems.
OS support for multimedia is an active research area, and

therefore, it is not possible to discuss all particular solu-
tions in depth. Instead, we introduce for each OS aspect the
basic issues and give an overview and a classification of
new approaches. Furthermore, we describe a few examples
in more detail to enable the reader to grasp the idea of
some new solutions. However, for an in depth understand-
ing, the reader has to refer to the original lit erature, be-
cause this article is intended as a survey and to serve as an
“entry-point” for further studies.

The rest of this article is structured as follows: Section
2 discusses general OS developments, and Section 3 sum-
marizes the requirements of multimedia applications. The
basic dependency between resource management and QoS
is discussed in Section 4. Management of the system re-
sources, like CPU, disk, main memory, and other system
resources, are discussed in the Sections 5 to 8. New ap-
proaches to overcome the I/O bottleneck are presented in
Section 9. Section 10 gives some conclusions.

2 OPERATING SYSTEM ARCHITECTURES

Traditionally, an OS can be viewed as a resource allo-
cator or as a virtual machine. The abstractions developed to
support the virtual machine view include a virtual proces-
sor and virtual memory. These abstractions give each proc-
ess the ill usion that it is running alone on the computer.
Each virtual machine consumes physical resources like
physical processor and memory, data-, instruction-, and I/O
buses, data and instruction caches, and I/O ports. However,
instead of allowing a process to access resources directly, it
must do so through the OS. This is typically implemented
as system calls. When a process makes a system call , the
call i s given to a library routine which executes an instruc-
tion sending a software interrupt to the OS kernel. In this
way, the OS gets control in a secure way and can execute
the requested service. This is a too costly path for some
services, because trapping to the OS involves the cost of
crossing the user-supervisor level boundary at least twice,
and possibly crossing address spaces also at least twice if a
context switch to another process takes place. In addition,
there are costs associated with the housekeeping activities
of the OS.

When several processes are executing, each on its own
virtual processor, they will i mplicitly interfere with each
other through their use of physical resources. Primarily,
they will affect each other’s performance, because applica-
tions are not aware of physical resources and of each other.
A multimedia application can face a situation where it does
not get enough resources, because the OS is not aware of
each applications’ short and longer term needs. This will
typically happen when the workload increases.

The need to go through the OS to access resources and
the way the OS is designed and implemented results in a
system where low latency communication is diff icult to
achieve. It is also diff icult to either have resources avail-
able when they are needed by a process; or have a process
ready to execute when the resources, including cooperating

0

p
d

e
Periodic task

s t

Figure 1: Periodic task model

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 3

processes on other processors or computers, are available
or ready.

A traditional general-purpose OS, like UNIX or Win-
dows NT, is not a good platform for the common case
needs of multimedia applications. In these OSs, resource
allocation for each process is based on general purpose
scheduling algorithms, which are developed to provide a
balance between throughput and response time, and to pro-
vide fairness. These algorithms get some limited feedback
from the application processes on what they are doing, but
basically, the OS has littl e or no understanding of what the
applications are doing and what their requirements are.
Also, the degree to which an application can directly con-
trol resources in a secure way, or provide the OS with hints
for its resource requirements, has traditionally been very
limited.

There are several OS architectures in use today of
which the monolithic kernel and the � -kernel architectures,
or their hybrids, are the most common. In a monolithic OS
kernel, all components are part of a large kernel, execute in
a hardware protected supervisory mode, and can use the
entire instruction set. Consequently, the kernel has total
control over all resources. User processes execute in user
mode and can therefore use only a limited instruction set
and have only a limited control over resources. A user pro-
cess cannot execute an instruction to switch to supervisory
mode, enable or disable interrupts, or directly access I/O
ports. When a user process needs OS services, it requests
the service from the OS, and the kernel performs the re-
quested service. Two crossings between user- and kernel-
level take place, from the user process to the kernel and
then back again when the service has finished.

In the � -kernel architecture, the OS is divided into a
smaller kernel with many OS services running as processes
in user mode. This architecture is flexible, but has tradi-
tionally resulted in an increased overhead. The kernel
sends a request for service to the correct user-level OS pro-
cess. This creates extra overhead, because typically four
crossings between user- and kernel-level take place, i.e.,
from the user process to the kernel, from the kernel to the
user-level service, from the user-level service to the kernel,
and finally, from the kernel to the user process. This can
also result in memory degradation because of reduced in-
struction locality giving an increased number of cache
misses. In [Chen et al. 96], a comparative study of three
OSs, including NetBSD (a monolithic UNIX) and Win-
dows NT (a � -kernel like architecture), is presented. The
monolithic NetBSD has the lowest overhead for accessing
services. However, the overall system performance can
significantly be determined by specific subsystems, e.g.,
graphics, file system, and disk buffer cache; and for some
cases Windows NT does as well as NetBSD in spite of the
higher overhead associated with its � -kernel architecture.

Library OSs (also referred to as vertically structured
systems) like the Exokernel architecture [Engler et al. 95],
[Kaashoek et al. 97] and Nemesis [Leslie et al. 96] have
been proposed as an alternative to monolithic and � -kernel

OSs. The basic idea is that those parts of an OS that can
run at user-level are executed as part of the application
processes. The OS is implemented as a set of libraries
shared by the applications. The OS kernel can be kept very
small , and it basically protects and exports the resources of
the computer to the applications, i.e., leaving it to the ap-
plications to use the resources wisely. This allows for a
high flexibilit y with respect to the needs of individual ap-
plications. At the same time it gives processes more direct
control over the resources with better performance as a
potential result.

However, the results presented in [Liedtke 95], [Liedtke
96], and [Härtig et al. 97] identify several areas of signifi-
cance for the performance of an OS including the switching
overhead between user and kernel mode, switching be-
tween address spaces, the cost of interprocess communica-
tion (IPC), and the impact of the OS architecture upon
memory behavior including cache misses. These papers
show how a � -kernel OS can be designed and implemented
at least as eff icient as systems using other architectures.
The SUMO OS [Coulson et al. 94] describes how to im-
prove � -kernels by reducing the number of protection
crossings and context switchings even though it is built on
top of the Chorus OS.

Threads can be used as a way of reducing OS induced
overhead. Basically, threads can be user-level or kernel-
level supported. User-level threads have very low overhead
[Anderson et al. 92a]. However, they are not always sched-
uled preemptively, and then the programmer must make
sure to resume threads correctly. User-level threads can
also result in blocking the whole process if one thread
blocks on a system service. Even if user-level threads will
reduce the internal overhead for a process, we still have no
resource control between virtual processors. Kernel sup-
ported threads have much higher overhead, but are typi-
cally scheduled preemptively and will not block the whole
process when individual threads block. This makes kernel-
level supported threads simpler to use in order to achieve
concurrency and overlap processing and communication.
Kernel-level supported threads can potentially be sched-
uled according to the process’ requirements, but this is
typically not done. Split-level scheduling [Govindan et al.
91] combines the advantages of user and kernel-level
thread scheduling by avoiding kernel-level traps when pos-
sible. Scheduler activations [Anderson et al. 92a] is a ker-
nel interface and a user-level thread package that together
combine the functionality of kernel threads with the per-
formance and flexibilit y of user-level threads.

Low context switching overhead can also be achieved
when using processes. For example, Nemesis uses a single
address space for all processes. This allows for a low con-
text-switching overhead, because only protection rights
must be changed.

The rapid development of commodity multiprocessors
and clusters of commodity computers provides a scalable
approach to separating virtual machines onto physical
processors and memories and thereby reduces the interfer-

4 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

ence between them. However, there are still shared re-
sources that must be scheduled, including networks, gate-
ways, routers, servers, file systems, and disks.

3 MULT IMEDIA APPLICATION REQUIREMENTS

In this section, we briefly discuss the requirements that
multimedia applications impose onto OSs. First, we exem-
pli fy typical requirements by introducing a multimedia ap-
plication that is in productive use since 1993 for teaching
regular courses at the University of Oslo. Afterwards, we
give a more general characterization of multimedia appli-
cation requirements.

3.1 EXAMPLE : INTERACTIVE DISTANCE LEARNING

The main goal of the electronic classrooms is to create
a distributed teaching environment which comes as close as
possible to a traditional (non-distributed) classroom
[Bringsrud et al. 93]. The classroom system is composed
out of three main parts: electronic whiteboards, audio sys-
tem, and video system. At each site there is at least one
large electronic whiteboard to display transparencies. The
lecturer can write, draw, and erase comments on displayed
transparencies by using a light-pen.

Main element of the audio system is a set of micro-
phones that are mounted evenly distributed on the ceili ng
in order to capture the voice of all the participants. The
video system comprises in each classroom three cameras
and two sets of monitors. One camera focuses on the lec-
turer, and two cameras focus on the students. A video-
switch selects the camera corresponding to the microphone
with the loudest input signal. Two monitors are placed in
the front and two monitors are placed in the back of each
classroom displaying the incoming and outgoing video in-
formation. All video data is compressed according to the
compression standard H.261.

During a lecture, at least two electronic classrooms are
connected. Teacher and students can freely interact with
each other regardless of whether they are in the same or in
different classrooms. Audio, video, and whiteboard events
are distributed in real-time to all sites, allowing all partici-
pants to see each other, to talk to each other, and to use the
shared whiteboard to write, draw, and present prepared
material from each site.

Detailed measurements are reported in [Plagemann et
al. 99] and show that the audio system with 8 bit, 16 KHz
PCM encoding generates a constant bitstream of 128
Kbit/s. The video stream, however, varies between 100
Kbit/s and 1.4 Mbit/s, because it depends on the activity in
the classroom. The traff ic pattern of the whiteboard fluctu-
ates even more, because it solely depends on the interac-
tivities of the users, i.e., teacher and students (see Figure
2). The large peaks are generated by downloading trans-
parencies and range between 30 Kbit/s up to 125 Kbit/s.
The small peaks of approximately 10 Kbit/s are generated
by light-pen activities, like editing and marking text on
transparencies.

These measurement results show that the size of video
frames and corresponding execution times are not constant
and that the whiteboard stream cannot be characterized as
periodic task. Treating both as periodic tasks would require
to perform pessimistic resource allocation for video and to
install a periodic process that polls for aperiodic user inter-
actions. However, both solutions result in poor resource
utili zation.

3.2 REQUIREMENTS IN GENERAL

Generally, we can identify the following three orthogo-
nal requirements of multimedia applications [Nahrstedt et
al. 95], [Schulzrinne 96]:

� High data throughput: audio streams in telephony
quality require 16 Kbit/s and in CD-quality 1.4 Mbit/s.
Typical video data rates range from approximately 1.2
Mbit/s for MPEG, 64 Kbit/s to 2 Mbit/s for H.261, 20
Mbit/s for compressed HDTV, and over 1 Gbit/s for
uncompressed HDTV.

� Low latency and high responsiveness: end-to-end de-
lay for audio streams (which is a sum of network delay
and two times end-system delay) should be below 150
ms to be acceptable for most applications. However,
without special hardware echo cancellation, the end-
to-end delay should be below 40 ms. Lip synchroniza-
tion requires to playout corresponding video and audio
data with a maximum skew of 80 ms. The maximum
synchronization skew for music and pointing at the
corresponding notes is +/- 5 ms. Audio samples are
typically gathered in 20 ms packets, i.e., 50 packets
per second have to be handled per audio stream.

� QoS guarantees: to achieve a quality level that satis-
fies user requirements, the system has to handle and
deliver multimedia data according to negotiated QoS
parameters, e.g., bounded delay and delay jitter.

Interrupt latency, context switching overhead, and data
movements are the major bottlenecks in OSs that determine
throughput, latency, and responsiveness. In [Araki et al.
98], it is documented that especially the interrupt handling
is a major overhead. To implement QoS guarantees for

Kbit/s

Figure 2: Whiteboard stream

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 5

these performance aspects, advanced management of all
system resources is required. The need for advanced re-
source management has lead to the development of new OS
abstractions and structures. In the following sections, we
discuss basic resource management tasks and explain how
the new OS abstractions and structures can reduce context
switching overhead and data movement costs.

4 RESOURCE MANAGEMENT AND QOS

A computer system has many resources, which may be
required to solve a problem: CPU, memory at different lev-
els, bandwidth of I/O devices, e.g., disk and host network-
interface, and bandwidth of the system bus. In Figure 3, the
basic resource types CPU, memory, and bandwidth are
partitioned into concrete system resources.

One of the primary functions of an OS is to multiplex
these resources among the users of the system. In the ad-
vent of conflicting resource requests, the traditional OS
must decide which requests are allocated resources to op-
erate the computer system fairly and efficiently [Peterson et
al. 85]. Fairness and eff iciency are still t he most important
goals for resource management in today’s commodity OSs.
However, with respect to multimedia applications, other
goals that are related to timeliness become of central im-
portance. For example, user interactions and synchroniza-
tion require short response times with upper bounds, and
multimedia streams require a minimum throughput for a
certain period of time. These application requirements are
specified as QoS requirements. Typical application-level
QoS specifications include parameter types like frame rate,
resolution, jitter, end-to-end delay, and synchronization
skew [Nahrstedt et al. 99]. These high-level parameters
have to be broken down (or mapped) into low-level pa-
rameters and resources that are necessary to support the
requested QoS, like CPU time per period, amount of mem-
ory, and average and peak network bandwidth. A discus-
sion of this mapping process is beyond the scope of this
paper, but we want to emphasize at this point that such a
specification of resource requirements is diff icult to
achieve. A constant frame rate does not necessarily require
constant throughput and constant execution time per pe-
riod. Furthermore, user interactions can generate unpre-
dictable resource requirements.

In order to meet QoS requirements from applications
and users, it is necessary to manage the system resources in

such a manner that suff icient resources are available at the
right time to perform the task with the requested QoS. In
particular, resource management in OS for QoS comprises
the following basic tasks:

� Specification and allocation request for resources that
are required to perform the task with the requested
QoS.

� Admission control includes a test whether enough re-
sources are available to satisfy the request without in-
terfering with previously granted requests. The way
this test is performed depends on requirement specifi-
cation and allocation mechanism used for this re-
source.

� Allocation and scheduling mechanisms assure that a
suff icient share of the resource is available at the right
time. The type of mechanism depends on the resource
type. Resources that can only exclusively be used by a
single process at a time have to be multiplexed in the
temporal domain. In other words, exclusive resources,
like CPU or disk I/O, have to be scheduled. Basically,
we can differentiate between fair scheduling, real-time
scheduling, and work and non-work conserving sched-
uling mechanisms. So-called shared resources, like
memory, basically require multiplexing in the spatial
domain, which can be achieved, e.g., with the help of a
table.

� Accounting tracks down the actual amount of re-
sources that is consumed in order to perform the task.
Accounting information is often used in scheduling
mechanisms to determine the order of waiting re-
quests. Accounting information is also necessary to
make sure that no task consumes more resources than
negotiated and steals them (in overload situations)
from other tasks. Furthermore, accounting information
might trigger system-initiated adaptation.

� Adaptation might be initiated by the user/application
or the system and can mean to downgrade QoS and
corresponding resource requirements, or to upgrade
them. Adaptation leads in any case to new allocation
parameters. Accounting information about the actual
resource consumption might be used to optimize
resource utili zation.

� Deallocation frees the resources.
Specification, admission control, and allocation and

scheduling strongly depend on the particular resource type,
while adaptation and resource accounting represent more
resource type independent principles. Thus, the following
two subsections introduce adaptation and resource ac-
counting, before we discuss the different system resources
in more detail .

4.1 ADAPTATION

There are two motivations for adaptation in multimedia
systems: (1) resource requirements are hard to predict, e.g.,
VBR video and interactivity; and (2) resource availabilit y
cannot be guaranteed if the system includes best-effort sub-

Memory

CPU

Cache

Main memory

Disk

Disk I/O

Network

I/O

BusBandwidthResources

Figure 3: Operating system resources

6 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

systems, e.g., today’s Internet or mobile systems. In best-
effort systems, it is only possible to adapt the application,
respectively the amount of application data the system has
to handle. In OSs, both situations might occur, and it is
possible to adapt both application and resource allocations.
In [Gecsei 97], adaptation with feedback and adaptation
without feedback are distinguished. Adaptation without
feedback means that applications change only the function-
ality of the user interface and do not change any resource
parameters. Therefore, we consider in this article only ad-
aptation with feedback, i.e., feedback control systems. Fig-
ure 4 shows a simpli fied view of the collaboration between
resource consumer, e.g. application, and resource provider,
e.g., CPU scheduler, in adaptation with feedback
[Lakshman 97]:

(A) The resource consumer, or a management entity, esti-
mates its resource requirements and requests the pro-
vider to allocate the resource according to its specifica-
tion.

(B) After admission control is successfully passed, the re-
source utili zation is monitored. The monitoring results
can reflect the general resource utili zation, e.g., the re-
source is under- or over-utili zed, and the accuracy of
the consumers’ resource requirements estimations, e.g.,
it uses less or more resources than allocated. The
monitoring results might trigger step (C) and/or (D).

(C) The provider requests the consumer to adjust its re-
source requirements, e.g., by reducing the frame rate of
a video.

(D) The consumer requests the provider to adjust the allo-
cation parameters.
Most of the recent results in the area of adaptive

resource management discuss CPU management (see
Section 5). Monitoring of actual execution times is sup-
ported in most of these systems. More general approaches
for adaptive resource management include AQUA
[Lakshman 97], SWiFT [Goel et al. 98], Nemesis [Leslie et
al. 96], Odyssey [Noble et al. 97], and QualMan [Nahrstedt
et al. 99]. The crucial aspects of adaptation are the fre-
quency in which feedback control (and adaptation) is per-
formed and the related overhead. For example, SCOUT
uses a course-grained feedback mechanism that operates in
the order of several seconds [Bavier et al. 98a]. On the
other hand, the work presented in [Bavier et al. 98b] aims
to predict the execution times of single MPEG frames.
Whether fine-grained adaptation of allocation parameters
results in better QoS and/or better resource utili zation is

still open. However, it is obvious that it requires frequent
adjustment of allocation parameters, which must not im-
pose much overhead.

4.2 NEW ABSTRACTIONS FOR RESOURCE PRINCIPALS

Resource accounting represents a fundamental problem,
because most OSs treat a process as the “chargeable” entity
for allocation of resources, such as CPU time and memory.
In [Banga et al. 99], it is pointed out that “a basic design
premise of such process-centric systems is that a process is
the unit that constitutes an independent activity. This gives
the process abstraction a dual function: it serves both as a
protection domain and as a resource principal.” This situa-
tion is insuff icient, because there is no inherent one-to-one
mapping between an application task and a process. A sin-
gle process might serve multiple applications, and multiple
processes might serve together a single application. For
example, protocol processing is in most monolithic kernels
performed in the context of software interrupts. The corre-
sponding resource consumption is charged to the unlucky
process running at that time, or not accounted at all [Banga
et al. 99]. � -kernels implement traditional OS services as
user-level servers. Applications might invoke multiple
user-level servers to perform on its behalf, but the resource
consumption is charged to the application and the user-
level servers instead of charging it to the application only
[Mercer et al. 94]. It is important to note that ownership of
resources is not only important for accounting reasons, but
also for scheduling. The resources a process “owns” , e.g.,
CPU time, define also its scheduling parameter. For exam-
ple, in commodity OSs with priority based CPU schedul-
ing, each process is associated with a priority, which in turn
determines when it is scheduled, i.e., receives its CPU
time. Thus, a server or kernel thread that is performing a
task on behalf of an application with QoS requirements
should inherit the corresponding scheduling parameters for
needed resources, e.g., the priority.

In [Jeffay et al. 98], the problem of resource ownership
and the corresponding scheduling decisions is partially
solved for a monolithic kernel by deriving weights of ker-
nel activities from user weights. By this, the proportional
share scheduling, in the extended FreeBSD kernel, is able
to provide an appropriate share of CPU bandwidth to the
kernel activity such that QoS requirements of the user pro-
cess can be met.

We can identify two basic, orthogonal approaches to
handle this problem: (1) introduction of a new abstraction
for resource ownership; and (2) to provide applications as
much control as possible over devices, as it is done in so-
called library OSs, like Exokernel [Engler et al. 95],
[Kaashoek et al. 97] and Nemesis [Leslie et al. 96]. In
these systems, applications can directly control resource
consumption for network I/O and file I/O, because network
device drivers and disk device drivers are accessible from
the application in user-space without kernel interference.

(A) Allocation request
(D) Adapt allocation

(B) Monitoring results
(C) Adapt resource
 requirements

Resource
Provider

Resource
consumer

Figure 4: Feedback control for adaptation

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 7

Obviously, resource consumption can be easily charged to
the application.

In [Banga et al. 99], a quite extensive discussion of new
abstractions for resource ownership can be found. These
abstractions differ in terms of: (1) which resources are con-
sidered; (2) which relationships between threads and re-
source owners are supported; and (3) which resource con-
sumptions are actually charged to the owner. In Stride and
Lottery scheduling [Waldspurger 95], resource rights are
encapsulated by tickets. Tickets are owned by clients, and
ticket transfers allow to transfer resource rights between
clients. In Mach [Ford et al. 94], AlphaOS [Clark et al. 92],
and Spring [Hamilton et al. 93], migrating threads respec-
tively shuttles correspond to threads and own resources.
Migration of threads between protection domains enables
these systems to account resource consumption of inde-
pendent activities to the correct owner, i.e., thread. In [Ford
et al. 96], threads can act as scheduler for other threads and
can donate CPU time to selected threads. The reservation
domains [Bruno et al. 98] of Eclipse, the Software Per-
formance Units [Vergehese et al. 98], and the scheduling
domains in Nemesis [Leslie et al. 96] enable the scheduler
to consider the resource consumption of a group of proc-
esses.

The reserve abstraction is introduced in Real-Time
Mach [Mercer et al. 94]. The main purpose of reserves is to
accurately account CPU time for activities that invoke user-
level services, e.g., client threads that invoke various serv-
ers (which are running in user-space, because Real-Time
Mach is a � -kernel). Each thread is bound to one reserve,
and multiple threads, potentially running in different pro-
tection domains, can be bound to a single reserve. By this,
computations of server threads that are performed on be-
half of a client can be charged to the clients reserve and
scheduling of the server computations is performed ac-
cording to the reservations of the reserve. In [Rajkumar et
al. 98], the concept of reserves is extended to manage ad-
ditional resource types such as CPU, disk bandwidth, net-
work bandwidth, and virtual memory.

Resource containers [Banga et al. 99] allow explicit
and fine-grained control over resource consumption at all
levels in the system, because it allows dynamic relation-
ships between resource principals and processes. The sys-
tem provides explicit operations to create new resource
containers, to bind processes to containers and to release
these bindings, and to share containers between resources.
Resource containers are associated with a set of attributes,
like scheduling parameters, memory limitations, and net-
work QoS values, that can be set by applications and sup-
port the appropriate scheduling (decoupled from particular
process information). Furthermore, containers can be
bound to files and sockets, such that the kernel resource
consumption on behalf of these descriptors is charged to
the container.

In the Rialto OS, an activity object is the abstraction to
which resources are allocated and against which resource
usage is charged [Jones et al. 95], [Jones et al. 97]. Appli-

cations run by default in their own activity and typically in
their own process. Activities may span over address spaces
and machines. Multiple threads of control may be associ-
ated with an activity. The threads execute with rights
granted by secured user credentials associated with this ac-
tivity. The CPU scheduler treats all threads of an activity
equal, because the assumption is that they cooperate toward
a common goal.

The path abstraction in the SCOUT OS [Mosberger et
al. 96] combines low-level de-multiplexing of network
packets via packet filter with migrating threads. A path rep-
resents an I/O path and is executed by a thread. One thread
can sequentially execute multiple paths. A newly awakened
thread inherits the scheduling requirements of the path and
can adjust them afterwards. The path object is extended in
the Escort OS with a mechanism to account all resource
consumptions of a path to defend against denial of service
attacks [Spatscheck et al. 99].

Compared to the previously discussed approaches for
resource accounting, a basically different approach is in-
troduced in [Steere et al. 99]. Multiple threads, which may
reside in different protection domains, are gathered in a
job. Instead of measuring the resource consumption of
these threads, Steere et al. [Steere et al. 99] monitor the
progress of jobs and adapt, i.e., increase or decrease, the
allocation of CPU to those jobs. So-called symbiotic inter-
faces link the notion of progress, which is depending on the
application to system metrics, like a buffer’s fill -level.

5 CPU SCHEDULING

Most commodity OSs, like Windows NT and Solaris,
perform priority scheduling and provide time-sharing and
real-time priorities. Priorities of threads in the real-time
range are never adjusted from the system. A straightfor-
ward approach to assure that a time critical multimedia task
receives suff icient CPU time would be to assign a real-time
priority to this task. However, in [Nieh et al. 93], it is
shown for the SVR4 UNIX scheduler that this approach
results in unacceptable system performance. A high priority
multimedia task, like video, has precedence over all ti me-
sharing tasks and is nearly always active. Starvation of
timesharing tasks, e.g., window system and basic system
services, leads to poor QoS for the multimedia application
and unacceptable performance for the entire system. Thus,
the usage of real-time priorities does not automatically lead
to the desired system behavior. However, other implemen-
tations, like those described in [Wolf et al. 96] and [Chu et
al. 99], show that fixed real-time priorities can be utili zed
to successfully schedule real-time and best effort tasks in a
general purpose UNIX system.

Several new solutions have been recently developed.
The following section gives a general overview and classi-
fication of these solutions, and subsequent sections present
two solutions in more detail .

8 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

5.1 CLASSIFICATION OF SCHEDULING M ECHANISMS

Two of the most popular paradigms for resource allo-
cation and scheduling to satisfy the contradicting goals of
flexibilit y, fairness, and QoS guarantees are proportional
share resource allocation and reservation-based algo-
rithms [Stoica et al. 97]. In proportional share allocation,
resource requirements are specified by the relative share
(or weight) of the resource. In a dynamic system, where
tasks dynamically enter and leave the system, a share de-
pends on both the current system state and the current time.
The resource is always allocated in proportion to the shares
of competing requests. Thus, in pure proportional share
resource allocation, no guarantees can be given, because
the share of CPU might be arbitrary low. The basis for
most proportional share resource allocation mechanisms
are algorithms that have been developed for packet sched-
uling in packet-switched networks, like weighted fair
queuing [Demers et al. 90], virtual clock [Zhang 91], and
packet-by-packet generalized processor sharing [Parek et
al. 93]. Examples for systems using proportional share
CPU allocation include Adaptive Rate Control (ARC) [Yau
et al. 96], SMART [Nieh et al. 97], Earliest Eligible Vir-
tual Deadline First [Stoica et al. 97], Lottery and Stride
scheduling [Waldspurger 95], and Move-to-Rear List
(MTR-LS) scheduling in Eclipse [Bruno et al. 98].

In contrast to proportional share resource allocation,
reservation-based algorithms, like RM and EDF schedul-
ing, can be used to implement guaranteed QoS. The mini-
mum share for each thread is both state and time independ-
ent. However, resource reservation sacrifices flexibilit y and
fairness [Stoica et al. 97]. EDF scheduling is used in
Nemesis [Leslie et al. 96], DASH [Anderson et al. 90], and
SUMO [Coulson et al. 95]. The principles of RM schedul-
ing are applied, for example, in Real-Time Mach [Mercer
et al. 94], HeiTS [Wolf et al. 96], AQUA [Lakshman 97]
and for the Real-Time Upcall in the MARS system [Bud-
dhikot et al. 98]. To implement a feedback driven propor-
tional allocator for real-rate scheduling, the work presented
in [Steere et al. 99] uses both EDF and RM.

Most modern solutions of CPU scheduling for multi-
media systems are based on either proportional share allo-
cation, or are a combination of different allocation para-
digms in hierarchies to support both real-time and best ef-
fort requirements. For example, the scheduler in the Rialto
system [Jones et al. 97] and the soft real-time (SRT) user-
level scheduler from [Chu et al. 99] combine EDF and
round-robin scheduling. The Atropos scheduler in Nemesis
[Leslie et al. 96] also applies EDF to sort waiting schedul-
ing domains in different queues. The proportional share
resource allocation Start-time Fair Queuing in [Goyal et al.
96b] is used in [Goyal et al. 96a] to achieve a hierarchical
partition of CPU bandwidth in a general framework. For
each of these partitions, arbitrary scheduling mechanisms
can be used. Proportional share scheduling is also the pri-
mary policy in [Jeffay et al. 98]. When multiple processes

are eligible, they are scheduled according to EDF. In the
context of the Flux project, a CPU inheritance scheduling
framework has been developed in which arbitrary threads
can act as scheduler for other threads and widely different
scheduling policies can co-exist [Ford et al. 96]. The
scheduler in SCOUT, called BERT [Bavier et al. 98a],
merges reservation-based and proportional share resource
allocation in a single policy, instead of combining two or
more policies in a hierarchical approach. Basically, BERT
extends the virtual clock algorithm by considering dead-
lines for the scheduling decision and by allowing high-
priority real-time tasks to steal CPU cycles from low prior-
ity and best effort tasks.

In addition to the resource allocation paradigm, i.e.,
proportional share (P), reservation-based (R), and hierar-
chical (H), Table 1 uses the following criteria to classify
CPU scheduling approaches: (1) whether admission control
is performed; (2) whether adaptation is supported; (3)
whether a new abstraction for resource principal is intro-
duced; and (4) what is the context of the scheduler, i.e., is it
part of a new kernel, integrated in an existing kernel, or
implemented on top of an existing kernel.

Table 1: CPU scheduling approaches

System/Project

P
ar

ad
ig

m

A
dm

is
sio

n
C

on
tr

ol

A
da

pt
at

io
n

S
up

po
rt

R
es

o
ur

ce
P

ri
nc

ip
al

C
o

nt
ex

t

AQUA R Y Y N Solaris
ARC P Y Y N Solaris
Atropos H Y Y Y Nemesis
BERT PR1 Y Y Y SCOUT
Flux H N N N UL prototype5

[Goyal et al. 96a] P N Y2 N Framework
HeiTS R Y N N AIX
[Jeffay et al. 98] H N Y3 N4 FreeBSD
Lottery, Stride P N Y Y Mach
MTR-LS P Y N Y Eclipse
Rialto H Y Y Y Rialto
RT Mach R Y Y Y RT-Mach
RT Upcalls R N N N NetBSD
SMART P N Y N Solaris
SRT H Y Y N UL scheduler
[Steere et al. 99] R Y Y N5 UL prototype5

SUMO H Y N N Chorus
1 BERT merges the features of virtual clock and EDF
2 Provides a work around
3 Supports only monitoring of execution times
4 Supports inheritance of weight from user to kernel processes
5 Prototype that has been implemented in user-level (UL)

In the following subsections, we describe in more detail
two distinct approaches, i.e., Rialto scheduler and SMART,
that differ in all classification criteria except adaptation
support.

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 9

5.2 RIALT O SCHEDULER

The scheduler of the Rialto OS [Jones et al. 95], [Jones
et al. 96], [Jones et al. 97] is based on three fundamental
abstractions:

� Activities are typically an executing program or appli-
cation that comprises multiple threads of control. Re-
sources are allocated to activities and their usage is
charged to activities.

� CPU reservations are made by activities and are re-
quested in the form: “reserve x units of time out of
every Y units for activity A” . Basically, period length
and reservations for each period can be of arbitrary
length.

� Time constraints are dynamic requests from threads to
the scheduler to run a certain code segment within a
specified start time and deadline to completion.

The scheduling decision, i.e., which threads to activate
next, is based on a pre-computed scheduling graph. Each
time a request for CPU reservation is issued, this schedul-
ing graph is recomputed. In this scheduling graph, each
node represents an activity with a CPU reservation, speci-
fied as time interval and period, or represents free compu-
tation time. For each base period, i.e., the lowest common
denominator of periods from all CPU reservations, the
scheduler traverses the tree in a depth first manner, but
backtracks always to the root after visiting a leaf in the
tree. Each node, i.e., activity that is crossed during the tra-
versal, is scheduled for the specified amount of time. The
execution time associated with the schedule graph is fixed.
Free execution times are available for non-time-critical
tasks. This fixed schedule graph keeps the number of con-
text switches low and keeps the scheduling algorithm scal-
able.

If threads request time constraints, the scheduler ana-
lyzes their feasibilit y with the so-called time interval as-
signment data structure. This data structure is based on the
knowledge represented in the schedule graph and checks
whether enough free computation time is available between
start time and deadline (including the already reserved time
in the CPU reserve). Threads are not allowed to define time
constraints when they might block – except for short
blocking intervals for synchronization or I/O. When during
the course of a scheduling graph traversal an interval as-
signment record for the current time is encountered, a
thread with an active time constraint is selected according
to EDF. Otherwise, threads of an activity are scheduled ac-
cording to round-robin. Free time for non-time-critical
tasks is also distributed according to round-robin.

If threads with time constraints block on a synchroniza-
tion event, the thread priority (and its reservations) is
passed to the holding thread.

5.3 SMART

The SMART scheduler [Nieh et al. 97] is designed for
multimedia and real-time applications and is implemented

in Solaris 2.5.1. The main idea of SMART is to differenti-
ate between importance to determine the overall resource
allocation for each task and urgency to determine when
each task is given its allocation. Importance is valid for
real-time and conventional tasks and is specified in the
system by a tuple of priority and biased virtual finishing
time. Here, the virtual finishing time, as known from fair-
queuing schemes, is extended with a bias, which is a
bounded offset measuring the abilit y of conventional tasks
to tolerate longer and more varied service delays. Applica-
tion developers can specify time constraints, i.e., deadlines
and execution times, for a particular block of code, and
they can use the system notification. The system notifica-
tion is an upcall that informs the application that a deadline
cannot be met and allows the application to adapt to the
situation. Applications can query the scheduler for avail-
abilit y, which is an estimate of processor time consumption
of an application relative to its processor allocation. Users
of applications can specify priority and share to bias the
allocation of resources for the different applications.

The SMART scheduler separates importance and ur-
gency considerations. First, it identifies all tasks that are
important enough to execute and collects them in a candi-
date set. Afterwards, it orders the candidate set according
to urgency consideration. In more detail , the scheduler
works as follows: if the tasks with the highest value-tuple is
a conventional task, schedule it. The highest value-tuple is
either determined by the highest priority or for equal pri-
orities by the earliest biased virtual finishing time. If the
task with the highest value-tuple is a real-time task, it cre-
ates a candidate set of all real-time tasks that have a higher
value-tuple than the highest conventional task. The candi-
date set is scheduled according to the so-called best-effort
real-time scheduling algorithm. Basically, this algorithm
finds the task with the earliest deadline that can be exe-
cuted without violating deadlines of tasks with higher
value-tuples. SMART notifies applications if their compu-
tation cannot be completed before its deadline. This en-
ables applications to implement downscaling.

There is no admission control implemented in SMART.
Thus, SMART can only enforce real-time behavior in un-
derload situations.

6 DISK MANAGEMENT

Magnetic and optical disks enable permanent storage of
data.1 The file system is the central OS abstraction to han-
dle data on disk. However, in most commodity OSs, it is
possible to by-pass the file system and to use raw disks,
e.g., for database systems. The two main resources that are
of importance for disk management, no matter whether the
file system of an OS or raw disk is used, are:

� Memory space on disk: allocation of memory space at
the right place on disks, i.e., appropriate data place-
ment, can strongly influence the performance.

1 We focus in this article only on issues related to magnetic disks.

10 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

	 Disk I/O bandwidth: access to disk has to be multi-
plexed in the temporal domain. CPU scheduling algo-
rithms cannot directly be applied for disks, because of
the following reasons [Molano et al. 97]: (1) a disk ac-
cess cannot be preempted, i.e., it is always necessary
to read a whole block; (2) access times (which corre-
spond to execution time for CPU scheduling) are not
deterministic, because they depend on the position of
the disk head and the position of data on disk; and (3)
disk I/O represents the main performance bottleneck in
today’s systems.

Multimedia data can be managed on disk in two differ-
ent ways [Steinmetz 95]: (1) the file organization on disk is
not changed and the required real-time support is provided
by special disk scheduling algorithms and large buffers to
avoid jitter; or (2) the data placement is optimized for con-
tinuous multimedia data in distributed storage hierarchies
like disk arrays [Chen et al. 94].

In the following subsections, we discuss file manage-
ment, data placement, and disk scheduling issues of multi-
media file systems separately.

6.1 FILE M ANAGEMENT

The traditional access and control tasks of file systems,
like storing file information in sources, objects, program
libraries and executables, text, and accounting records,
have to be extended for multimedia file systems with real-
time characteristics, coping with larger file sizes (high disk
bandwidth), and with multiple continuous and discrete data
streams in parallel (real-time delivery) [Steinmetz 95]. The
fact that in the last years storage devices have become only
marginally faster compared to the exponentially increased
performance of processors and networks, makes the effect
of this discrepancy in speed for handling multimedia data
by file systems even more important. This is documented
by the large research activity to find new storage structures
and retrieval techniques. The existing approaches can be
categorized along multiple criteria, and we present a brief
classification along architectural issues and data character-
istics.

From the architectural perspective, multimedia file
systems can be classified as [Shenoy et al. 99]:

	 Partitioned file systems consist of multiple subfile
systems, each tailored to handle data of a specific data
type. An integration layer may provide transparent ac-
cess to the data handled by the different subfile sys-
tems. There are multiple examples of systems using
this approach, e.g., FFS [Leff ler et al. 90], Random-
ized I/O (RIO) [Santos et al. 98], Shark [Haskin 93],
Tiger Shark [Haskin et al. 96], and the combination of
UFS and CMFS in [Ramakrishnan et al. 93].

	 Integrated file systems multiplex all available re-
sources (storage space, disk bandwidth, and buffer
cache) among all multimedia data. Examples of inte-
grated multimedia file systems are the file system of

Nemesis [Barham 97], Felli ni [Martin et al. 96], and
Symphony [Shenoy et al. 98a].

Another way to classify multimedia file systems is to
group the systems according to the supported multimedia
data characteristics:

	 General file systems capable of handling multimedia
data to a certain extend, e.g., FFS [Leff ler et al. 90],
and log-structured file systems [Rosenblum 95], [Selt-
zer et al. 93], [Wang et al. 99a].

	 Multimedia file systems optimized for continuous
multimedia data (video and audio data), e.g., SBVS
[Vernick et al. 96], Mitra [Ghandeharizadeh et al. 97],
CMFS [Anderson et al. 92b], PFS [Lee et al. 97], Ti-
ger [Bolosky et al. 96], [Bolosky et al. 97], Shark
[Haskin 93], Tiger Shark [Haskin et al. 96], and
CMSS [Lougher et al. 93].

	 Multimedia file systems handling mixed-media work-
loads (continuous and discrete multimedia data), e.g.,
Felli ni [Martin et al. 96], Symphony [Shenoy et al.
98a], MMFS [Niranjan et al. 97], the file system of
Nemesis [Barham 97], and RIO [Santos et al. 98].

The file system of Nemesis [Barham 97] supports QoS
guarantees using a device driver model. This model real-
izes a low-level abstraction providing separation of control
and data path operations. To enable the file system layers
to be executed as unprivileged code within shared libraries,
data path modules supply translation and protection of I/O
requests. QoS guarantees and isolation between clients are
provided by scheduling low-level operations within the de-
vice drivers.

Felli ni [Martin et al. 96] supports storage and retrieval
of continuous and discrete multimedia data. The system
provides rate guarantees for active clients by using admis-
sion control to limit the number of concurrent active cli-
ents.

Symphony [Shenoy et al. 98a] can manage heterogene-
ous multimedia data supporting the coexistence of multiple
data type specific techniques. Symphony comprises a QoS-
aware disk scheduling algorithm for real-time and non-
real-time requests, and a storage manager supporting mul-
tiple block sizes and data type specific placement, failure
recovery, and caching policies.

MMFS [Niranjan et al. 97] handles interactive multi-
media applications by extending the UNIX file system.
MMFS has a two-dimensional file structure for single-
medium editing and multimedia playback: (1) a single-
medium strand abstraction [Rangan et al. 91]; and (2) a
multimedia file construct, which ties together multiple
strands that belong logically together. MMFS uses applica-
tion-specific information for performance optimization of
interactive playback. This includes intelli gent prefetching,
state-based caching, prioritized real-time disk scheduling,
and synchronized multi -stream retrieval.

RIO [Santos et al. 98] provides real-time data retrieval
with statistical delay guarantees for continuous and discrete
multimedia data. The system applies random data alloca-

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 11

tion on heterogeneous disks and partial data replication to
achieve load balancing and high performance.

In addition to the above mentioned aspects, new
mechanisms for multimedia file organization and metadata
handling are needed. For instance, in MMFS [Niranjan et
al. 97], each multimedia file has a unique mnode, and for
every strand in a multimedia file exists a unique inode.
mnodes include metadata of multimedia files and multime-
dia-specific metadata of each strand, e.g., recording rate,
logical block size, and size of the application data unit.

Metadata management in Symphony [Shenoy et al. 98a]
uses a two-level metadata structure (similar to inodes) al-
lowing both data type specific structure for files and sup-
porting the traditional byte stream interface. Like in UNIX,
fixed size metadata structures are stored on a reserved area
of the disk. The file metadata comprises, in addition to the
traditional file metadata, information about block size used
to store the file, type of data stored in the file, and a two-
level index. The first index level maps logical units, e.g.,
frames, to byte offsets, and the second index level maps
byte offsets to disk block locations.

Felli ni [Martin et al. 96] uses the raw disk interface of
UNIX to store data. It maintains the following information:
raw disk partition headers containing free space admini-
stration information on the disks, file control blocks similar
to UNIX inodes describing data layout on disk, and file
data.

Minorca [Wang et al. 99b] divides the file system par-
tition into multiple sections: super block section, cylinder
group section, and extent section. Metadata such as inodes
and directory blocks are allocated in the cylinder group
section in order to maintain the contiguity of block alloca-
tion in the extent section.

6.2 DATA PLACEMENT

Data placement (also often referred to as disk layout
and data allocation) and disk scheduling are responsible
for the actual values of seek time, rotation time, and trans-
fer time, which are the three major components determin-
ing disk eff iciency [Garcia-Martinez et al. 2000]. There are
a few general data placement strategies for multimedia ap-
plications in which read operations dominate and only few
non-concurrent write operations occur:

 Scattered placement: blocks are allocated at arbitrary
places on disk. Thus, sequential access to data will
usually cause a large number of intra-file seeks and
rotations resulting in high disk read times. However, in
RIO [Santos et al. 98], random data placement is used
to support mixed-media workloads stored on hetero-
geneous disk configurations. In their special scenario,
the reported performance measurements show similar
results as those for conventional striping schemes
[Berson et al. 94].

 Contiguous placement: all data blocks of a file are
successively stored on disk. Contiguous allocation will
mostly result in better performance compared to scat-

tered allocation. The problem of contiguous allocation
is that it causes external fragmentation.

 Locally contiguous placement (also called extent-
based allocation): the file is divided into multiple
fragments (extents). All blocks of a fragment are
stored contiguously, but fragments can be scattered
over 1-n disks. The fragment size is usually deter-
mined by amount of data required for one service
round. Locally contiguous placement causes less ex-
ternal fragmentation than contiguous placement.

 Constrained placement: this strategy restricts the aver-
age distance measured in tracks, between a finite se-
quence of blocks [Anderson et al. 92b], [Vin et al. 93].
Constrained placement represents a compromise of
performance and fragmentation between scattered and
contiguous placement. However, complex algorithms
are needed to obey the defined constraints [Chang et
al. 97]. This strategy takes into account only seek
times and not rotation times.

 VBR compressed data placement: conventional fixed-
sized clusters correspond to varying amounts of time,
depending on the achieved compression [Bell et al.
95]. Alternatively, the system can store data in clusters
that correspond to a fixed amount of time, with a vari-
able cluster size. Additionally, compressed data might
not correspond to an even number of disk sectors,
which introduces the problem of packing data [Gem-
mell et al. 92].

To optimize write operations, log-structured placement
has been developed to reduce disk seeks for write intensive
applications [Rosenblum 95], [Seltzer et al. 93], [Wang et
al. 99a]. When modifying blocks of data, log-structured
systems do not store modified blocks in their original posi-
tions. Instead, all writes for all streams are performed se-
quentially in a large contiguous free space. Therefore, in-
stead of requiring a seek (and possibly intra-file seeks) for
each stream writing, only one seek is required prior to a
number of write operations. However, this does not guar-
antee any improvement for read operations, and the
mechanism is more complex to implement.

For systems managing multiple storage devices, there
exist two possibiliti es of distributing data among disks
[Gemmell et al. 95], [Garcia-Martinez et al. 2000]:

 Data striping: to realize a larger logical sector, many
physical sectors from multiple disks are accessed in
parallel.

 Data interleaving: requests of a disk are handled inde-
pendent of requests from other disks. All fragments of
a request can be stored on 1-n disks [Abbott 84].

Some multimedia file systems, e.g., Symphony [Shenoy
et al. 98a] and Tiger Shark [Haskin et al. 96], use striping
techniques to interleave both continuous and non-
continuous multimedia data across multiple disks. There
are two factors crucially determining the performance of
multi -disk systems [Garcia-Martinez et al. 2000]:

12 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

� Efficiency in using each disk. The amount of seek and
rotation times should be reduced as much as possible
in order to have more time available for data transfer.

� Fairness in distributing the load over all disks.
These two factors largely depend on the data distribu-

tion strategy and the application characteristics. They are
very important to achieve synchronization, which means
the temporal relationship between different multimedia
data streams [Steinmetz 95]. Synchronization is often
achieved by storing and transmitting streams interleaved,
e.g., by using a MPEG compression mechanism. Another
solution is time-stamping of the multimedia data elements
and appropriate buffering at the presentation system to en-
able the OS to synchronize related data elements of con-
tinuous and discrete multimedia data.

6.3 DISK SCHEDULING

Traditional disk scheduling algorithms focused mainly
on reducing seek times [Denning 67], e.g., Shortest Seek
Time First (SSTF) or SCAN. SSTF has high response time
variations and may result in starvation of certain requests.
SCAN reduces the response time variations and optimizes
seek times by serving the requests in an elevator-like way.
There exist many variations and hybrid solutions of the
SSTF and SCAN algorithms that are widely used today
[Geist et al. 87], [Coffman et al. 90], [Yu et al. 93].

Modern disk scheduling algorithms [Jacobson et al.
91], [Seltzer et al. 90] try to minimize the sum of seek and
rotational delays by prioritizing, e.g., the request with the
Smallest Positioning Time First.

However, disk scheduling algorithms for multimedia
data requests need to optimize, beside the traditional crite-
ria, also other criteria special for multimedia data including
QoS guarantees [Steinmetz 95], [Gemmell et al. 95]. The
following list represents an overview of recent multimedia
data disk scheduling algorithms, which are primarily opti-
mized for continuous data streams [Rompogiannakis et al.
98], [Garcia-Martinez et al. 2000]:

� EDF strategy [Liu et al. 73] serves the block request
with the nearest deadline first. Strict EDF may cause
low throughput and very high seek times. Thus, EDF is
often adapted or combined with other disk scheduling
strategies.

� SCAN-EDF strategy [Reddy et al. 94] combines the
seek optimization of SCAN and the real-time guaran-
tees of EDF. Requests are served according to their
deadline. The request with the earliest deadline is
served first like in EDF. If multiple requests have the
same (or similar) deadline, SCAN is used to define the
order to handle the requests. The eff iciency of SCAN-
EDF depends on how often the algorithm can be ap-
plied, i.e., how many requests have the same (or simi-
lar) deadline, because the SCAN optimization is only
achieved for requests in the same deadline class
[Reddy et al. 93].

� Group Sweeping Strategy (GSS) [Chen et al. 93], [Yu
et al. 93] optimizes disk arm movement by using a
variation of SCAN handling the requests in a round-
robin fashion. GSS splits the requests of continuous
media streams into multiple groups. The groups are
handled in a fixed order. Within a group, SCAN is
used to determine time and order of request serving.
Thus, in one service round, a request may be handled
first. In another service round, it may be the last re-
quest served in this group. To guarantee continuity of
playout, a smoothing buffer is needed. The buffer size
is depending of the service round time and the required
data rate. Thus, the playout can first start at the end of
the group containing the first retrieval requests when
enough data is buffered. GSS represents a trade-off
between optimizations of buffer space and disk arm
movement. GSS is an improvement compared to
SCAN, which requires a buffer for every continuous
media request. However, GSS may reduce to SCAN
when only one group is built , or in the other extreme
case, GSS can behave like round-robin when every
group contains only one request.

� Scheduling in rounds, e.g., [Berson et al. 94], [Gem-
mell et al. 95], [Özden et al. 96a], and [Triantafill ou et
al. 98], splits every continuous media requests into
multiple blocks (so-called fragments) in a way that the
playout duration of each fragment is of a certain con-
stant time (normally 1-n seconds). The length of the
round represents an upper time limit for the system to
retrieve the next fragment from disk for all active re-
quests. For each round, the amount of buffered data
must not be less than the amount of consumed data
avoiding that the amount of buffered data effectively
decreases over the time. Disk scheduling algorithms
with this property are called work-ahead-augmenting
[Anderson et al. 92b] or buffer-conserving [Gemmell
et al. 94]. Within a round, it is possible to use round-
robin or SCAN scheduling.

However, there has only been done littl e work on disk
scheduling algorithms for mixed multimedia data work-
loads, serving discrete and continuous multimedia data re-
quests at the same time. Some examples are described in
[Rompogiannakis et al. 98], [Lin et al. 91], [Nerjes et al.
98], [Reddy et al. 94], [Ramakrishnan et al. 93], and [Wi-
jayaratne et al. 99]. These algorithms have to satisfy three
performance goals: (1) display continuous media streams
with minimal delay jitter; (2) serve discrete requests with
small average response times; and (3) avoid starvation of
discrete request and keep variation of response times low.
In [Rompogiannakis et al. 98], disk scheduling algorithms
for mixed-media workloads are classified by:

� Number of separate scheduling phases per round:
one-phase algorithms produce mixed schedules, con-
taining both discrete and continuous data requests.
Two-phase algorithms have two, not timely overlap-
ping, scheduling phases serving discrete and continu-
ous data requests isolated in the corresponding phase.

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 13

� Number of scheduling levels: hierarchical scheduling
algorithms for discrete data requests are based on de-
fining clusters. The higher levels of the algorithms are
concerned with the eff icient scheduling of clusters of
discrete requests. The lower levels are eff iciently
scheduling the requests within a cluster. The most im-
portant task to solve in this context is how to schedule
discrete data requests within the rounds of continuous
data requests, which are mostly served by SCAN
variations.

For instance, Cello [Shenoy et al. 98b] uses such a two-
level disk scheduling architecture. It combines a class-
independent scheduler with a set of class-specific schedul-
ers. Two time scales are considered in the two levels of the
framework to allocate disk bandwidth: (1) coarse-grain al-
location of bandwidth to application classes is performed
by the class-independent scheduler; and (2) the fine-grain
interleaving of requests is managed by the class-specific
schedulers. This separation enables the co-existence of
multiple disk scheduling mechanisms at a time depending
on the application requirements.

7 MEMORY MANAGEMENT

Memory is an important resource, which has to be care-
fully managed. The virtual memory subsystem of com-
modity OSs allows processes to run in their own virtual ad-
dress spaces and to use more memory than physically
available. Thus, the memory manager has several complex
tasks such as bookkeeping available resources and assign-
ing physical memory to a single process [Steinmetz 95],
[Tanenbaum 92]. Further key operations of the virtual
memory system include [Cranor 98], [Cranor et al. 99]:

� Allocation of each process’ virtual address space and
mapping physical pages into a virtual address space
with appropriate protection.

� The page fault handler manages unmapped and invalid
memory references. Page faults happen when un-
mapped memory is accessed, and memory references
that are inconsistent with the current protection are in-
valid.

� Loading data into memory and storing them back to
disk.

� Duplicating an address space in case of a fork call .
Since virtual memory is mapped onto actual available

memory, the memory manager has to do paging or swap-
ping, but due to the real-time performance sensitiveness of
multimedia applications, swapping should not be used in a
multimedia OS [Steinmetz 95]. Thus, we focus on paging-
based memory systems. Techniques such as demand-
paging and memory-mapped files have been successfully
used in commodity OSs [Schulzrinne 96], [Hand 99].
However, these techniques fail to support multimedia ap-
plications, because they introduce unpredictable memory
access times, cause poor resource utili zation, and reduce
performance. In the following subsections, we present new
approaches for memory allocation and utili zation, data re-

placement, and prefetching using application-specific
knowledge to solve these problems. Furthermore, we give a
brief description of the UVM Virtual Memory System that
replaces the traditional virtual memory system in NetBSD
1.4.

7.1 M EMORY ALL OCATION

Usually, upon process creation, a virtual address space
is allocated which contains the data of the process. Physi-
cal memory is then allocated and assigned to a process and
then mapped into the virtual address space of the process
according to available resources and a global or local allo-
cation scheme. This approach is also called user-centered
allocation. Each process has its own share of the resources.
However, traditional memory allocation on a per client
(process) basis suffers from a linear increase of required
memory with the number of processes.

In order to better utili ze the available memory, several
systems use so-called data-centered allocation where
memory is allocated to data objects rather than to a single
process. Thus, the data is seen as a resource principal. This
enables more cost-effective data-sharing techniques [Garo-
falakis et al. 98], [Krishnan et al. 97]: (1) batching starts
the video transmission when several clients request the
same movie and allows several clients to share the same
data stream; (2) buffering (or bridging) caches data be-
tween consecutive clients omitting new disk requests for
the same data; (3) stream merging (or adaptive piggy-
backing) displays the same video clip at different speeds to
allow clients to catch up with each other and then share the
same stream; (4) content insertion is a variation of stream
merging, but rather than adjusting the display rate, new
content, e.g., commercials, is inserted to align the consecu-
tive playouts temporally; and (5) perodic services (or en-
hanced pay-per-view) assigns each clip a retrieval period
where several clients can start at the beginning of each pe-
riod to view the same movie and to share resources. These
data-sharing techniques are used in several systems. For
example, a per movie memory allocation scheme, i.e., a
variant of the buffering scheme, for VoD applications is
described in [Rotem et al. 95]. All buffers are shared
among the clients watching the same movie and work like a
sliding window on the continuous data. When the first cli-
ent has consumed nearly all the data in the buffer, it starts
to refresh the oldest buffers with new data. Periodic serv-
ices are used in pyramid broadcasting [Viswanathan et al.
96]. The data is split i n partitions of growing size, because
the consumption rate of one partition is assumed to be
lower than the downloading rate of the subsequent parti-
tion. Each partition is then broadcasted in short intervals on
separate channels. A client does not send a request to the
server, but instead it tunes into the channel transmitting the
required data. The data is cached on the receiver side, and
during the playout of a partition, the next partition is
downloaded. In [Hua et al. 97] and [Gao et al. 98], the
same broadcasting idea is used. However, to avoid very

14 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

large partitions at the end of a movie and thus to reduce the
client buffer requirement, the partitioning is changed such
that not every partition increases in size, but only each nth

partition. Performance evaluations show that the data-
centered allocation schemes scale much better with the
numbers of users compared to user-centered allocation.
The total buffer space required is reduced, and the average
response time is minimized by using a small partition size
at the beginning of a movie.

The memory reservation per storage device mechanism
[Garcia-Martinez et al. 2000] allocates a fixed, small num-
ber of memory buffers per storage device in a server-push
VoD server using a cycle-based scheduler. In the simplest
case, only two buffers of identical size are allocated per
storage device. These buffers work co-operatively, and
during each cycle, the buffers change task as data is re-
ceived from disk. That is, data from one process is read
into the first buffer, and when all the data is loaded into the
buffer, the system starts to transmit the information to the
client. At the same time, the disk starts to load data from
the next client into the other buffer. In this way, the buffers
change task from receiving disk data to transmitting data to
the network until all clients are served. The admission
control adjusts the number of concurrent users to prevent
data loss when the buffers switch and ensures the mainte-
nance of all client services.

In [Nakajima et al. 97], the traditional allocation and
page-wiring mechanism in Real-Time Mach is changed. To
avoid that privileged users monopolize memory usage by
wiring unlimited amount of pages, only real-time threads
are allowed to wire pages, though, only within their limited
amount of allocated memory, i.e., if more pages are
needed, a request has to be sent to the reservation system.
Thus, pages may be wired in a secure way, and the reser-
vation system controls the amount of memory allocated to
each process.

7.2 DATA REPLACEMENT

When there is need for more buffer space, and there are
no available buffers, a buffer has to be replaced. How to
best choose which buffer to replace depends on the appli-
cation. However, due to the high data consumption rate in
multimedia applications, data is often replaced before it
might be reused. The gain of using a complex page re-
placement algorithm might be wasted and a traditional al-
gorithm as described in [Effelsberg et al. 84] or [Tanen-
baum 92] might be used. Nevertheless, in some multimedia
applications where data often might be reused, proper re-
placement algorithms may increase performance. The dis-
tance [Özden et al. 96b], the generalized interval caching
[Dan et al. 97], and the SHR [Kamath et al. 95] schemes,
all replace buffers after the distance between consecutive
clients playing back the same data and the amount of avail-
able buffers.

Usually, data replacement is handled by the OS kernel
where most applications use the same mechanism. Thus,

the OS has full control, but the used mechanism is often
tuned to best overall performance and does not support ap-
plication-specific requirements. In Nemesis [Hand 99],
self-paging has been introduced as a technique to provide
QoS to multimedia applications. The basic idea of self-
paging is to “require every application to deal with all it s
own memory faults using its own concrete resources” . All
paging operations are removed from the kernel where the
kernel is only responsible for dispatching fault notifica-
tions. This gives the application flexibilit y and control,
which might be needed in multimedia systems, at the cost
of maintaining its own virtual memory operations. How-
ever, a major problem of self-paging is to optimize the
global system performance. Allocating resources directly to
applications gives them more control, but that means op-
timizations for global performance improvement are not
directly achieved.

7.3 PREFETCHING

The poor performance of demand-paging is due to the
low disk access speeds. Therefore, prefetching data from
disk to memory is better suited to support continuous play-
back of time-dependent data types. Prefetching is a mecha-
nism to preload data from slow, high-latency storage de-
vices such as disks to fast, low-latency storage like main
memory. This reduces the response time of a data read re-
quest dramatically and increases the disk I/O bandwidth.
Prefetching mechanisms in multimedia systems can take
advantage of the sequential characteristics of multimedia
presentations. For example, in [Anderson et al. 98], a read-
ahead mechanism retrieves data before it is requested if the
system determines that the accesses are sequential. In [Ng
et al. 94], the utili zation of buffers and disk is optimized by
prefetching all the shortest database queries maximizing
the number of processes that can be activated once the run-
ning process is finished. In [Tezuka et al. 96], assuming a
linear playout of the continuous data stream, the data
needed in the next period (determined by a tradeoff be-
tween the maximum concurrent streams and the initial de-
lay) is prefetched into a shared buffer. Preloading data ac-
cording to the loading and consuming rate and the avail-
able amount of buffers is described in [Zhang et al. 95].

In addition to the above mentioned prefetching mecha-
nisms designed for multimedia applications, more general
purpose faciliti es for retrieving data in advance are de-
signed which also could be used for certain multimedia ap-
plications. The informed prefetching and caching strategy
[Patterson et al. 95] preloads a certain amount of data
where the buffers are allocated/deallocated according to a
global max-min valuation. This mechanism is further de-
veloped in [Chang et al. 99] where the automatic hint gen-
eration, based on speculative pre-executions using mid-
execution process states, is used to prefetch data for possi-
ble future read requests. Moreover, the dependent-based
prefetching, described in [Roth et al. 98], captures the ac-
cess patterns of linked data structures. A prefetch engine

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 15

runs in parallel with the original program using these pat-
terns to predict future data references. Finally, in [Lei et al.
97], an analytic approach to file prefetching is described.
During the execution of a process a semantic data structure
is built showing the file accesses. When a program is re-
executed, the saved access trees are compared against the
current access tree of the activity, and if a similarity is
found, the stored tree is used to preload files.

Obviously, knowledge (or estimations) about applica-
tion behavior might be used for both replacement and pre-
fetching. In [Moser et al. 95], the buffer replacement and
preloading strategy least/most relevant for presentation
designed for interactive continuous data streams is pre-
sented. A multimedia object is replaced and prefetched ac-
cording to its relevance value computed according to the
presentation point/modus of the data playout. In [Halvorsen
et al. 98], this algorithm is extended for multiple users and
QoS support.

7.4 UVM VIRTUAL M EMORY SYSTEM

The UVM Virtual Memory System [Cranor 98], [Cra-
nor et al. 99] replaces the virtual memory object, fault han-
dling, and pager of the BSD virtual memory system; and
retains only the machine dependent/independent layering
and mapping structures. For example, the memory mapping
is redesigned to increase eff iciency and security; and the
map entry fragmentation is reduced by memory wiring. In
BSD, the memory object structure is a stand-alone abstrac-
tion and under control of the virtual memory system. In
UVM, the memory object structure is considered as a sec-
ondary structure designed to be embedded with a handle
for memory mapping resulting in better eff iciency, more
flexibilit y, and less conflicts with external kernel subsys-
tems. The new copy-on-write mechanism avoids unneces-
sary page allocations and data copying, and grouping or
clustering the allocation and use of resources improves per-
formance. Finally, a virtual memory based data movement
mechanism is introduced which allows data sharing with
other subsystems, i.e., when combined with the I/O or IPC
systems, it can reduce the data copying overhead in the
kernel.

8 MANAGEMENT OF OTHER RESOURCES

This section takes a brief look at management aspects
of OS resources that have not yet been discussed, like
scheduling of system bus and cache management. Further-
more, we describe some mechanisms for speed improve-
ments in memory access. Packet scheduling mechanisms to
share network bandwidth between multiple streams at the
host-network interface are not discussed here due to space
considerations. All solutions for packet scheduling in OSs
are adopted from packet scheduling in packet networks.

8.1 BUS SCHEDULING

The SCSI bus is a priority arbitrated bus. If multiple
devices, e.g., disks, want to transfer data, the device with
the highest priority will always get the bus. In systems with
multiple disks, it is possible that real-time streams being
supported from a low priority disk get starved from high
priority disks that serve best effort requirements [Reddy
95]. DROPS [Härtig et al. 98] schedules requests to the
SCSI subsystem such that the SCSI bandwidth can be fully
exploited. It divides SCSI time into slots where the size of
slots is determined by the worst case seek times of disk
drives.

SCSI is a relatively old technology, and PCI has be-
come the main bus technology for multimedia PCs and
workstations [Nishikawa et al. 97]. However, to the best of
our knowledge, no work has been reported on scheduling
of PCI bus or other advanced bus technologies to support
QoS. Probably, because the bus is no longer regarded as
one of the most limiting performance bottlenecks, except in
massive parallel I/O systems.

8.2 CACHE M ANAGEMENT

All real-time applications rely on predictable schedul-
ing, but the memory cache design makes it hard to forecast
and schedule the processor time [Härtig et al. 97]. Fur-
thermore, memory bandwidth and the general OS perform-
ance has not increased at the same rate as CPU perform-
ance. Benchmarked performance can be improved by en-
larging and speeding up static RAM-based cache memory,
but the large amount of multimedia data that has to be han-
dled by CPU and memory system will li kely decrease
cache hit ratios. If two processes use the same cache lines
and are executed concurrently, there will not only be an
increase in context switch overheads, but also a cache-
interference cost that is more diff icult to predict. Thus, the
system performance may be dominated by slower main
memory and I/O accesses. Furthermore, the busier a system
is, the more likely it is that involuntary context switches
occur, longer run queues must be searched by the sched-
uler, etc., flushing the caches even more frequently [Schul-
zrinne 96].

One approach to improve performance is to partition
the second-level cache as described in [Härtig et al. 97],
[Härtig et al. 98]. Working sets of real-time and time-
sharing applications are allowed to be separated into dif-
ferent partitions of the second-level cache. The time-share
applications then cannot disrupt the cached working sets of
real-time applications, which leads to better worst case
predictabilit y.

Another approach is discussed in [Philbin et al. 96]. A
very low overhead thread package is used letting the appli-
cation specify each thread’s use of data. The thread sched-
uler then execute in turn all threads using the same data. In
this way, the data that is already in the cache is used by all
threads needing it before it is flushed.

16 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

Bershad et al. [Bershad et al. 94] describe an approach
using conflict detection and resolution to implement a
cheap, large, and fast direct-mapped cache. The conflicts
are detected by recording and summarizing a history of
cache misses, and a software policy within the OS’s virtual
memory system removes conflicts by dynamically remap-
ping pages. This approach nearly matches the performance
of a two-way set associative cache, but with lower hard-
ware cost and lower complexity.

8.3 SPEED IMPROVEMENTS IN M EMORY ACCESSES

The term dynamic RAM (DRAM), coined to indicate
that any random access in memory takes the same amount
of time, is slightly misleading. Most modern DRAMs pro-
vide special capabiliti es that make it possible to perform
some accesses faster than others [McKee et al. 98]. For ex-
ample, consecutive accesses to the same row in a page-
mode memory are faster than random accesses, and con-
secutive accesses that hit different memory banks in a
multi -bank system allow concurrency and are thus faster
than accesses that hit the same bank. The key point is that
the order of the requests strongly affects the performance
of the memory devices. For certain classes of computa-
tions, like those which involve streams of data where a high
degree of spatial locality is present and where we, at least
in theory, have a perfect knowledge of the future refer-
ences, a reordering of the memory accesses might give an
improvement in memory bandwidth.

The most common method to reduce latency is to in-
crease the cache line size, i.e., using the memory band-
width to fill several cache locations at the same time for
each access. However, if the stream has a non-unit-stride
(stride is the distance between successive stream elements
in memory), i.e., the presentation of successive data ele-
ments does not follow each other in memory, the cache will
load data which will not be used. Thus, lengthening the
cache line size increases the effective bandwidth of unit-
stride streams, but decreases the cache hit rate for non-
streamed accesses.

Another way of improving memory bandwidth in mem-
ory-cache data transfers for streamed access patterns is de-
scribed in [McKee et al. 98]. First, since streams often have
no temporal locality, they provide a separate buffer storage
for streamed data. This means that streamed data elements,
which often are replaced before they might be reused, do
not affect the replacement of data elements that might
benefit from caching. Second, to take advantage of the or-
der sensitivity of the memory system, a memory-scheduling
unit is added to reorder the accesses. During compile-time,
information about addresses, strides of a stream, and num-
ber of data elements are collected enabling the memory-
scheduling unit to reorder the requests during run-time.

9 I /O TUNING

Traditionally, there are several different possible data
transfers and copy operations within an end-system as

shown in Figure 5. These often involve several different
components. Using the disk-to-network data path as an ex-
ample, a data object is first transferred from disk to main
memory (A). The data object is then managed by the many
subsystems within the OS designed with different objec-
tives, running in their own domain (either in user or kernel
space), and therefore, managing their buffers differently.
Due to different buffer representations and protection
mechanisms, data is usually copied, at a high cost, from
domain to domain ((B), (C), or (D)) to allow the different
subsystems to manipulate the data. Finally, the data object
is transferred to the network interface (E). In addition to all
these data transfers, the data object is loaded into the cache
(F) and CPU registers (G) when the data object is manipu-
lated.

Figure 5 clearly identifies the reason for the poor per-
formance of the traditional I/O system. Data is copied sev-
eral times between different memory address spaces which
also causes several context switches. Both, copy operations
and context switches represent the main performance bot-
tleneck. Furthermore, different subsystems, e.g., file system
and communication subsystem, are not integrated. Thus,
they include redundant functionality like buffer manage-
ment, and several identical copies of a data object might be
stored in main memory, which in turn reduces the effective
size of the physical memory. Finally, when concurrent us-
ers request the same data, the different subsystems might
have to perform the same operations on the same data sev-
eral times.

We distinguish three types of copy operations: memory-
CPU, direct I/O (i.e., memory – I/O device), and memory-
memory. Solutions for these types of copy operations have
been developed for general purpose and application spe-
cific systems. The two last subsections describe a sample
approach for each.

9.1 M EMORY- CPU COPY OPERATIONS

Data manipulations are time consuming and are often
part of different, distinct program modules or communica-

CPU

Cache

Main
memory

Network
interfaceDisk

Memory bus

I/O bus

Registers

User
space

(A)

(B)

(G)

(C)

(F)

(E)

Kernel
space

(D)

Figure 5: Data transfers and copy operations

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 17

tion protocol layers, which typically access data independ-
ently of each other. Consequently, each data manipulation
may require access to uncached data resulting in loading
the data from memory to a CPU register, manipulating it,
and possibly storing it back to memory. Thus, these re-
peated memory-CPU data transfers, denoted (F) and (G) in
Figure 5, can have large impacts on the achieved I/O
bandwidth. To decrease the number of memory-CPU data
transfers, integrated layer processing [Abbott et al. 93],
[Clark et al. 90] performs all data manipulation steps, e.g.,
calculating error detection checksums, executing encryp-
tion schemes, transforming data for presentation, and
moving data between address spaces, in one or two inte-
grated processing loops instead of performing them step-
wise as in most systems.

9.2 M EMORY - I /O DEVICE COPY OPERATIONS

Data is transferred between hardware devices, such as
disks and network adapters, and applications’ physical
memory. This is often done via an intermediate subsystem,
like the file system or the communication system, adding
an extra memory copy. A mechanism to transfer data with-
out multiple copying is direct I/O, which in some form is
available in several commodity OSs today, e.g., Solaris and
Windows NT. Direct memory access (DMA) or pro-
grammed I/O (PIO) is used to transfer data directly into a
frame buffer where, e.g., the file system’s buffer cache is
omitted in a data transfer from disk to application. Without
involving the CPU in the data transfers, DMA can achieve
transfer rates close to the limits of main memory and the
I/O bus, but DMA increases complexity in the device
adapters, and caches are often not coherent with respect to
DMA [Druschel et al. 93b]. Using PIO, on the other hand,
the CPU is required to transfer every word of data between
memory and the I/O adapter. Thus, only a fraction of the
peak I/O bandwidth is achieved. Due to high transfer rates,
DMA is often used for direct I/O data transfers. However,
despite the reduced bandwidth, PIO can sometimes be
preferable over DMA. If data manipulations, e.g., check-
sum calculations, can be integrated with the PIO data trans-
fer, it is possible to save one memory access, and after a
programmed data movement, the data may still reside in
the cache, reducing further memory traff ic.

In case of application-disk transfers, direct I/O can of-
ten be applied since the file system usually does not touch
the data itself. However, in case of application-network
adapter transfers, the communication system must generate
packets, calculate checksums, etc., making it harder to
avoid the data transfer through the communication system.
Nevertheless, there are several attempts to avoid data
touching and copy operation transfers, i.e., reducing the
traditional (B)(E) data path in Figure 5 to only (E). After-
burner [Dalton et al. 93] and medusa [Banks et al. 93] copy
data directly onto the on-board memory using PIO, with
integrated checksum and data length calculation, leaving
just enough space in front of the cluster to add a packed

header. Using DMA and a user-level implementation of the
communication software, the application device channel
[Druschel 96], [Druschel et al. 94] gives restricted but di-
rect access to an ATM network adaptor removing the OS
kernel from the critical network send/receive path. In [Yau
et al. 96], no memory-to-memory copying is needed using
shared buffers or direct media streaming by linking the de-
vice and network connection together. Finally, in [Chu 96]
and [Kitamura et al. 95], zero-copy communication system
architectures are reported for TCP and ATM respectively.
Virtual memory page remapping (see next subsection) is
used to eliminate copying between applications running in
user space and the OS kernel, and DMA is used to transfer
data between memory and the network buffer.

9.3 M EMORY-M EMORY COPY OPERATIONS

Direct I/O is typically used when transferring data be-
tween main memory and a hardware device as described
above. However, data transfers between different process
address spaces is done through well -defined channels, like
pipes, sockets, files, and special devices, giving each proc-
ess full control of its own data [McKusick et al. 96]. Nev-
ertheless, such physical copying is slow and requires at
least two system calls per transaction, i.e., one on sender
and one on receiver side. One way of reducing the IPC
costs is to use virtual page (re)mapping. That is, the data
element is not physically copied byte by byte, but only the
address in virtual memory to the data element in physical
memory is copied into the receiver’s address space. Access
rights to the data object after the data transfer are deter-
mined by the used semantic:

 The copy model copies all data from domain to do-
main giving each process full control of its own data
at the cost of cross domain data copying and main-
taining several identical copies in memory.

 The move model removes the data from the source
domain by virtually remapping the data into the desti-
nation domain avoiding the multiple-copies problem.
However, if the source later needs to re-access the
moved data, e.g., when handling a retransmission re-
quest, the data must be fetched back.

 The share model makes the transferred data visible
and accessible to both the source and the target do-
main by keeping pointers in virtual memory to the
same physical pages, i.e., by using shared memory
where several processes map the same data into their
address space. Thus, all the sharing processes may
access the same piece of memory without any system
call overhead other than the initial cost of mapping
the memory.

Several general cross-domain data copy avoidance ar-
chitectures are suggested trying to minimize respectively to
eliminate all (C), (B), and (D) copy operations depicted in
Figure 5. Tenex [Bobrow et al. 72] was one of the first
systems to use virtual copying, i.e., several pointers in vir-
tual memory refer to one physical page. Accent [Fitzgerald

18 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

et al. 86], [Rashid et al. 81] generalized the concepts of
Tenex by integrating virtual memory management and IPC
in such a way that large data transfers could use memory
mapping techniques rather than physical data copying. The
V distributed system [Cheriton 88] and the DASH IPC
mechanism [Tzou et al. 91] use page remapping, and the
container shipping facilit y [Anderson 95], [Pasquale et al.
94] uses virtual inter-domain data transfers based on the
move model where all i n-memory copying is removed.
Furthermore, fast buffers (fbufs) [Druschel 96], [Druschel
et al. 93a] is a facilit y for I/O buffer management and data
transfers across protection domain boundaries primarily
designed for handling network streams using shared virtual
memory is combined with virtual page remapping. In
[Thadani et al. 95], fbufs is extended to a zero-copy I/O
framework. Fast in-kernel data paths between I/O objects,
increasing throughput and reducing context switch opera-
tions, are described in [Fall 94], [Fall et al. 94]. A new
system call , splice(), moves data asynchronously and
without user-process intervention to and from I/O objects
specified by file descriptors. These descriptors specify the
source and sink of I/O data respectively. This system call i s
extended in the stream() system call of the Roadrunner
I/O system [Mill er et al. 98a], [Mill er et al. 98b] to support
kernel data streaming between any pair of I/O elements
without crossing any virtual memory boundaries using
techniques derived from stackable file systems. The Genie
I/O system [Brustoloni 99], [Brustoloni et al. 96], [Brus-
toloni et al. 97] inputs or outputs data to or from shared
buffers in-place (i.e., directly to or from application buff-
ers) without touching distinct intermediate system buffers.
Data is shared by managing reference counters, and a page
is only deallocated if there are no processes referencing
this page. The universal continuous media I/O system
[Cranor et al. 94], [Cranor et al. 95] combines all types of
I/O into a single abstraction. The buffer management sys-
tem is allowed to align data buffers on page boundaries so
that data can be moved without copying which means that
the kernel and the application are sharing a data buffer
rather than maintaining their own separate copy. The UVM
Virtual Memory System [Cranor 98], [Cranor et al. 99]
data movement mechanism provides new techniques that
allow processes to exchange and share data in memory
without copying. The page layout and page transfer facil i-
ties give support for page loan out and reception of pages
of memory, and the map entry passing enables exchange
chunks of the processes’ virtual address space.

9.4 IO-L ITE

IO-Lite [Pai 97], [Pai et al. 99] is an I/O buffering and
caching system for a general purpose OS inspired by the
fbuf mechanism. IO-Lite unifies all buffering in a system.
In particular, buffering in all subsystems are integrated, and
a single physical copy of the data is shared safely and con-
currently. This is achieved by storing buffered I/O data in
immutable buffers whose location in memory never

change. Access control and protection is ensured at the
granularity of processes by maintaining access control li sts
to cached pools of buffers. For cross-domain data transfers,
IO-Lite combines page remapping and shared memory.

All data is encapsulated in mutable buffer aggregates,
which are then passed among the different subsystems and
applications by reference. The sharing of read-only immu-
table buffers enables eff icient transfers of I/O data across
protection domain boundaries, i.e., all subsystems may
safely refer to the same physical copy of the data without
problems of synchronization, protection, consistency, etc.
However, the price to pay is that data cannot be modified
in-place. This is solved by the buffer aggregate abstraction.
The aggregate is mutable, and a modified value is stored in
a new buffer, and the modified sections are logically joined
with the unchanged data through pointer manipulation.

9.5 M ULT IMEDIA M BUF

The multimedia mbuf (mmbuf) [Buddhikot et al. 98],
[Buddhikot 98] is specially designed for disk-to-network
data transfers. It provides a zero-copy data path for net-
worked multimedia applications by unifying the buffering
structure in file I/O and network I/O. This buffer system
looks like a collection of clustered mbufs that can be dy-
namically allocated and chained. The mmbuf header in-
cludes references to mbuf header and buffer cache header.
By manipulating the mmbuf header, the mmbuf can be
transformed either into a traditional buffer, that a file sys-
tem and a disk driver can handle, or an mbuf, which the
network protocols and network drivers can understand.

A new interface is provided to retrieve and send data,
which coexist with the old file system interface. The old
buffer cache is bypassed by reading data from a file into an
mmbuf chain. Both synchronous (blocking) and asynchro-
nous (non-blocking) operations are supported, and read and
send requests for multiple streams can be bunched together
in a single call minimizing system call overhead. At setup
time, each stream allocates a ring of buffers, each of which
is an mmbuf chain. The size of each buffer element, i.e.,
the mmbuf chain, depends on the size of the multimedia
frame it stores, and each buffer element can be in one of
four states: empty, reading, full , or sending. Furthermore,
to coordinate the data read and send activities, two pointers
(read and send) to the ring buffer are maintained. Then, for
each periodic invocation of the stream process, these point-
ers are used to handle data transfers. If the read pointer is
pointing to a buffer element in the empty state, data is read
into this chain of mmbufs, and the pointer is advanced to
the next succeeding chain on which the next read is per-
formed. If the send pointer is holding a full buffer element,
the data stored in this buffer element is transmitted.

10 CONCLUSIONS

The aim of this article is to give an overview of recent
developments in the area of OS support for multimedia ap-
plications. This is an active area, and a lot of valuable re-

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 19

search results have been published. Thus, we have not dis-
cussed or cited all recent results, but tried to identify the
major approaches and to present at least one representative
for each.

Time-dependent multimedia data types, like audio and
video, will be a natural part of future applications and inte-
grated together with time-independent data types, like text,
graphics, and images. Commodity OSs do not presently
support all the requirements of multimedia systems. New
OS abstractions need to be developed to support a mix of
applications with real-time and best effort requirements and
to provide the necessary performance. Thus, management
of all system resources, including processors, main mem-
ory, network, disk space, and disk I/O, is an important is-
sue. The management needed encompasses admission con-
trol, allocation and scheduling, accounting, and adaptation.
Proposed approaches for better multimedia support in-
clude:

� New OS structures and architectures, like the library
OSs Exokernel and Nemesis.

� New mechanisms that are especially tailored for QoS
support, like specialized CPU and disk scheduling.

� New system abstractions, like resource principals for
resource ownership, inheritance of the associated pri-
orities, and accounting of resource util ization.

� Extended system abstractions to additionally support
new requirements, like synchronization support and
metadata in file systems.

� Avoiding the major system bottlenecks, like copy op-
erations avoidance through page remapping.

� Support for user-level control over resources including
user-level communication.

It is not clear how new OS architectures should look
like or even if they are really needed at all . Monolithic and

� -kernel architectures can be developed further, and a care-
ful design and implementation of such systems can provide
both good performance and build on time proven ap-
proaches. When proposing new architectures, it becomes
very important to demonstrate both comparable or better
performance and better functionality than in existing solu-
tions. Furthermore, it is important to implement and evalu-
ate integrated systems and not only to study one isolated
aspect. In this respect, Nemesis is probably the most ad-
vanced system.

To evaluate and compare performance and functionality
of new approaches, more detailed performance measure-
ments and analysis are necessary. This implies designing
and implementing systems, and developing and using a
common set of micro- and application benchmarks for
evaluation of multimedia systems. The field is still very
active, and much work remains to be done before it be-
comes known how to design and implement multimedia
platforms.

ACKNOWLEDGEMENTS
We would like to thank Frank Eliassen, Liviu Iftode,

Martin Karsten, Ketil Lund, Chuanbao Wang, and Lars

Wolf for reviewing earlier versions of this paper and their
valuable comments and suggestions.

REFERENCES

[Abbott 84] Abbott, C.: Eff icient Editing of Digital Sound on
Disk, Journal of Audio Engineering, Vol. 32, No. 6, June
1984, pp. 394-402

[Abbott et al. 93] Abbott, M.B., Peterson, L.L.: Increasing Net-
work Throughput by Integrating Protocol Layers,
IEEE/ACM Transactions on Networking, Vol. 1, No. 5,
October 1993, pp. 600-610

[Anderson 95] Anderson, E.W.: Container Shipping: a Uniform
Interface for Fast, Eff icient, High-Bandwidth I/O, PhD The-
sis, Computer Science and Engineering Department, Univer-
sity of Cali fornia, San Diego, CA, USA, 1995

[Anderson et al. 90] Anderson, D.P., Tzou, S.Y., Wahbe, R., Go-
vindan, R., Andrews, M.: Support for Continuous Media in
the DASH System, Proc. of 10th Int. Conf. on Distributed
Computing Systems (ICDCS’90), Paris, France, May 1990,
pp. 54-61

[Anderson et al. 92a] Anderson, T.E., Bershad, B.N, Lazowska,
E.D, Levy, H.M, Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism,
ACM Transactions on Computer Systems, Vol. 10, No. 1,
February 1992, pp. 53-79

[Anderson et al. 92b] Anderson, D., Osawa, Y., Govindan, R.: A
File System for Continuous Media, ACM Transactions on
Computer Systems, Vol. 10, No. 4, November 1992, pp.
311-337

[Anderson et al. 98] Anderson, D.C., Chase, J.S., Gadde, S.,
Gallatin, A.J., Yocum, K.G., Feeley, M.J.: Cheating the I/O
Bottleneck: Network Storage with Trapeze/Myrinet, Proc. of
1998 USENIX Annual Technical Conf., New Orleans, LA,
USA, June 1998

[Araki et al. 98] Araki, S., Bilas, A., Dubnicki, C., Edler, J.,
Konishi, K., Philbin, J.: User-Space Communication: A
Quantitative Study, Proc. of 10th Int. Conf. of High Perform-
ance Computing and Communications
(SuperComputing’98), Orlando, FL, USA, November 1998

[Banga et al. 99] Banga, G., Drutchel, P., Mogul, J. C.: Resource
Containers: A New Facilit y for Resource Management in
Server Systems, Proc. of 3rd USENIX Symp. on Operating
Systems Design and Implementation (OSDI’99), New Or-
leans, LA, USA, February 1999

[Banks et al. 93] Banks, D., Prudence, M.: A High-Performance
Network Architecture for a PA-RISC Workstation, IEEE
Journal on Selected Areas in Communications, Vol. 11, No.
2, February 1993, pp. 191-202

[Barham 97] Barham, P.R.: A Fresh Approach to File System
Quality of Service, Proc. of 7th Int. Workshop on Network
and Operating System Support for Digital Audio And Video
(NOSSDAV’97), St. Louis, MO, USA, May 1997, pp. 119-
128

20 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

[Bavier et al. 98a] Bavier, A., Peterson, L., Mosberger, D.:
BERT: A Scheduler for Best-Effort and Realtime Paths,
Technical Report TR 587-98, Princeton University, Prince-
ton, NJ, USA, August 1998

[Bavier et al. 98b] Bavier, A., Montz, B. Peterson, L.: Predicting
MPEG Execution Times, Proc. of 1998 ACM Int. Conf. on
Measurement and Modeling of Computer Systems
(SIGMETRICS’98), Madison, WI, USA, June 1998, pp.
131-140

[Bell et al. 95] Bell , T.C., Moffat, A., Witten, I.H., Zobel, J.: The
MG Retrieval System: Compressing for Space and Speed,
Communications of the ACM, Vol. 38, No. 4, April 1995,
pp. 41-42

[Bershad et al. 94] Bershad, B.N., Lee, D., Romer , T.H., Chen,
J.B.: Avoiding Conflict Misses Dynamically in Large Direct-
Mapped Caches, Proc. of 6th Int. Conf. On Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-VI), San Jose, CA, USA, October 1994, pp. 158-
170

[Berson et al. 94] Berson, S., Ghandeharizadeh, S., Muntz, R.R.,
Ju, X.: Staggered Striping in Multimedia Information Sys-
tems, Proc. of 1994 ACM Int. Conf. on Management of Data
(SIGMOD’94), Minneapolis, MN, USA, May 1994, pp. 70-
90

[Bobrow et al. 72] Bobrow, D.G., Burchfiel, J.D., Murphy, D.L.,
Tomlinson, R.S., Beranek, B.: Tenex, A Paged Time Sharing
System for the PDP-10, Communications of the ACM, Vol.
15, No. 3, March 1972, pp. 135-143

[Bolosky et al. 96] Bolosky, W., Barrera, J., Draves, R., Fitz-
gerald, R., Gibson, G., Jones, M., Levi, S., Myhrvold, N.,
Rashid, R.: The Tiger Video File Server, Proc. of 6th Int.
Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV’96), Zushi, Japan,
April 1996, pp. 212-223

[Bolosky et al. 97] Bolosky, W.J., Fitzgerald, R.P., Douceur,
J.R.: Distributed Schedule Management in the Tiger Video
File Server, Proc. of 16th ACM Symp. on Operating System
Principles (SOSP’97), St. Malo, France, October 1997, pp.
212-223

[Bringsrud et al. 93] Bringsrud, K.A., Pedersen, G.: Distributed
Electronic Class Rooms with Large Electronic White
Boards, Proc. of 4th Joint European Networking Conf.
(JENC4), Trondheim, Norway, May 1993, pp. 132-144

[Bruno et al. 98] Bruno, J., Gabber, E., Özden, B., Silberschatz,
A.: The Eclipse Operating System: Providing Quality of
Service via Reservation Domains, Proc. of 1998 USENIX
Annual Technical Conf., New Orleans, LA, June 1998

[Brustoloni 99] Brustoloni, J.C.: Interoperation of Copy Avoid-
ance in Network and File I/O, Proc. of 18th IEEE Conf. on
Computer Communications (INFOCOM’99), New York,
NY, USA, March 1999

[Brustoloni et al. 96] Brustoloni, J.C., Steenkiste, P.: Effects of
Buffering Semantics on I/O Performance, Proc. of 2nd

USENIX Symp. on Operating Systems Design and Imple-

mentation (OSDI’96), Seattle, WA, USA, October 1996, pp.
227-291

[Brustoloni et al. 97] Brustoloni, J.C., Steenkiste, P.: Evaluation
of Data Passing and Scheduling Avoidance, Proc. of 7th Int.
Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV’97), St. Louis, MO,
USA, May 1997, pp. 101-111

[Buddhikot et al. 98] Buddhikot, M.M., Chen, X.J., Wu, D., Pa-
rulkar, G.M.: Enhancements to 4.4BSD UNIX for Eff icient
Networked Multimedia in Project MARS, Proceeding of
IEEE Int. Conf. on Multimedia Computing and Systems
(ICMCS’98), Austin, TX, USA, June/July 1998

[Buddhikot 98] Buddhikot, M.M: Project MARS: Scalable, High
Performance, Web Based Multimedia-on-Demand (MOD)
Services and Servers, PhD Thesis, Sever Institute of Tech-
nology, Department of Computer Science, Washington Uni-
versity, St. Louis, MO, USA, August 1998

[Chang et al. 97] Chang, E., Garcia-Molina, H.: Reducing Initial
Latency in Media Servers, IEEE Multimedia, Vol. 4, No. 3,
July-September 1997, pp. 50-61

[Chang et al. 99] Chang, F., Gibson, G.A.: Automatic I/O Hint
Generation through Speculative Execution, Proc. of 3rd

USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’99), New Orleans, LA, USA, February
1999, pp. 1-14

[Chen et al. 93] Chen, M.-S., Kandlur, D.D., Yu, P.S.: Optimiza-
tion of the Group Sweep Scheduling (GSS) with Heteroge-
neous Multimedia Streams, Proc. of 1st ACM Multimedia
Conf. (ACM MM ’93), Anaheim, CA, USA, August 1993,
pp. 235-241

[Chen et al. 94] Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H.,
Patterson, D.A.: RAID: High-Performance, Reliable, Secon-
dary Storage, ACM Computing Surveys, Vol. 26, No. 2,
June 1994, pp. 145-185

[Chen et al. 96] Chen, J.B., Endo, Y., Chan, K., Mazières, D.,
Dias, D., Seltzer, M.I., Smith, M.D.: The Measured Per-
formance of Personal Computer Operating Systems, ACM
Transactions on Computer Systems, Vol. 14, No. 1, Febru-
ary 1996, pp. 3-40

[Cheriton 88] Cheriton, D.R.: The V Distributed System, Com-
munications of the ACM, Vol. 31, No. 3, March 1988, pp.
314-333

[Chu 96] Chu, H.-K.J.: Zero-Copy TCP in Solaris, Proc. of 1996
USENIX Annual Technical Conf., San Diego, CA, USA,
January 1996, pp. 253-264

[Chu et al. 99] Chu, H.-H., Nahrstedt, K.: CPU Service Classes
for Multimedia Applications, Proc. of IEEE Int. Conf. on
Multimedia Computing and Systems (ICMCS’99), Florence,
Italy, June 1999

[Clark et al. 90] Clark, D.D., Tennenhouse, D.L.: Architectural
Considerations for a New Generation of Protocols, Proc. of
ACM SIGCOMM’90, Philadelphia, PA, USA, September
1990, pp. 200-208

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 21

[Clark et al. 92] Clark, R.K., Jensen, E.D., Reynolds, F.D.: An
Architectural Overview of the Alpha Real-Time Distributed
Kernel, Workshop on Micro-Kernels and other Kernel Ar-
chitectures, April 1992

[Coffman et al. 90] Coffman, J., Hofri, M.: Queuing Models of
Secondary Storage Devices, Stochastic Analysis of Com-
puter and Communication Systems, Takagi, H. (Ed.), North-
Holland, 1990

[Coulson et al. 94] Coulson, G., Blair, G., Robin, P., Shepherd,
D.: Supporting Continuous Media Applications in a Micro-
Kernel Environment, in: Spaniol, O. (Ed.): Architecture and
Protocols for High-Speed Networks, Kluwer Academic Pub-
lishers, 1994

[Coulson et al. 95] Coulson, G., Campbell , A., Robin, P., Blair,
G., Papathomas, M. Hutchinson, D.: The Design of a QoS
Controlled ATM Based Communication System in Chorus,
IEEE Journal on Selected Areas of Communications, Vol.
13, No. 4, May 1995, pp. 686-699

[Cranor 98] Cranor, C.D.: The Design and Implementation of the
UVM Virtual Memory System, PhD Thesis, Sever Institute
of Technology, Department of Computer Science, Wash-
ington University, St. Louis, MO, USA, August 1998

[Cranor et al. 94] Cranor, C.D., Parulkar, G.M.: Universal Con-
tinuous Media I/O: Design and Implementation, Technical
Report WUCS-94-34, Department of Computer Science,
Washington University, St. Louis, MO, USA, 1994

[Cranor et al. 95] Cranor, C.D., Parulkar, G.M.: Design of Uni-
versal Continuous Media I/O, Proc. of 5th Int. Workshop on
Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV’95), Durham, NH, USA, April 1995,
pp. 83-86

[Cranor et al. 99] Cranor, C.D., Parulkar, G.M.: The UVM Vir-
tual Memory System, Proc. of 1999 USENIX Annual Tech-
nical Conf., Monterey, CA, USA, June 1999

[Dalton et al. 93] Dalton, C., Watson, G., Banks, D., Calamvokis,
C., Edwards, A., Lumley, J.: Afterburner, IEEE Network,
Vol. 7, No. 4, July 1993, pp. 36-43

[Dan et al. 97] Dan, A., Sitaram, D.: Multimedia Caching Strate-
gies for Heterogeneous Application and Server Environ-
ments, Multimedia Tools and Applications, Vol. 4, No. 3,
May 1997, pp. 279 – 312

[Demers et al. 90] Demers, A., Keshav, S., Shenker, S.: Analysis
and Simulation of a Fair Queueing Algorithm, Internet-
working: Research and Experience, Vol. 1, No. 1, September
1990, pp. 3-26

[Denning 67] Denning, P.J.: Effects of Scheduling on File Mem-
ory Operations, Proc. AFIPS Conf., April 1967, pp. 9-21

[Druschel 96] Druschel, P.: Operating System Support for High-
Speed Communication, Communication of the ACM, Vol.
39, No. 9, September 1996, pp. 41-51

[Druschel et al. 93a] Druschel, P., Peterson, L.L.: Fbufs: A High-
Bandwidth Cross-Domain Transfer Facilit y, Proc. of 14th

ACM Symp. on Operating Systems Principles (SOSP’93),
Ashevill e, NC, USA, December 1993, pp. 189-202

[Druschel et al. 93b] Druschel, P., Abbot, M.B., Pagels, M.A.,
Peterson, L.L.: Network Subsystem Design, IEEE Network,
Vol. 7, No. 4, July 1993, pp. 8-17

 [Druschel et al. 94] Druschel, P., Peterson, L.L., Davie, B.S.:
Experiences with a High-Speed Network Adaptor: A Soft-
ware Perspective, Proc. of ACM SIGCOMM’94, London,
UK, September 1994, pp. 2-13

[Effelsberg et al. 84] Effelsberg, W., Härder, T.: Principles of
Database Buffer Management, ACM Transactions on Data-
base Systems, Vol. 9, No. 4, December 1984, pp. 560-595

[Engler et al. 95] Engler, D., Gupta, S.K., Kaashoek, F.: AVM:
Application-Level Virtual Memory, Proc. of 5th Workshop
on Hot Topics in Operating Systems (HotOS-V), Orcas Is-
land, WA, USA, May 1995

[Fall 94] Fall , K.R.: A Peer-to-Peer I/O System in Support of I/O
Intensive Workloads, PhD Thesis, Computer Science and
Engineering Department, University of Cali fornia, San Di-
ego, CA, USA, 1994

[Fall et al. 94] Fall , K., Pasquale, J.: Improving Continuous-
Media Playback Performance with In-Kernel Data Paths,
Proc. of IEEE Int. Conf. on Multimedia Computing and
Systems (ICMCS’94), Boston, MA, USA, May 1994, pp.
100-109

[Fitzgerald et al. 86] Fitzgerald, R., Rashid, R.F: The Integration
of Virtual Memory Management and Interprocess Commu-
nication in Accent, ACM Transactions on Computer Sys-
tems, Vol. 4, No. 2, May 1986, pp. 147-177

[Ford et al. 94] Ford, B., Lepreau, J.: Evolving Mach 3.0 to the
Migrating Thread Model, Proc. of 1994 USENIX Winter
Conf., San Francisco, CA, USA, January 1994

[Ford et al. 96] Ford, B., Susarla, S.: CPU Inheritance Schedul-
ing, Proc. of 2nd USENIX Symp. on Operating Systems De-
sign and Implementation (OSDI’96), Seattle, WA, USA,
October 1996, pp. 91-105

[Gao et al. 98] Gao, L., Kurose, J., Towsley, D.: Eff icient
Schemes for Broadcasting Popular Videos, Proc. of 8th Int.
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV'98), Cambridge, UK

[Garofalakis et al. 98] Garofalakis, M.N., Özden, B., Silber-
schatz, A.: On Periodic Resource Sheduling for Continuous-
Media Databases, The VLDB Journal, Vol. 7, No. 4, 1998,
pp. 206-225

[Garcia-Martinez et al. 2000] Garcia-Martinez, A., Fernadez-
Conde, J., Vina, A.: Eff icient Memory Management in VoD
Servers, to appear in: Computer Communications, 2000

[Gecsei 97] Gecsei, J.: Adaptation in Distributed Multimedia
Systems, IEEE Multimedia, Vol. 4, No. 2, April -June 1997,
pp. 58-66

[Geist et al. 87] Geist, R., Daniel, S.: A Continuum of Disk
Scheduling Algorithms, ACM Transactions on Computer
Systems, February 1987, Vol. 5, No. 1, pp. 77-92

22 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

[Gemmell et al. 92] Gemmell , D.J., Christodoulakis, S.: Princi-
ples of Delay Sensitive Multimedia Data Storage and Re-
trieval, ACM Transactions on Information Systems, Vol. 10,
No. 1, January 1992, pp. 51-90

[Gemmell et al. 94] Gemmell , D.J., Han, J.: Multimedia Network
File Servers: Multichannel Delay Sensitive Data Retrieval,
Multimedia Systems, Vol. 1, No. 6, April 1994, pp. 240-252

[Gemmell et al. 95] Gemmell , D.J., Vin, H.M., Kandlur, D.D.,
Rangan, P.V., Rowe, L.A.: Multimedia Storage Servers: A
Tutorial, IEEE Computer, Vol. 28, No. 5, May 1995, pp. 40-
49

[Ghandeharizadeh et al. 97] Ghandeharizadeh, S., Zimmermann,
R., Shi, W., Rejaie, R., Ierardi, D., Li, T.-W.: Mitra: A Scal-
able Continuous Media Server, Multimedia Tools and Ap-
plications, Vol. 5, No. 1, July 1997, pp. 79-108

[Goel et al. 98] Goel, A., Steere, D., Pu, C., Walpole, J.: SWiFT:
A Feedback Control and Dynamic Reconfiguration Toolkit,
Technical Report CSE-98-009, Oregon Graduate Institute,
Portland, OR, USA, June 1998

[Govindan et al. 91] Govindan, R, Anderson D. P, Scheduling
and IPC Mechanisms for Continuous Media, Proc. of 13th

ACM Symp. on Operating Systems Principles (SOSP’91),
Pacific Grove, CA, USA, October 1991, pp. 68-80

[Goyal et al. 96a] Goyal, P., Guo, X., Vin, H.M.: A Hierarchical
CPU Scheduler for Multimedia Operating Systems, Proc. of
2nd USENIX Symp. on Operating Systems Design and Im-
plementation (OSDI’96), Seattle, WA, USA, October 1996,
pp. 107-121

[Goyal et al. 96b] Goyal, P., Vin, H.M., Cheng, H.: Start-time
Fair Queuing: A Scheduling Algorithm for Integrated Serv-
ices Packet Switching Networks, Proc. of ACM
SIGCOMM’96, San Francisco, CA, USA, August 1996, pp.
157-168

[Halvorsen et al. 98] Halvorsen, P., Goebel, V., Plagemann, T.:
Q-L/MRP: A Buffer Management Mechanism for QoS Sup-
port in a Multimedia DBMS, Proc. of 1998 IEEE Int. Work-
shop on Multimedia Database Management Systems (IW-
MMDBMS’98), Dayton, OH, USA, August 1998, pp. 162-
171

[Hamilton et al. 93] Hamilton, G., Kougiouris, P.: The Spring
Nucleus: A Microkernel for Objects, Proc. 1993 USENIX
Summer Conf., Cincinnati, OH, USA, June 1993

[Hand 99] Hand, S.M.: Self-Paging in the Nemesis Operating
System, Proc. of 3rd USENIX Symp. on Operating Systems
Design and Implementation (OSDI’99), New Orleans, LA ,
USA, February 1999, pp. 73-86

[Härtig et al. 97] Härtig, H., Hohmuth, M., Liedtke, J., Schön-
berg, S., Wolter, J.: The Performance of µKernel-Based
Systems, Proc. of 16th ACM Symp. on Operating System
Principles (SOSP’97), October 1997, St. Malo, France, pp.
66-77

[Härtig et al. 98] Härtig, H., Baumgartl, R., Borriss, M., Hamann,
C.-J., Hohmuth, M., Mehnert, F., Reuther, L., Schönberg, S.,

Wolter, J.: DROPS - OS Support for Distributed Multimedia
Applications, Proc. of 8th ACM SIGOPS European Work-
shop, Sintra, Portugal, September 1998

[Haskin 93] Haskin, R.L.: The Shark Continuous-Media File
Server, Proc. of 38th IEEE Int. Conf.: Technologies for the
Information Superhighway (COMPCON’93), San Francisco,
CA, USA, February 1993, pp. 12-15

[Haskin et al. 96] Haskin, R.L., Schmuck, F.B.: The Tiger Shark
File System, Proc. of 41st IEEE Int. Conf.: Technologies for
the Information Superhighway (COMPCON’96), Santa
Clara, CA, USA, February 1996, pp. 226-231

[Hua et al. 97] Hua, K.A., Sheu, S.: Skyscraper Broadcasting: A
New Broadcasting Scheme for Meteropolitan Video-on-
Demand System, Proc. of ACM SIGCOMM’97, Cannes,
France, September 1997, pp. 89-100

[Jacobson et al. 91] Jacobson, D.M., Wilkes, J.: Disk Scheduling
Algorithms Based on Rotational Position, HP Laboratories
Technical Report HPL-CSP-91-7, Palo Alto, CA, USA, Feb-
ruary 1991

[Jeffay et al. 98] Jeffay, K., Smith, F.D., Moorthy, A., Anderson,
A.: Proportional Share Scheduling of Operating System
Services for Real-Time Applications, Proc. of 19th IEEE
Real-Time System Symp. (RTSS’98), Madrid, Spain, De-
cember 1998, pp. 480-491

[Jones et al. 95] Jones, M.B., Leach, P.J., Draves, R.P., Barrera,
J.S.: Modular Real-Time Resource Management in the Ri-
alto Operating System, Proc. of 5th Workshop on Hot Topics
in Operating Systems (HotOS-V), Orcas Island, WA, USA,
May 1995, pp. 12-17

[Jones et al. 96] Jones, M.B., Barrera, J.S., Forin, A., Leach, P.J.,
Rosu, D., Rosu, M.-C.: An Overview of the Rialto Real-
Time Architecture, Proc. of 7th ACM SIGOPS European
Workshop, Connemara, Ireland, September 1996, pp. 249-
256

[Jones et al. 97] Jones, M.B., Rosu, D., Rosu, M.-C: CPU Reser-
vations and Time Constraints: Eff icient, Predictable Sched-
uling of Independent Activities, Proc. of 16th ACM Symp.
on Operating Systems Principles (SOSP’97), St. Malo,
France, October 1997, pp. 198-211

[Kaashoek et al. 97] Kaaskoek, M.F., Engler, D.R., Ganger, G.R.,
Briceno, H.M., Hunt, R., Mazieres, D., Pinckney, T.,
Grimm, R., Jannotti, J., Mackenzie, K.: Application Per-
formance and Flexibilit y on Exokernel Systems, Proc. of 16th

Symp. on Operating Systems Principles (SOSP’97), St.
Malo, France, October 1997, pp. 52-65

[Kamath et al. 95] Kamath, M., Ramamritham, K., Towsley, D.:
Continuous Media Sharing in Multimedia Database Systems,
Proc. of 4th Int. Conf. on Database Systems for Advanced
Applications (DASFAA’95), Singapore, April 1995, pp. 79-
86

[Kitamura et al. 95] Kitamura, H., Taniguchi, K., Sakamoto, H.,
Nishida T.: A New OS Architecture for High Performance
Communication Over ATM Networks: Zero-Copy Archi-
tecture, Proc. of 5th Int. Workshop on Network and Operat-

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 23

ing Systems Support for Digital Audio and Video
(NOSSDAV’95), Durham, NH, USA, April 1995, pp. 87-90

[Krishnan et al. 97] Krishnan, R., Venkatesh, D., Little, T.D.C.:
A Failure and Overload Tolerance Mechanism for Continu-
ous Media Servers, Proc. of 5th ACM Int. Multimedia Conf.
(ACM MM ’97), Seattle, WA, USA, November 1997, pp.
131-142

[Lakshman 97] Lakshman, K.: AQUA: An Adaptive Quality of
Service Architecture for Distributed Multimedia Applica-
tions, PhD Thesis, Computer Science Departement, Univer-
sity of Kentucky, Lexington, KY, USA, 1997

[Lee et al. 97] Lee, W., Su, D., Wijesekera, D., Srivastava, J.,
Kenchammana-Hosekote, D.R., Foresti, M.: Experimental
Evaluation of PFS Continuous Media File System, Proc. of
6th ACM Int. Conf. on Information and Knowledge Man-
agement (CIKM’97), Las Vegas, NV, USA, November
1997, pp. 246-253

[Leff ler et al. 90] Leff ler, S.J., McKusick, M.K., Karels, M.J.,
Quarterman, J.S.: The Design and Implementation of the
4.3BSD UNIX Operating System, Addison-Wesley Pub-
lishing Company, 1989

[Lei et al. 97] Lei, H., Duchamp, D.: An Analytical Approach to
File Prefetching, Proc. of 1997 USENIX Annual Technical
Conf., Anaheim, CA, USA, January 1997

[Leslie et al. 96] Leslie, I., McAuley, D., Black, R., Roscoe, T.,
Barham, P., Evers, D., Fairbairns, R., Hyden, E.: The Design
and Implementation of an Operating System to Support Dis-
tributed Multimedia Applications, IEEE Journal on Selected
Areas in Communications, Vol. 14, No. 7, September 1996,
pp. 1280-1297

[Liedtke 95] Liedtke, J.: On Micro Kernel Construction, Proc. of
15th ACM Symp. on Operating Systems Principles
(SOSP’95), Cooper Mountain, Colorado, USA, December
1995, pp. 237-250

[Liedtke 96] Liedtke, J.: Toward Real Microkernels, Communi-
cation of the ACM, Vol. 39, No. 9, September 1996, pp. 70-
77

[Lin et al. 91] Lin, T.H., Tarng, W.: Scheduling Periodic and
Aperiodic Tasks in Hard Real Time Computing Systems,
Proc. of 1991 ACM Int. Conf. on Measurement and Model-
ing of Computer Systems (SIGMETRICS’91), San Diego,
CA, USA, May 1991, pp. 31-38

[Liu et al. 73] Liu, C.L., Layland, J.W.: Scheduling Algorithms
for Multiprogramming in a Hard Real Time Environment,
Journal of the ACM, Vol. 20, No. 1, January 1973, pp. 46-
61

[Lougher et al. 93] Lougher, P., Shepherd, D.: The Design of a
Storage Server for Continuous Media, The Computer Jour-
nal, Vol. 36, No. 1, February 1993, pp. 32-42

[Martin et al. 96] Martin C., Narayanan, P.S., Özden, B., Rastogi,
R., Silberschatz, A.: The Felli ni Multimedia Storage Server,
in: Chung, S.M. (Ed.): Multimedia Information and Storage
Management, Kluwer Academic Publishers, 1996, pp. 117-
146

[McKee et al. 98] McKee, S.A., Klenke, R.H., Wright, K.L.,
Wulf, W.A., Salinas, M.H., Aylor, J.H., Barson, A.P.:
Smarter Memory: Improving Bandwidth for Streamed Refer-
ences, IEEE Computer, Vol. 31, No. 7, July 1998, pp. 54-63

[McKusick et al. 96] McKusick, M.K., Bostic, K., Karels, M.J.,
Quarterman, J.S.: The Design and Implementation of the 4.4
BSD Operating System, Addison Wesley, 1996

[Mercer et al. 94] Cli fford, W., Mercer, J.Z., Ragunathan, R.: On
Predictable Operating System Protocol Processing, Techni-
cal Report CMU-CS-94-165, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, May 1994

[Mill er et al. 98a] Mill er, F.W., Keleher, P., Tripathi, S.K.: Gen-
eral Data Streaming, Proc. of 19th IEEE Real-Time System
Symp. (RTSS’98), Madrid, Spain, December 1998

[Mill er et al. 98b] Mill er, F.W., Tripathi, S.K.: An Integrated In-
put/Output System for Kernel Data Streaming, Proc. of
SPIE/ACM Multimedia Computing and Networking
(MMCN ‘98), San Jose, CA, USA, January 1998, pp. 57-68

[Molano et al. 97] Molano, A., Juvva, K., Rajkumar, R.: Real-
Time Filesystems Guaranteeing Timing Constraints for Disk
Accesses in RT-Mach, Proc. of 18th IEEE Real-Time Sys-
tems Symp. (RTSS’97), San Francisco, CA, USA, December
1997

[Mosberger et al. 96] Mosberger, D., Peterson, L.L.: Making
Paths Explicit in the Scout Operating System, Proc. of 2nd
USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’96), Seattle, WA, USA, October 1996

[Moser et al. 95] Moser, F., Kraiss, A., Klas, W.: L/MRP: A
Buffer Management Strategy for Interactive Continuous
Data Flows in a Multimedia DBMS, Proc. of 21st IEEE Int.
Conf. on Very Large Databases (VLDB’95), Zurich, Swit-
zerland, 1995, pp. 275-286

[Nahrstedt et al. 95] Nahrstedt, K., Steinmetz, R.: Resource Man-
agement in Networked Multimedia Systems, IEEE Com-
puter, Vol. 28, No. 5, May 1995, pp. 52-63

[Nahrstedt et al. 99] Nahrstedt, K., Chu, H., Narayan, S.: QoS-
Aware Resource Management for Distributed Multimedia
Applications, Journal on High-Speed Networking, Special
Issue on Multimedia Networking, Vol. 7, No. 3/4, Spring 99,
pp. 229-258

 [Nakajima et al. 97] Nakajima, T., Tezuka, H.: Virtual Memory
Management for Interactive Continuous Media Applications,
Proc. of IEEE Int. Conf. on Multimedia Computing and
Systems (ICMCS’97), Ottawa, Canada, June 1997

[Nerjes et al. 98] Nerjes, G., Rompogiannakis, Y., Muth, P.,
Paterakis, M., Triantafill ou, P., Weikum, G.: Scheduling
Strategies for Mixed Workloads in Multimedia Information
Servers, Proc. of IEEE International Workshop on Research
Issues in Data Engineering (RIDE’98), Orlando, FL, USA,
February 1998, pp. 121-128

[Ng et al. 94] Ng, R.T., Yang, J.: Maximizing Buffer and Disk
Utili zation for News-On-Demand, Proc. of 20th IEEE Int.

24 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

Conf. on Very Large Databases (VLDB’94), Santiago, Chile,
1994, pp. 451-462

[Nieh et al. 93] Nieh, J., Hanko, J.G., Northcutt, J.D., Wall , G.A.:
SVR4 UNIX Scheduler Unacceptable for Multimedia Appli-
cations, Proc. of 4th Int. Workshop on Network and Operat-
ing System Support for Digital Audio and Video
(NOSSDAV’93), Lancaster, UK, November 1993

[Nieh et al. 97] Nieh, J., Lam, M.S.: The Design, Implementation
and Evaluation of SMART: A Scheduler for Multimedia
Applications, Proc. of 16th ACM Symp. on Operating Sys-
tem Principles (SOSP’97), St. Malo, France, October 1997,
pp. 184-197

[Niranjan et al. 97] Niranjan, T.N., Chiueh, T., Schloss, G.A.:
Implementation and Evaluation of a Multimedia File System,
Proc. of IEEE Int. Conf. on Multimedia Computing and
Systems (ICMCS’97), Ottawa, Canada, June 1997

[Nishikawa et al. 97] Nishikawa, J., Okabayashi, I., Mori, Y., Sa-
saki, S., Migita, M., Obayashi, Y., Furuya, S., Kaneko, K.:
Design and Implementation of Video Server for Mixed-rate
Streams, Proc. of 7th Int. Workshop on Network and Oper-
ating System Support for Digital Audio and Video
(NOSSDAV’97), St. Louis, MO, USA, May 1997, pp. 3-11

[Noble et al. 97] Noble, B., Satyanarayanan, M., Narayanan, D.,
Tilton, J.E., Flinn, J., Walker, K.: Agile Application-Aware
Adaptation for Mobilit y, Proc. of the 16th ACM Symp. on
Operating System Principles (SOSP’97), St. Malo, France,
October 1997, pp. 276-287

[Oparah 98] Oparah, D.: Adaptive Resource Management in a
Multimedia Operating System, Proc. of 8th Int. Workshop on
Network and Operating System Support for Digital Audio
and Video (NOSSDAV’98), Cambridge, UK, July 1998,

[Özden et al. 96a] Özden, B., Rastogi, R., Silberschatz, A.: Disk
Striping in Video Server Environments, Proc. of IEEE Int.
Conf. on Multimedia Computing and Systems (ICMCS’96),
Hiroshima, Japan, June 1996

[Özden et al. 96b] Özden, B., Rastogi, R., Silberschatz, A.:
Buffer Replacement Algorithms for Multimedia Storage
Systems, Proc. of IEEE Int. Conf. on Multimedia Computing
and Systems (ICMCS’96), Hiroshima, Japan, June 1996

[Pai 97] Pai, V.S.: IO-Lite: A Copy-free UNIX I/O System,
Master of Science Thesis, Rice University, Houston, TX,
USA, January 1997

[Pai et al. 99] Pai, V.S., Druschel, P., Zwaenepoel, W.: IO-Lite:
A Unified I/O Buffering and Caching System, Proc. of 3rd

USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’99), New Orleans, LA, USA, February
1999, pp. 15-28

[Parek et al. 93] Parek, A.K., Gallager, R.G.: A Generalized
Processor Sharing Approach to Flow Control in Integrated
Services Networks: The Single-Node Case, IEEE/ACM
Transactions on Networking, Vol. 1, No. 3, June 1993, pp.
344-357

[Pasquale et al. 94] Pasquale, J., Anderson, E., Muller, P.K.:
Container Shipping - Operating System Support for I/O-

Intensive Applications, IEEE Computer, Vol. 27, No. 3,
March 1994, pp. 84-93

[Patterson et al. 95] Patterson, R.H., Gibson, G.A., Ginting, E.,
Stodolsky, D., Zelenka, J.: Informed Prefetching and Cach-
ing, Proc. of 15th ACM Symp. on Operating System Princi-
ples (SOSP’95), Cooper Mountain, CO, USA, December
1995, pp. 79-95

[Peterson et al. 85] Peterson, J.L., Silberschatz, A.: Operating
System Concepts, Addison-Wesley, 1985

[Philbin et al. 96] Philbin, J., Edler, J., Anshus, O.J., Douglas,
C.C., Li, K.: Thread Scheduling for Cache Locality, Proc. of
7th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII), Cam-
bridge, MA, USA, October 1996, pp. 60-71

[Plagemann et al. 97] Plagemann, T., Goebel, V.: INSTANCE:
The Intermediate Storage Node Concept, Proc. of 3rd Asian
Computing Science Conf. (ASIAN’97), Kathmandu, Nepal,
December 1997, pp. 151-165

[Plagemann et al. 99] Plagemann, T., Goebel, V.: Analysis of
Quality-of-Service in a Wide-Area Interactive Distance
Learning System, in: Wolf, L. (Ed.): Special Issue on Euro-
pean Activities in Interactive Distributed Multimedia Sys-
tems and Telecommunication Services, Telecommunication
Systems, Vol. 11, No. 1-2, 1999, pp. 139-160

[Rajkumar et al. 98] Rajkumar, R., Juvva, K., Molano, A., Oi-
kawa, S.: Resource Kernels: A Resource-Centric Approach
to Real-Time Systems, Proc. of SPIE/ACM Conf. on Multi-
media Computing and Networking (MMCN’98), San Jose,
CA, USA, January 1998

[Ramakrishnan et al. 93] Ramakrishnan, K.K., Vaitzblit , L.,
Gray, C., Vahalia, U., Ting, D., Tzelnic, P., Glaser, S., Duso,
W.: Operating System Support for a Video-on-Demand File
Service, Proc. of 4th Int. Workshop on Network and Operat-
ing System Support for Digital Audio and Video
(NOSSDAV’93), Lancaster, U.K., 1993, pp. 216-227

[Rangan et al. 91] Rangan, P.V., Vin, H.: Designing File Systems
for Digital Video and Audio, Proc. of the 13th Symp. on Op-
erating Systems Principles (SOSP’91), Pacific Grove, CA,
USA, October 1991, pp. 81-94

[Rashid et al. 81] Rashid, R., Robertson, G.: Accent: A Commu-
nication-Oriented Network Operating System Kernel, Proc.
of 8th ACM Symp. on Operating System Principles
(SOSP’81), New York, NY, USA, 1981, pp. 64-75

[Reddy 95] Reddy, A.L.N.: Scheduling in Multimedia Systems,
in: Design and Applications of Multimedia Systems, Kluwer
Academic Publishers, August 1995

[Reddy et al. 93] Reddy, A.L.N., Wylli e, J.: Disk Scheduling in a
Multimedia I/O System, Proc. of 1st ACM Multimedia Conf.
(ACM MM ’93), Anaheim, CA, USA, August 1993, pp. 225-
233

[Reddy et al. 94] Reddy, A.L.N., Wylli e, J.C.: I/O Issues in a
Multimedia System, IEEE Computer, Vol. 27, No. 3, March
1994, pp. 69-74

T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus 25

[Rompogiannakis et al. 98] Rompogiannakis, Y., Nerjes, G.,
Muth, P., Paterakis, M., Triantafill ou, P., Weikum, G.: Disk
Scheduling for Mixed-Media Workloads in a Multimedia
Server, Proc. of 6th ACM Multimedia Conf. (ACM MM ’98),
Bristol, UK, September 1998, pp. 297-302

[Rosenblum 95] Rosenblum, M.: The design and Implementation
of a Log-Structured File System, Kluwer Academic Publish-
ers, 1995

[Rotem et al. 95] Rotem, D., Zhao, J.L.: Buffer Management for
Video Database Systems, Proc. of 11th Int. Conf. on Data
Engineering (ICDE’95), Tapei, Taiwan, March 1995, pp.
439-448

[Roth et al. 98] Roth, A., Moshovos, A., Sohi, G.S.: Dependence
Based Prefetching for Linked Data Structures, Proc. of 8th
Int. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VIII) , San Jose,
CA, USA, October 1998, pp. 115-126

[Santos et al. 98] Santos, J.R., Muntz, R.: Performance Analysis
of the RIO Multimedia Storage System with Heterogeneous
Disk Configurations, Proc. of 6th ACM Multimedia Conf.
(ACM MM ’98), Bristol, UK, September 1998, pp. 303-308

[Schulzrinne 96] Schulzrinne, H.: Operating System Issues for
Continuous Media, ACM/Springer Multimedia Systems,
Vol. 4, No. 5, October 1996, pp. 269-280

[Seltzer et al. 90] Seltzer, M., Chen, P., Ousterhout, J.: Disk
Scheduling Revisited, Proc. of 1990 USENIX Technical
Conf., Washington, D.C., USA, January 1990, pp. 313-323

[Seltzer et al. 93] Seltzer, M., Bostic, K., McKusick, M.K.,
Staelin, C.: An Implementation of a Log-Structured File
System for UNIX, Proc. of 1993 USENIX Winter Conf., San
Diego, CA, USA, January 1993

[Shenoy et al. 99] Shenoy, P.J., Goyal, P., Vin, H.M.: Architec-
tural Considerations for Next Generation File Systems, to be
published in Proc. of 7th ACM Multimedia Conf. (ACM
MM’99), Orlando, FL, USA, October 1999

[Shenoy et al. 98a] Shenoy, P.J., Goyal, P., Rao, S.S., Vin, H.M.:
Symphony: An Integrated Multimedia File System, Proc. of
ACM/SPIE Multimedia Computing and Networking 1998
(MMCN’98), San Jose, CA, USA, January 1998, pp. 124-
138

[Shenoy et al. 98b] Shenoy, P.J., Vin, H.M.: Cello: A Disk
Scheduling Framework for Next Generation Operating Sys-
tems, Proc. of 1998 ACM Int. Conf. on Measurement and
Modeling of Computer Systems (SIGMETRICS’98), Madi-
son, WI, USA, June 1998

[Spatscheck et al. 99] Spatscheck, O., Peterson, L.L.: Defending
Against Denial of Service Attacks in Scout, Proc. of 3rd

USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’99), New Orleans, LA, USA, February
1999, pp. 59-72

[Steere et al. 99] Steere, D.C., Goel, A., Gruenenberg, J.,
McNamee, D., Pu, C., Walpole, J.: A Feedback-driven Pro-
portion Allocator for Real-Rate Scheduling, Proc. of 3rd

USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’99), New Orleans, LA, USA, February
1999, pp. 145-158

[Steinmetz 95] Steinmetz, R.: Analyzing the Multimedia Operat-
ing System, IEEE Multimedia, Vol. 2, No. 1, Spring 1995,
pp. 68-84

[Stoica et al. 97] Stoica, I., Abdel-Wahab, W., Jeffay, K.: On the
Duality between Resource Reservation and Proportional
Share Resource Allocation, Multimedia Computing and
Networking 1997, SPIE Proc. Series, Volume 3020, San
Jose, CA, USA, February 1997, pp. 207-214

[Tanenbaum 92] Tanenbaum, A.S.: Modern Operating Systems,
Prentice Hall , 1992

[Tezuka et al. 96] Tezuka, H., Nakajima, T.: Simple Continuous
Media Storage Server on Real-Time Mach, Proc. of 1996
USENIX Annual Technical Conf., San Diego, CA, USA,
January 1996

[Thadani et al. 95] Thadani, M.N., Khalidi, Y.A.: An Eff icient
Zero-Copy I/O Framework for UNIX, Technical Report
SMLI TR-95-39, Sun Microsystems Laboratories Inc., May
1995

[Tzou et al. 91] Tzou, S.-Y., Anderson, D.P.: The Performance of
Message-passing using Restricted Virtual Memory Remap-
ping, Software - Practice and Experience, Vol. 21, No. 3,
March 1991, pp. 251-267

[Verghese et al. 98] Vergehese, B., Gupta, A., Rosenblum, M.:
Performance Isolation: Sharing and Isolation in Shared
Memory Multiprocessors, Proceeding of 8th Int. Conf. on
Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-VIII) , San Jose, CA, USA, Octo-
ber 1998

[Vernick et al. 96] Vernick, M., Venkatramani, C., Chiueh, T.:
Adventures in Building the Stony Brook Video Server, Proc.
of 4th ACM Multimedia Conf. (ACM MM ’96), Boston, MA,
USA, November 1996, pp. 287-295

[Vin et al. 93] Vin, H.M., Rangan, V.: Admission Control Algo-
rithm for Multimedia On-Demand Servers, Proc. of 4th Int.
Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV’93), La Jolla, CA,
USA, 1993, pp. 56-68

[Viswanathan et al. 96] Viswanathan, S., Imielinski, T.: Metro-
politan area Video-on-Demand Service Using Pyramid
Broadcasting, Multimedia Systems, Vol 4., No. 4, 1996, pp.
197-208

[Waldspurger 95] Waldspurger, C.A.: Lottery and Stride Sched-
uling: Flexible Proportional-Share Resource Management,
PhD thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, September 1995

[Wang et al. 99a] Wang, R.Y., Anderson, T.E., Patterson, D.A.:
Virtual Log Based File Systems for a Programmable Disk,
Proc. of 3rd USENIX Symp. on Operating Systems Design
and Implementation (OSDI’99), New Orleans, LA, USA,
February 1999, pp. 29-43

26 T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus

[Wang et al. 99b] Wang, C., Goebel, V., Plagemann, T.: Tech-
niques to Increase Disk Access Locality in the Minorca
Multimedia File System (Short Paper), to be published in
Proc. of 7th ACM Multimedia Conf. (ACM MM ’99), Or-
lando, FL, USA, October 1999

[Wijayaratne et al. 99] Wijayaratne, R., Reddy, A.L.N.: Inte-
grated QoS Management for Disk I/O, Proc. of IEEE Int.
Conf. on Multimedia Computing and Systems (ICMCS’99),
Florence, Italy, June 1999

[Wolf et al. 96] Wolf, L.C., Burke, W., Vogt, C.: Evaluation of a
CPU Scheduling Mechanism for Multimedia Systems, Soft-
ware - Practice and Experience, Vol. 26, No. 4, April 1996,
pp. 375-398

[Yau et al. 96] Yau, D.K.Y., Lam, S.S.: Operating System Tech-
niques for Distributed Multimedia, Technical Report TR-95-
36 (revised), Department of Computer Sciences, University
of Texas at Austin, Austin, TX, USA, January 1996

[Yu et al. 93] Yu, P.S., Chen, M.S., Kandlur, D.D.: Grouped
Sweeping Scheduling for DASD-Based Multimedia Storage
Management, ACM Multimedia Systems, Vol. 1, No. 3,
1993, pp. 99-109

[Zhang 91] Zhang, L.: Virtual Clock: A New Traff ic Control Al-
gorithm for Packet Switching Networks, ACM Transactions
on Computer Systems, Vol. 9, No. 3, May 1991, pp. 101-
124

[Zhang et al. 95] Zhang, A., Gollapudi, S.: QoS Management in
Educational Digital Library Environments, Technical Report
CS-TR-95-53, State University of New York at Buffalo,
New York, NY, USA, 1995

