
GPU-accelerated Real-time Gastrointestinal
Diseases Detection

Konstantin Pogorelov∗,•, Michael Riegler∗,•, Pål Halvorsen∗,•, Peter Thelin Schmidt‡,◦

Carsten Griwodz∗,•, Dag Johansen[, Sigrun Losada Eskeland♣, Thomas de Lange†,♣

∗Simula Research Laboratory, Norway †Cancer Registry of Norway ‡Department of Medicine, Karolinska Institute, Sweden
•University of Oslo, Norway ◦Center for Digestive Diseases, Solna and Karolinska University Hospital, Sweden

♣Bærum Hospital, Vestre Viken Health Trust, Norway [The Arctic University of Norway, Norway
Email: konstantin@simula.no

Abstract—The process of finding diseases and abnormalities
during live medical examinations has for a long time depended
mostly on the medical personnel, with a limited amount of
computer support. However, computer-based medical systems are
currently emerging in domains like endoscopies of the gastroin-
testinal (GI) tract. In this context, we aim for a system that en-
ables automatic analysis of endoscopy videos, where one use case
is live computer-assisted endoscopy that increases disease- and
abnormality-detection rates. In this paper, a system that tackles
live automatic analysis of endoscopy videos is presented with a
particular focus on the system’s ability to perform in real time.
The presented system utilizes different parts of a heterogeneous
architecture and can be used for automatic analysis of high-
definition colonoscopy videos (and a fully automated analysis
of video from capsular endoscopy devices). We describe our
implementation and report the system performance of our GPU-
based processing framework. The experimental results show real-
time stream processing and low resource consumption, and a
detection precision and recall level at least as good as existing
related work.

Index Terms—medical; multimedia; information; systems;
classification

I. INTRODUCTION

With the rapid developments in technology that allow minia-
turization of cameras and sensors for moving them through the
human body, there is an increasing need for real-time medical
systems. These improvements lead to a lot of advantages for
both patients and doctors, but also challenges for the computer
science community. A system supports humans in a critical
field like medicine has to fulfill several requirements, including
fault tolerance, data security and privacy. Additionally, to
support real-time detection of diseases in medical images and
videos, the system must exhibit high performance and low
resource usage.

In this paper, we describe an new version of system called
EIR [1] that provides real-time support for medical image
and video data analysis, and we enhance the system with
GPU acceleration support. Our goal is to provide an effi-
cient, flexible and scalable analysis and support system for
endoscopy of GI tract (see figure 1). It should be applicable
both for supporting traditional live endoscopies by giving real-
time support and for offline processing of videos generated
by wireless capsule endoscopes that are used in large-scale

screening. At this time, our system detects abnormalities like
those shown in figure 2, in videos of the colon. It does this
through a combination of filters using machine learning, image
recognition and extraction of global and local image features.
However, our system is not limited to this use case, but can
be extended to cover analysis of the entire GI tract. Therefore,
we developed a live system that can be utilized as a computer-
aided diagnostic system and a scalable detection system.

Fig. 1. Our system targets the whole GI
tract (Image: kaulitzki/shutterstock.com).

In the scenario of medical
image processing
and computer-aided
diagnosis, high precision
and recall are important
and the object of many
studies. Our system must
therefore both provide
an accurate detection
and analysis of the
data, and address the
often ignored processing
performance at the same
time. This is important
for live feedback during
examinations.

A closer look at the
most recent and com-
plete related work, Polyp-
Alert [2], reveals that
real-time speeds are not achieved by the current existing sys-
tems. To tackle this problem, we have extended and improved
the EIR system [3], [4], focusing on the speed of detection.
Speedup is gained by applying heterogeneous technologies,
in particular graphical processing units (GPUs), where we
distribute the workload on a large number of processing cores.
The initial results from our experimental evaluation show real-
time stream processing and low resource consumption, with a
precision and recall of detection at least as good as existing
related systems. Compared to existing systems, it is more
efficient, scales better with more data at higher resolutions
and, it is designed to support different diseases in parallel at
run time.



(a) Colon Polyp (b) Colorectal Cancer (c) Ulcerative Colitis (d) Crohn’s Disease (e) Diverticulosis

Fig. 2. Some examples of abnormalities that can be found using colonoscopy (images are from Wikimedia Commons).

The rest of the paper is organized as follows. First, we
present related work in section II. Then, in section III-A, we
briefly describe the base system architecture. This is followed
by a presentation of the improved system in section III-B.
Next, we present the performance of the system in section IV
with polyp detection as a use case. Finally, we draw conclu-
sions in section V.

II. RELATED WORK

Research on automatic detection of abnormalities in the GI
tract is usually focused and limited to a very specific disease
or abnormality. Most existing work targets detection of polyps
in the colon with a specific type of camera, both due to lack
of available test data, but also since it is easier to narrow the
focus and create more specialized solutions. Systems aimed
at polyp detection [5], [6], [7] are promising, but there is a
lack of systems that are able to perform their analysis in real-
time, which is required to support doctors with computer-aided
diagnosis during colonoscopies.

In terms of detection performance, several systems and
algorithms have been presented in literature with promising
performance. The most recent and also best-performing one is
the polyp-detection system of Wang et al. [2]. The presented
Polyp-Alert system is able to provide near real-time feedback
during colonoscopies. Near real-time in this context is defined
as being able to process 10 frames per second. This is
done by using visual features and a rule-based classifier to
detect the edges of polyps. The system reaches an impressive
performance of 97.7% correctly detected polyps. The dataset
that has been used for this tests contains 52 videos taken
from different colonoscopies. The dataset is not available and
a direct comparison is therefore not possible. Polyp-Alert is
at the moment limited to polyp detection and does not give
real-time feedback for current 25 fps colonoscopy systems.

Nawarathna et al. [8] presented an approach that is not
limited to polyp detection in colonoscopy videos. It is also
able to detect abnormalities like bleeding. To achieve this, a
texton histogram of an image block is used. Nevertheless, this
system does not reach real-time performance.

A possible solution to achieve real-time instead of near real-
time performance is the SAPPHIRE middleware and software
development kit for medical video analysis [9]. The toolkit
has been used to built the EM-Automated-RT software [10].
EM-Automated-RT does real-time video analysis to determine
the quality of a colonoscopy procedure, and it is able to give

visual feedback to the endoscopist performing the procedure.
This is done to achieve optimal accuracy of the inspection
of the colon during the procedure. Nevertheless, it is limited
to the assessment of the endoscopist’s quality, and does not
automatize disease detection itself.

A dominant trend to speed up processing of CPU-intensive
tasks is to offload processing tasks to GPUs. Stanek et al. [9],
[10] indicate that utilizing a GPU and program it using
either CUDA1 or OpenCL2 can be the right way to achieve
real-time performance. In other areas this has already been
explored to a certain extent. For example, we applied it in
sport technology [11], [12], where GPUs were used to improve
the video processing performance to achieve live, interactive
panning and zooming in panorama video.

In summary, actual computer-aided diagnostic systems for
the GI tract do not provide real-time performance in com-
bination with a sufficient detection or localisation accuracy.
Therefore, we present a system focusing on both high accuracy
detection and real-time performance. Additionally, the aim is
to provide flexibility for other diseases that can be detected.

III. SYSTEM

In our research, we target a general system for automatic
analysis of GI tract videos with high detection accuracy, abnor-
mality localisation in the video frames, real-time performance
and an architecture that allows easy extensions of the system.
In this paper, we focus on achieving real-time performance
without sacrificing high detection accuracy.

A. Basic Architecture

Our system consists of three main parts. The first is feature
extraction. It is responsible for handling input data such as
videos, images and sensor data, and extracting and providing
features from it. The most time-consuming aspect here is the
extraction of information from the video frames and images.

The second part is the analysis system. Currently, a search-
based classifier that is similar to a K-nearest-neighbour ap-
proach [13] is implemented. The search-based classifier use
more than 20 different global image features and combinations
of them for the classification. In our use case of polyp
detection, we used an information gain analysis [14] to identify
a combination of the features Joint Composite Descriptor
(JCD) (which is a combination of Fuzzy Color and Texture

1http://www.nvidia.com/object/cuda_home_new.html
2http://developer.amd.com/tools-and-sdks/opencl-zone/

http://www.nvidia.com/object/cuda_home_new.html
http://developer.amd.com/tools-and-sdks/opencl-zone/


Histogram (FCTH) and Color and Edge Directivity Descriptor
(CEDD)) and Tamura as the best working ones. The features
mainly focus on texture and color, and a detailed description
can be found in [15]. Additionally, a localisation algorithm
for polyp localisation is supported. The implementation of
this part is modular and can be extended with additional
diseases, classifiers or algorithms as needed. Of course, adding
additional modules will require more computing power to keep
the systems real-time ability. We address this by designing a
heterogeneous architecture.

The last part is the presentation system. It presents the
output of the real-time analysis to the endoscopist. The most
challenging aspect here is that the presentation should not
introduce any delays, which would make the system unsuitable
for live examinations. The presentation of the results is imple-
mented in a light-weight way using web technologies. The
advantage is that it does not require additional installations,
which sometimes can be problematic in a hospital environment
and due to its simplicity it does not consume relevant amounts
of resources.

The first version of our system worked on at most two image
features at a time, it was restricted to a single computer, and
the localisation part did not achieve real-time speed for full
high-definition videos. Its performance is given for comparison
in section IV-B.

To acheive real-time speed, the architecture had to be
improved. We chose to do this by applying heterogeneous
processing elements. As discussed in the related work, the
most promising approach is the utilization of GPUs.

B. Heterogeneous Architecture Improvement

To improve the performance of our initial basic system
architecture, we re-implemented most compute-intensive parts
in CUDA. CUDA is a commonly used GPU processing frame-
work for Nvidia graphic cards. We designed an architecture
with a heterogeneous processing subsystem as depicted in
figure 3.

At the moment, GPU-accelerated processing is implemented
for a number of features (JCD, which includes FCTH and
CEDD, and Tamura) for the feature descriptor extraction, color
space conversion, image resizing and prefiltering.

In our architecture, a main processing application interacts
with a modular image-processing subsystem both implemented
in Java. The image-processing subsystem uses a multi-threaded
architecture to handle multiple image processing and feature
extraction requests at the same time. All compute-intensive
functions are implementated in Java to be able to compare
performance with the heterogeneous implementation, which is
transparently accessible from Java code through a GPU CLib
wrapper. The JNA API is used to access the GPU CLib API
directly from the image processing subsystem. The GPU CLib
is implemented in C++ as a Linux shared library that connects
to a stand-alone processing server and pipes data streams for
handling by CUDA implementations. Shared memory is used
to avoid the performance penalty of data copying. Local UNIX
sockets are used to send requests and receive status responses

Fig. 3. The main processing application consisting of the indexing and
classification parts uses the GPU-accelerated image processing subsystem.
This subsystem provides feature extraction and image filtering algorithms.
The most compute-intensive procedures are executed on a stand-alone CUDA-
enabled processing server. The interaction between application and server is
done via a GPU CLib shared library, which is responsible for maintaining
connections and streaming data to and from the CUDA-server.

from the CUDA server because they can be integrated more
easily with asynchronous on the JNI side then shared-memory
semaphores. The CUDA server is implemented in C++ and
uses CUDA SDK to perform computations on GPU. The
CUDA server and all heterogeneous-support subsystems are
built with distributed processing in mind, and can easily be
extended with multiple CUDA servers running locally or on
several remote servers.

The processing server can be extended with new feature
extractors and advanced image processing algorithms. It en-
ables the utilization of multi-core CPU and GPU resources.
As an example, the structure of the FCTH feature extractor
implementation is depicted in figure 4. It shows that for the
image features, all pixel-related calculations are executed on
the GPU. In the case of the FCTH feature, this includes also
the processing of a multi-threaded shape detector and fuzzy
logic algorithms.

To achieve better performance, a heterogeneous processing
subsystem provides the transparent caching of input and inter-
mediate data, which reduces the CPU-GPU bandwidth usage
and eliminates redundant data copy operations during image
processing.

IV. EVALUATION

To evaluate our system, we use colorectal polyp detection
as a case study. As test data, the ASU-Mayo Clinic polyp
database3 has been used. This dataset is the largest publicly
available dataset consisting of 20 videos. We converted the
videos from WMV to MPEG-4 for the experiments. The 20
videos have a total number of 18.781 frames with a maximum
resolution of 1920 × 1080 pixels (full high definition) [16].
Further, we concentrate the experiment on the detection part.

3http://polyp.grand-challenge.org/site/Polyp/AsuMayo/

http://polyp.grand-challenge.org/site/Polyp/AsuMayo/


Fig. 4. GPU-acceleration is used to extract various features from input
frames. The figure shows an example of our FCTH feature implementation.
The input frame is split into a number of non-overlapping blocks. Each of
them is processed separately by two GPU-threads. The main processing steps
include color space conversion, size reduction, shape detection and fuzzy logic
computations.

Localisation of the polyp in the frame is also implemented
and optimized, but due to space restrictions, it is not included
here.

A. Polyp Detection

In terms of detection performance, we reach acceptable
results, as illustrated in table I. The actual performance of
the system has been assessed using a combination of JCD and
Tamura features. For a robust and representative evaluation, we
conducted a leave-one-out cross-validation with all available
video sequences. The training of the system using 19 videos
takes around 2 minutes. Due to the problem that different
video sequences contribute values based on different numbers
of video frames, we weighted the values contributed by every
single video sequence with the overall number of frames in
the sequence. This led to an average precision of 0.9388, an
average recall of 0.9850, and an average F1 score value of
0.9613. That means that the system can find polyps with a
precision of almost 94% and detect almost 99% of all frames
that contain a polyp.

These results demonstrate that the system is able to reach
high detection accuracy and also, that it can compete with
other state-of-the-art systems. For example, Wang et al. [2]
reach with their system a recall of 97.70% while our system
reaches 98.50%. Hwang et al. [17] report a precision of
83.00% while we achieve 93.88%. In terms of sensitivity, we
reach 96.37% compared to Wang et al. [18] with 81.40%,
Alexandre et al. [19] with 96.69% and Cheng et al. [20]
with 86.20%. Thus, our system performs at the high level
of precision compared to the best related systems. However,
more important in this paper is the comparison of our own
basic architecture with the improve heterogeneous approach
in terms of their time-performance.

TABLE I
LEAVE-ONE-OUT CROSS-VALIDATION FOR 20 VIDEOS IN THE USED

DATASET. THE TABLE DEPICTS TP (TRUE POSITIVES), TN (TRUE
NEGATIVES), FP (FALSE POSITIVES), FN (FALSE NEGATIVES) AND THE

METRICS PRECISION, RECALL AND F1 SCORE.

Video TP TN FP FN Precision Recall F1
np_5 1 680 0 0 1 1 1
np_6 1 836 0 0 1 1 1
np_7 1 767 0 0 1 1 1
np_8 1 710 0 0 1 1 1
np_9 1 1,841 0 0 1 1 1
np_10 1 1,923 0 0 1 1 1
np_11 1 1,548 0 0 1 1 1
np_12 1 1,738 0 0 1 1 1
np_13 1 1,800 0 0 1 1 1
np_14 1 1,637 0 0 1 1 1
wp_2 140 9 20 70 0.875 0.6666 0.7567
wp_4 908 1 0 0 1 1 1
wp_24 310 68 127 12 0.7093 0.9627 0.8168
wp_49 421 12 62 4 0.8716 0.9905 0.9273
wp_52 688 101 284 31 0.7078 0.9568 0.8137
wp_61 162 10 165 0 0.4954 1 0.6625
wp_66 223 12 165 16 0.5747 0.9330 0.7113
wp_68 172 51 20 14 0.8958 0.9247 0.9100
wp_69 265 185 138 26 0.6575 0.9106 0.7636
wp_70 379 1 0 29 1 0.9289 0.9631

Weighted average: 0.9388 0.9850 0.9613

B. Live Analysis in Real-time

Basic Architecture. The basic multi-core CPU-only archi-
tecture performance results are depicted in figure 5. For all the
tests, we used 3 videos from 3 different endoscopic devices
and different resolutions. The three videos are wp_4 with
1, 920×1, 080, wp_52 with 856×480 and np_9 with 712×480.
We chose these videos to show the performance under the
different requirements that the system will have to face when
in practical use. The computer used was a Linux server with
32 AMD CPUs and 128 GB memory. The figures show, that
the basic system was able to reach real-time performance for
full HD videos using a minimum of 16 CPU cores and at least
12 GB of memory. This has the huge disadvantage that real-
time speed is only achieved on expensive multi-CPU systems.
In terms of memory, tests showed that the system has rather
small requirement. This is good, since it means that memory
consumption is not a bottleneck to scalability, and that we can
ignore it for now.

Heterogeneous Architecture. The videos used to evaluate
the system performance have different resolutions. The res-
olutions are full HD (1920 × 1080), WVGA1 (856 × 480),
WVGA2 (712 × 480) and CIF (384 × 288). They are labelled
correspondingly in figures 6, 7, 8 and 9. A framerate of 30
frames per second (FPS) was assumed, and consequently, 33.3
milliseconds processing time per frame was considered real-
time speed. Our results for the heterogeneous architecture were
obtained using a conventional desktop computer with an Intel
Core i7 3.20GHz CPU, 8 GB RAM and a GeForce GTX 460
GPU. To be able to compare the basic and improved systems
directly, the same Java source code from the basic system
was used to collect the evaluation metrics. In the figures,
the basic system’s results are labelled as Java. The improved



Fig. 5. The detection performs efficiently and the required frame rate is
reached with 12 GB of memory and 16 CPU cores used in parallel on cluster-
based computation platform without utilizing heterogeneous architecture.

system’s results with disabled GPU-acceleration are labelled
as C. Finally, the improved system’s run in the heterogeneous
mode with enabled GPU-acceleration is labelled as GPU.

The performance evaluation shows, that the basic archi-
tecture can process full HD frames using all 8 available
CPU cores and up to 4 GB of memory at 6.5 FPS for Java
and 13.8 FPS for the C implementations (see figure 6) with
corresponding frame processing times of 154ms and 72ms,
respectively (see figure 8). For the smaller frame sizes, real-
time speed was reached at most 4 CPU cores and at most 4 GB
of memory. The maximum frame rates that were be reached
were 49 FPS, 51 FPS and 66 FPS for WVGA1, WVGA2 and
CIF frame sizes, respectively (see figure 7 and figure 9).

The evaluation of the improved heterogeneous system shows
that the GPU-enabled architecture can easily process full HD
frames using only 4 CPU cores (see figure 6) and up to 5
Gb of memory with a frame processing time of 32.6ms (see
figure 8). The maximum frame rate for full HD frames was 36
FPS using all 8 CPU cores. For the smaller frame sizes, the
real-time requirements were reached with only 1 CPU core
and up to 4.5 GB of memory. The maximum frame rate that
we achieved was around 200 FPS (see figure 7 and figure 9).

The results show clearly, that the given hardware system
with the basic architecture cannot reach real-time performance
for full HD videos even using all available CPU cores, and
only for the low-resolution WVGA videos, real-time can be
reached. For the improved heterogeneous system, the real-time
performance for full HD videos is easily reached using only 4
CPU cores and one outdated GPU. The smaller videos can be
processed utilizing only one CPU core plus GPU. Memory size
is not a limiting factor and the system can be deployed even
on desktop PCs with a general-purpose GPU as an accelerator.

These quantitative results illustrate, that using a hetero-
geneous architecture is key to real-time performance and
parallel analysis of videos with different approaches. Fur-
thermore, the improved heterogeneous system has significant
over-performance in terms of real-time video processing. This

Fig. 6. The improved GPU-enabled heterogeneous algorithm reaches real-time
performance (RT line) with 30 frames per second for full HD (1920×1080)
videos on a desktop PC using only 4 CPU cores and 5 Gb of memory. The
maximum frame rate is around 36 FPS using 8 CPU cores. The Java and C
implementations cannot reach real-time performance on the used hardware.

Fig. 7. The smaller WVGA1 (856 × 480), WVGA2 (712 × 480) and
CIF (384 × 288) videos can be processed by the improved GPU-enabled
heterogeneous algorithm in real-time using only 1 CPU core. The maximum
frame processing rate reaches more than 200 FPS. These results can be
improved by putting all feature-related computations on the GPU.

makes it possible to implement more feature extractors, classi-
fiers and many other image processing algorithms to increase
the number of detectable diseases by our system while keeping
the real-time capability.

V. CONCLUSION

Efficient and fast data analysis of medical video data is im-
portant for to several reasons, including real-time feedback and
increased system scalability. In this paper, we have presented
a computer-based medical systems that tackles live automatic
analysis of endoscopy videos. The presented system utilizes
different parts of heterogeneous architectures and will soon
be tested in a clinical trial with high definition colonoscopy
videos. Compared to existing systems, our system provides
an abnormality detection precision and recall level at least
as good as existing related work. However, with an achieved



Fig. 8. The processing time for the GPU-accelerated algorithm decreases
slightly with increasing number of used CPU cores for a single full HD frame.
This happens due to the CPU-parallel implementation of feature comparison
and search algorithms which are not as compute intensive as feature extraction.
The Java and C implementations reach the minimum frame processing time
with 4 used CPU cores. The reason is that the used CPU has 4 real cores
with hyper-threading feature enabled and it cannot handle CPU-intensive
calculations efficiently for all 8 (real plus virtual) cores.

Fig. 9. For the smaller frame sizes the GPU-accelerated algorithm results in
a processing time far below the real-time margin. The minimum is reached
with 5 milliseconds using 8 CPU cores. This is a prove for the high system
performance and ability to be extended by additional features or to process
several video streams at the same time on a conventional desktop PC.

performance of 200 frames per seconds, it is superior with
respect to video stream processing time and the ability to
provide real-time automatic feedback during live endoscopies.

We continue to optimize and improve our implementation
of the detection system. Ongoing work includes moving the
localisation to the GPU, and we are in the process of extending
the number of diseases detected. Our current performance
easily allows for this, and our future multi-disease detection
system will be distributed on several computers.

ACKNOWLEDGMENT

This work has been founded by the Norwegian Research
Council under the FRINATEK program, project "EONS"
(#231687).

REFERENCES

[1] M. Riegler, K. Pogorelov, P. Halvorsen, T. de Lange, C. Griwodz, P. T.
Schmidt, S. L. Eskeland, and D. Johansen, “EIR - efficient computer
aided diagnosis framework for gastrointestinal endoscopies,” in Proc. of
CBMI, 2016.

[2] Y. Wang, W. Tavanapong, J. Wong, J. H. Oh, and P. C. de Groen, “Polyp-
alert: Near real-time feedback during colonoscopy,” Computer methods
and programs in biomedicine, no. 3, 2015.

[3] M. Riegler, K. Pogorelov, J. Markussen, M. Lux, H. K. Stensland,
T. de Lange, C. Griwodz, P. Halvorsen, D. Johansen, P. T. Schmidt,
and S. L. Eskeland, “Computer aided disease detection system for
gastrointestinal examinations,” in Proc. of MMSys, 2016.

[4] K. Pogorelov, M. Riegler, J. Markussen, H. Kvale Stensland,
P. Halvorsen, C. Griwodz, S. L. Eskeland, and T. de Lange, “Efficient
processing of videos in a multi-auditory environment using device
lending of gpus,” in Proc. of MMSys, 2016.

[5] Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. C. de Groen, “Near real-
time retroflexion detection in colonoscopy,” IEEE Journal of Biomedical
and Health Informatics, vol. 17, no. 1, pp. 143–152, 2013.

[6] Y. Wang, W. Tavanapong, J. S. Wong, J. Oh, and P. C. de Groen,
“Detection of quality visualization of appendiceal orifices using local
edge cross-section profile features and near pause detection,” IEEE
Biomedical Engineering (BME), vol. 57, no. 3, pp. 685–695, 2010.

[7] Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. C. de Groen,
“Computer-aided detection of retroflexion in colonoscopy,” in Proc. of
IEEE International Symposium on Computer-Based Medical Systems
(CBMS), 2011, pp. 1–6.

[8] R. Nawarathna, J. Oh, J. Muthukudage, W. Tavanapong, J. Wong, P. C.
De Groen, and S. J. Tang, “Abnormal image detection in endoscopy
videos using a filter bank and local binary patterns,” NC, 2014.

[9] S. R. Stanek, W. Tavanapong, J. Wong, J. Oh, R. D. Nawarathna,
J. Muthukudage, and P. C. De Groen, “Sapphire middleware and
software development kit for medical video analysis,” in Proc. of CBMS,
2011, pp. 1–6.

[10] ——, “Sapphire: A toolkit for building efficient stream programs
for medical video analysis,” Computer methods and programs in
biomedicine, vol. 112, no. 3, pp. 407–421, 2013.

[11] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss,
H. K. Alstad, A. Mortensen, R. Langseth, S. Ljødal, Ø. Landsverk
et al., “Bagadus: An integrated real-time system for soccer analytics,”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 10, no. 1s, p. 14, 2014.

[12] R. Langseth, V. R. Gaddam, H. K. Stensland, C. Griwodz, and
P. Halvorsen, “An evaluation of debayering algorithms on gpu for
real-time panoramic video recording,” in Proc. of ISM, 2014, pp.
110–115. [Online]. Available: http://dx.doi.org/10.1109/ISM.2014.59

[13] M. Riegler, K. Pogorelov, M. Lux, P. Halvorsen, C. Griwodz,
T. de Lange, and S. L. Eskeland, “Explorative hyperbolic-tree-based
clustering tool for unsupervised knowledge discovery,” in CBMI, 2016.

[14] J. T. Kent, “Information gain and a general measure of correlation,”
Biometrika, vol. 70, no. 1, pp. 163–173, 1983.

[15] M. Lux and O. Marques, Visual Information Retrieval Using Java and
LIRE. Morgan & Claypool, 2013, vol. 25.

[16] N. Tajbakhsh, S. Gurudu, and J. Liang, “Automated polyp detection
in colonoscopy videos using shape and context information,” IEEE
Transactions on Medical Imaging, 2015.

[17] S. Hwang, J. Oh, W. Tavanapong, J. Wong, and P. de Groen, “Polyp
detection in colonoscopy video using elliptical shape feature,” in Proc.
of ICIP, Sept 2007, pp. 465–468.

[18] Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. C. de Groen, “Part-
based multiderivative edge cross-sectional profiles for polyp detection
in colonoscopy,” IEEE Journal of Biomedical and Health Informatics,
vol. 18, no. 4, pp. 1379–1389, 2014.

[19] L. A. Alexandre, J. Casteleiro, and N. Nobreinst, “Polyp detection in
endoscopic video using svms,” in Proc. of PKDD, 2007, pp. 358–365.

[20] D.-C. Cheng, W.-C. Ting, Y.-F. Chen, Q. Pu, and X. Jiang, “Colorectal
polyps detection using texture features and support vector machine,” in
Advances in Mass Data Analysis of Images and Signals in Medicine,
Biotechnology, Chemistry and Food Industry. Springer, 2008, pp. 62–
72.

http://dx.doi.org/10.1109/ISM.2014.59

