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Abstract—Exploring and annotating collections of images with-
out meta-data is a laborious task. Visual analytics and infor-
mation visualization can help users by providing interfaces for
exploration and annotation. In this paper, we show a prototype
application that allows users from the medical domain to use
feature-based clustering to perform explorative browsing and
annotation in an unsupervised manner. For this, we utilize global
image feature extraction, different unsupervised clustering algo-
rithms and hyperbolic tree representation. First, the prototype
application extracts features from images or video frames, and
then, one or multiple features at the same time can be used to
perform clustering. The clusters are presented to the users as a
hyperbolic tree for visual analysis and annotation.

I. INTRODUCTION

Content-based image retrieval has been an important area
of research for quite some time now [1]. A lot of different
techniques and methods have been created, and the approaches
have become more and more sophisticated. However, there is
no one-fits-all approach, and the tools often must be adapted
to a particular use-case.

One of the domains we are focusing on is medical images
from the human gastrointestinal tract, taken with an endoscope
camera inside the body to detect diseases. Even though these
images are coming from a particular patient and have been
annotated by a particular endoscopist, the domain is not as
meta-data rich as intuitively anticipated. Highly trained and
specialized medical personnel are scarce human resources,
and their priority is on performing medical examinations,
not annotating or giving sense to images and videos [2],
[3]. Moreover, if videos and frames are shared, the patients
personalized information has to be purged from this data or
anonymized to ensure privacy of the patients, and especially, in
case of shared videos and frames from endoscopic procedures,
meta-data is a rare commodity. Therefore, a lot of videos and
video frames remain only loosely annotated, and retrieving the
images later based on available information is hard.

In this context, we present a prototype mainly designed
for visual analysis and annotation of endoscopic images. The
prototype application has two main benefits. First, it allows
clinical personnel to investigate and analyze vast collections
of frames from endoscopic procedures by providing a con-
figurable focus and context view based on frame similarity.

Second, it allows for utilizing the focus and context view
for annotation and tagging of the dataset, making it more
accessible for complementary information systems. While we
developed this prototype application for a medical scenario,
we strongly believe, and will also show in the evaluation,
that it is usable for other scenarios involving interactive
browsing, visual analysis or annotation of image or video data.
We first investigate the relation between focus and context
views and content-based image similarity, as well as discuss
the underlying frameworks of the application. We then pick
two diverse datasets, one from the medical domain and one
from social image collections, to investigate if the proposed
abstraction and clustering of the images is applicable through
an evaluation. Then, we describe our prototype and show how
it can be used to support professional users in the domain
of analysis of endoscopic video frames in their daily work
routine. Finally, we discuss the contribution of the application
and further work on the topic.

II. RELATED WORK

Chi [4] defines information visualization in four stages
(Table I). First, raw data is transformed into an analytical
abstraction, which is transformed into a visualization abstrac-
tion, which itself then is presented in a view. As indicated in
Table I, the data we operate on is images, and for the view
stage, we chose a hyperbolic tree visualization.

TABLE I
PROTOTYPE STAGES OF VISUALIZATION AND CORRESPONDENCE.

[ ] Stage [
Raw data

Analytical abstraction
Visualization abstraction
View

In our prototype |

Images/ Video frames

Image feature descriptors

Clusters, centroids and distance values
Hyperbolic tree

ENGRSCITN I

One of the first and most prominent of these approaches
was the hyperbolic browser by Lamping, Rao and Pirolli [5].
The underlying idea is, that the visualization abstraction is
based on a hierarchy, i.e., a directed tree. In a typical view,
the objects would be arranged in a certainly, with those in
focus being larger and closer to the center, while those not in
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focus, i.e., the ones being the context, are pushed to the rim
of the circle. A hyperbolic view on a hierarchical structure is
best described with a fish eye view on a particular tree branch
or leaf, with the rest being visible, but out of focus.

The hyperbolic tree visualization is a graph based informa-
tion visualization strategy [6], which has been applied mostly
to data that already closely resembles a tree structure or a
directed graph from which a tree can be abstracted including
hypertext collections like the WWW, social networks, ontolo-
gies and other data where transformation between raw data and
abstraction remains on a low complexity level. One of the few
examples, where image collections are interpreted as graph
structure based on their content, is presented in [7], where the
authors employ a force directed placement algorithm to display
images on a large video wall. Without the focus and context
view, however, the authors are limited by the size of the video
wall. Other work of the same authors focuses on displaying
images based on content based similarity in a Treemap [8].
The PhotoTOC project [9], on the other hand, used clustering
to create an overview+detail view by clustering images based
on color histograms and then presenting the clusters by their
medoids. In [10], images are displayed based on their distance
with respect to two shape and texture features. Clustering does
not take place, but the focus of the visualization lies on the
query image and the k nearest neighbors. The rest of the result
list is pushed to the outer rim of the visualization providing a
context.

ITII. ANALYTICAL AND VISUAL ABSTRACTION

The features for clustering, i.e., the analytical abstraction
as defined in Table I, are extracted with LIRE (latest modified
version'). LIRE supports multiple global and local features
out of the box, to allow for easy integration of features
in arbitrary applications. Most notable global ones are the
Color and Edge Directivity Descriptor (CEDD) [11] as well as
the related features including the Joint Composite Descriptor
(JCD) [12], the Fuzzy Color and Texture Histogram (FCTH)
[13], the Pyramid Histogram of Oriented Gradients (PHOG)
[14], the Auto Color Correlogram [15], Local Binary Patterns
[16], CENTRIST [17]. Additionally, it includes the MPEG-
7 features [18] Edge Histogram, Color Layout and Scalable
Color. A detailed description of the extraction process and the
features can be found in [19].

For the visualization abstraction stage (see table I), we use
WEKA [20]. WEKA is a collection of tools for machine
learning and data mining providing also a Java library, which
can be directly combined with the LIRE code for our pro-
totype. In the fusion between these two frameworks, LIRE
is responsible for the feature extraction and also for the main
program logic calling the required functions from WEKA. The
coupling allows for optional change of the employed clustering
routine. For the experiment described in this paper, the X-
means clustering algorithm [21] is used, because X-means
determines the number of the clusters automatically, which is
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an important part of the experiment. Our demo also supports
K-means and hierarchical clustering [22].

One of the main aspects of our demo is interactivity with the
view, i.e., users interact with the created clusters. Clustering,
being a well-known technique in machine learning, is used
to group entities based on a similarity metric. For instance,
images can be group-based on image features (e.g., grouping
those with similar colors), or textual user comments can be
clustered based on the nouns they contain. For our demo,
we use two datasets. One to group pictures showing disease
symptoms in a medical scenario, the other to group pictures
of the same tagging categories in a social image collection.
With visual analysis, these clusters can be investigated by users
with domain knowledge about the images content to confirm
or reject the grouping within an annotation process.

While being developed for a medical scenario, our prototype
is not restricted to a specific domain. Taking advantage of
this, we first investigate the appropriateness of the analytical
abstraction stage, i.e., the selection of features, as well as the
visualization abstraction stage, i.e., the clustering, using two
very different publicly available datasets. The first one is the
intent dataset of Lux et al. [23]. This dataset contains 1,310
images crawled from Flickr as well as results from a survey
regarding the intentions of the photographers and responses
from the photographers as well as crowd-workers judging the
images and annotations. The intent categories, from which
the users had to choose, are (i) preserve a good feeling, (ii)
preserve a bad feeling, (iii) show it to family and friends, (iv)
publish it on-line, (V) support a task of mine and (vi) recall
a specific situation. For this dataset, the experiment is done
for single global features as well as for feature fusions. The
second dataset is the ASU-Mayo Clinic polyp dataset which
is the biggest publicly available dataset for polyp detection in
medical images consisting of 20 videos, with a total number
of 18,781 image frames [24].

On both datasets, we conducted two-step experiments which
are slightly different in their final evaluation metric. The first
step is clustering the images with our tool based on their global
features. The number of clusters is not predetermined, but
suggested by X-means. This step is identical for both datasets.
For the intent dataset, the mean squared error is then calculated
per cluster. In our evaluation, the correlation between the
users’ feedback and the mean square error of the clusters is
computed for the intent dataset. If the correlation coefficient
p is low, i.e., close to —1, we assume that the method works
well, as inter-user-agreement is high while mean square error
is low, or the other way around. p around O or a positive p near
1 would indicate that mean square error and user agreement are
either not correlated or correlated in the wrong way, implying
that the clustering does not work. The intent dataset contains
votes of three different users for each category. The users
indicates on a 5-point Likert scale how representative an image
is for a given category (1, strongly disagree, to 5, strongly
agree). For all user votes, the majority vote is calculated and
all of them are averaged and normalized.

For the ASU dataset, we can not calculate the mean squared
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Fig. 1. Demo system: The left part contains the settings for the users, and the right part shows the output of the clustering as a hyperbolic tree.

error because it contains only binary classification for each
frame: a polyp is visible in the image or not. Instead, we
calculated the purity of the clusters based on the ground truth
provided with the dataset. Furthermore, while we used single
global features for the intent dataset, which have been report
to work well, we used a combination of the JCD and Tamura
features for the ASU dataset. These have been found to work
best for this dataset based on an information gain analysis.
Table II shows the results of the experiment based on the
intent dataset. As expected, a negative correlation is observed,
which means that the clustering results correlate with manual
annotations to a degree indicated by the absolute value of p.
At first, it shows that some global features are more suitable
to create clusters that are similar with user judgments than
others. For example, FCTH is the best feature for detecting
a publish on-line intent for an image. A closer look at the
clusters generated by FCTH shows that this feature can very
well detect if persons are shown in an image, and it seems that
most images used for on-line publishing contain one or more

TABLE I
CORRELATION p BETWEEN MEAN SQUARED ERROR AND USER VOTES FOR
DIFFERENT GLOBAL FEATURES OF THE INTENT DATASET [23].

Feature recall | preserve | publish | show | support | preserve
good bad
CEDD 0,165| 0,194 | 0,205 [0,285| 0,213 -0,05
FCTH 0,085| -0,11 -0,70 |-0,32 | 0,298 | -0,27
Gabor -0,50 | -0,40 -0,03 | -0,15| -0,08 | 0,254
Tamura -0,77 | -0,24 0,050 |-0,55| 0,241 0,517
Luminance Layout 0,060 | -0,32 -0,15 | -0,30 | 0,002 | 0,248
Scaleable Color 0,126 | 0,295 | -0,02 |0,060| -0,05 | 0,094
Opponent Histogram 0,107 | -0,07 -0,10 |-0,03 | 0,085 | -0,003
AutoColor Correlogram | 0,691 | 0,609 0,739 0,779 | -0,47 -0,67
JPEG Coefficent -0,10 | 0,006 | -0,26 |-0,04| -0,48 | 0,107
Edge Histogram -0,17 | 0,643 | -0,26 |-0,06 | -0,51 -0,04
PHOG -0,52 | 0,225 | 0,024 |-042| 0,187 | -0,06
JCD 0,168 | 0,288 | 0,227 | 0,193 | 0,275 -0,26
JointHistogram 0,408 | 0,262 | 0,447 0,238 | 0,396 | -0,40
12 Features Combined | -0,14 | 0,469 | -0,11 |-0,17 | 0,215 | 0,735

persons. Another interesting insight is that semantically similar
clusters are also correlated similar to the same feature, e.g.,
Gabor features for recall situation and preserve good feeling.
This is also an indication that a combination of features is more
suitable to provide clusters that are consistent with with user
judgments. The last important insight, which is given by this
first experiment, is that a simple combination of all features
does not automatically lead to better correlation. This indicates
that the right choice of feature combinations is important for
clustering and that a metric like information gain can give
an idea about what features to combine, which we also used
in our next experiment. The second experiment with the ASU
dataset revealed something similar to the previous experiment.
First, we performed information gain analysis to identify the
two best features for this dataset. This led us to the features
JCD and Tamura, which we combined using early fusion.
Based on these features, we performed 4 different tests with
different numbers of clusters. We used X-means to determine
four clusterings of the dataset. We let X-means determine the
number of clusters ¢ for one experiment, then we clustered
with ¢ € {2,4,100}. Based on the created clusters, we
calculated the average purity (precision based on the majority
class for each cluster). For ¢ equals 2, 4 and 100, we got a
purity of 77%, 97% and 95%, respectively. For ¢ = 234, the
c proposed by the X-means algorithm, the purity is 97%. This
indicates that the clustering leads to meaningful results also
for the ASU dataset and therefore supports our approach for
analytical and visualization abstraction.

IV. PROTOTYPE AND DEMO

Our prototype application combines content-based simi-
larity, unsupervised classification and focus/context views to
provide a way to easily explore, analyze and annotate a vast
number of video frames or images. Figure 1 shows a screen



shot of the demo application. On the upper left side, users can
choose the folder containing the image collection. Below that,
the clustering algorithm can be selected. At the moment, we
support 3 different algorithms (K-means, X-means and hier-
archical clustering). After selecting the clustering algorithm,
the application allows to choose one or several different image
features. For the screen shot, we limited the list, but the final
demo will contain all of the image features provided by LIRE.
If more than one feature is picked, they will be combined
using early fusion. The final options allow the user to specify
the clustering parameters. As a default, we use the values
recommended by WEKA. After the users choose the images
and all the options, a click on Apply creates the clusters and
presents them as a hyperbolic tree on the right site. The cluster
leaves are represented using the image that is closest to the
cluster center, i.e., the cluster medoid. It is possible to interact
with the tree by zooming and turning it into different angles.
Furthermore, the user can double click on images, which will
open the folder containing all images in the selected cluster.
A right click on the cluster images allows the user to see
information like the cluster center and the purity of the cluster
based on the distances. Finally, the users can name/tag the
clusters, which adds the tag to the name of the images in the
cluster (in this format _"your tag".filetype). For the demo, we
will present how our tool works on the two different datasets
that we tested here, but we will also have a new large dataset
of different endoscopic findings that we will use during the
demo presentation.

V. CONCLUSION

In this paper, we presented a demo application that enables
domain experts to use unsupervised clustering algorithms to
explore image and video data collections that do not contain
meta-data. In the information visualization model of the four
stages, the analytical abstraction stage and the visualization
abstraction stage correspond to the selection and extraction
of image features and the clustering of the feature vectors.
We have shown — based on two different datasets — that the
clustering leads to good results which correspond to user
judgments or ground truth of the datasets, and therefore,
provide good candidate methods for the abstraction stages.

For future work, we plan to test the application with
domain experts. In our case, endoscopists from two different
Norwegian Hospitals. For this test, we already collected a
large dataset (200.000 images and 600 videos) from medical
procedures. Focus of this user study will be the usefulness of
the focus+context view as well as the perceived complexity
of the user interface, i.e., the selection of image features and
clustering algorithms.
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