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Abstract—Analysis of medical videos for detection of abnor-
malities like lesions and diseases requires both high precision
and recall but also real-time processing for live feedback during
standard colonoscopies and scalability for massive population
based screening, which can be done using a capsular video
endoscope. Existing related work in this field does not provide the
necessary combination of detection accuracy and performance.
In this paper, a multimedia system is presented where the
aim is to tackle automatic analysis of videos from the human
gastrointestinal (GI) tract. The system includes the whole pipeline
from data collection, processing and analysis, to visualization. The
system combines filters using machine learning, image recognition
and extraction of global and local image features, and it is built
in a modular way, so that it can easily be extended. At the same
time, it is developed for efficient processing in order to provide
real-time feedback to the doctor. Initial experiments show that
our system has detection and localisation accuracy at least as
good as existing systems, but it stands out in terms of real-time
performance and low resource consumption for scalability.

I. INTRODUCTION

During the last decades, we have witnessed a paradigm shift
where computers and sensors move spatially closer and closer
to the user, and we are in the process of moving devices inside
the body. In this respect, our scenario is at the intersection
of computer science and pathological medicine, where we
target a scalable, real-time disease detection system for the
gastrointestinal (GI) tract as it is depicted in figure 1. First,
we study possible cancer precursors, e.g., polyps, and early
cancer detection. Here, we develop both a computer-aided, live
analysis system of endoscopy videos and a scalable detection
system for screening systems using a wireless video capsule
endoscope (VCE), i.e., a small capsule with an image sensor.

In the context of object or pattern detection and tracking
in general images and videos, a lot of research has been
performed, and current systems are good at detecting human
faces, cars, logos, etc. However, detecting diseases in the
GI tract is very different from detecting objects like cars.
The GI tract can potentially be affected by a wide range of
diseases with lesions visible in endoscopy, but findings may
also include benign/normal or man-made lesions. The most
common diseases are gastric and colorectal cancer (CRC),
which are lethal when detected in a late stage (the 5-year
survival rate ranges from 93% in stage I to 8% in stage IV [1]).
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Consequently, early detection is cru-
cial. There are several ways of de-
tecting pathology in the GI tract, but
systematic population-wide screen-
ing is the most important tool for
early detection. However, current
methods have limitations regarding
sensitivity, specificity, access to qual-
ified medical staff and overall cost.

In this scenario, both high preci-
sion and recall are of crucial im-
portance, but so is the frequently
ignored system performance that can
provide feedback in real time. The
most recent and most complete re-
lated work is the polyp detection
system Polyp-Alert [2], which can
provide near real-time feedback dur-
ing colonoscopies. However, it is limited to polyp detection,
and it is not fast enough for live examinations. To further aid
and scale such examinations, we present EIR', an efficient and
scalable automatic analysis and feedback system for medical
data like videos and images. The system supports endoscopists
in the detection and interpretation of diseases in the GI tract.
EIR has initially been tested in scenarios supporting endo-
scopists in detection and interpretation of potential diseases
in lower portions of the GI tract (large bowel). However,
the main objective is to automatically detect abnormalities in
the whole GI tract. Therefore, the aim is to develop both (i)
a live system assisting the visual detection of, for example,
polyps during colonoscopies and (ii) a future fully automated
screening of the GI tract using VCEs. Both aims impose strict
requirements on the accuracy of the detection to avoid false
negative examinations (overlooking a disease) as well as low
resource consumption. The live-assisted system also introduces
a real-time processing requirement (defined as being able to
process at least 30 frames or images per second). In this paper,
the initial framework of our complete system is presented.
To detect mucosal lesions in the colon, we built a system

Fig. 1.
testinal (GI) tract (Image:
kaulitzki/shutterstock.com).

The gastroin-

'In Scandinavian mythology, EIR is a goddess with medical skill.
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combining filters using machine learning, image recognition
and extraction and comparison of global and local image
features. Furthermore, it is easy to add new filters or other
types of data, such as patient records or sensor data, to increase
accuracy or enable detection of other pathologies. Moreover,
we evaluate our prototype by training classifiers that are based
on different image recognition approaches. It is important to
point out that these classifiers can also process other input
like sensor data. We also test the generated classifiers with
different data and thereby evaluate the different approaches
for feasibility of colonic polyp recognition and localisation.
The initial results from our experimental evaluation show
that, (i) the detection and localisation accuracy can reach the
same performance or outperform other current state-of-the-art
methods and (ii) the system performance can reach real-time
in terms of video processing up to high definition resolutions.
Additionally, it is extensible with more data and diseases
thorough parallel detection at run time. The rest of the paper is
organized as follows: Firstly, in section II, we briefly introduce
our medical case study. Next, we present related work in the
field and compare it to the presented system in section III. This
is followed by presenting the complete system in section IV.
After that we, present an evaluation of the system in section V,
and in section VI we discuss two cases where our system will
be used in two medical examinations by our collaborators.
Finally, we conclude with section VII.

II. GASTROINTESTINAL ENDOSCOPY

The GI tract illustrated in figure 1
can potentially be affected by vari-
ous abnormalities and diseases, e.g.,
CRC, a major health issue world
wide. Early detection of CRC or
polyps as predecessors of CRC is
crucial for survival, and several stud-
ies demonstrate that a population-
wide screening program improves
the prognosis and can even reduce
the incidences of CRC [3]. As a consequence, in current
European Union guidelines, screening for colorectal cancer is
recommended for the age group over 50 [4]. Colonoscopy,
a common medical examination and the gold standard for
visualizing the mucosa and the lumen of the entire colon,
may be used either as a primary screening tool or in a second
step after positive screening tests [5]. However, endoscopies
are invasive procedures and may lead to great discomfort
for patients. Extensive training of physicians or nurses is
required to perform the examination. They are performed in
real-time and therefore challenging to scale to a large popula-
tion. Additionally, the procedure is expensive. In the US, for
example, colonoscopy is the most expensive cancer screening
process, with annual costs of 10 billion dollars (1,100$-
6, 000$/person) [6], and with a time consumption of about one
medical-doctor-hour and two nurse-hours per examination. As
a first step, we target the detection of colorectal polyps, which
are known precursors of CRC (see for example figure 2).

Fig. 2.
that can be found using
colonoscopy.

Colorectal cancer

The reason for starting with this scenario is that most colon
cancers arise from benign, adenomatous polyps (around 20%)
containing dysplastic cells, which may progress to cancer.
Detection and removal of polyps prevents the development of
cancer and the risk of getting CRC in the following 60 months
after a colonoscopy depend largely on the endoscopist’s ability
to detect polyps [7]. Nevertheless, our system will be extended
to support detection of multiple abnormalities and diseases of
the GI tract by training the classifiers using different datasets.

III. RELATED WORK

Detection of diseases in the GI tract has mostly focused on
polyps. This is most probably due to the lack of data in the
medical field and polyps being a condition with at least some
data available. However, none of the related work is able to
do real-time detection or support doctors by computer-aided
diagnosis during colonoscopies in real-time. Furthermore, all
of them are limited to a very specific use case, which in the
most cases is polyp detection for a specific type of camera.
Table I gives an overview of the best working methods.

As one can see in Table I, several algorithms, methods
and partial systems have been proposed and have, at first
glance, achieved promising results in their respective testing
environment. However, in some cases, it is unclear how well
the approach would perform as a real system used in hospitals.
Most of the research conducted in this field uses rather small
amounts of training and testing data, making it difficult to
generalize the methods beyond the specific dataset and test
scenarios. Therefore, overfitting for the specific datasets can
be a problem and can lead to unreliable results.

The first approach from Wang et al. [2] is the most recent
and best-working one in the field of polyp detection. A list of
more related work can be found in their paper. Polyp-Alert [2]
is able to give near real-time feedback during colonoscopies.
The system can process 10 frames per second and uses
visual features and a rule-based classifier to detect the edges
of polyps. Further, Polyp-Alert distinguishes between clear
frames and polyp frames in its detection. The researchers
report a performance of 97.7% correctly detected polyps,
based on their dataset, which consists of 52 videos taken
from different colonoscopes. Unfortunately, the dataset is not
publicly available, and therefore, a detection performance
comparison is not possible. Since neural networks (NN) are
commonly used nowadays, they are also discussed in relation
to the GI tract analysis. We identified two main points that
make NNs less useful for our use case [17]. Firstly, (i) their
training requires a lot of good training data, which is a big a
problem in the medical field [18], and (ii) NNs are not easy to
design for probabilistic results, which is important to support
medical doctors during decision making [19].

In summary, a lot of good related work with interesting
approaches for polyp detection exists. However, existing sys-
tems are either (i) too narrow for a flexible, multi-disease
detection system; (ii) have been tested on limited datasets
too small to show whether the method would work in a real



TABLE I
A PERFORMANCE COMPARISON OF POLYP DETECTION APPROACHES. NOT ALL PERFORMANCE MEASUREMENTS ARE AVAILABLE FOR
ALL METHODS, BUT INCLUDING ALL AVAILABLE INFORMATION GIVES AN IDEA ABOUT EACH METHOD’S PERFORMANCE.

[ Publ/System [ Detection Type [ Recall / Sensitivity [ Precision [ Specificity [ Accuracy | FPS | Dataset Size |
Wang et al. [2] polyp / edge, texture 97.70% - - 95.70% 10 1.8m frames
Wang et al. [8] polyp / shape, color, texture 81.4% - - - 0.14 1,513 images
Mamonov et al. [9] polyp / shape 47% - 90% - - 18, 738 frames
Hwang et al. [10] polyp / shape 96% 83% - - 15 8,621 frames
Li and Meng [11] tumor / textural pattern 88.6% - 96.2% 92.4% - -
Zhou et al. [12] polyp / intensity 75% - 95.92% 90.77% - -
Alexandre et al. [13] polyp / color pattern 93.69% - 76.89% - - 35 images
Kang et al. [14] polyp / shape, color - - - - 1 -
Cheng et al. [15] polyp / texture, color 86.2% - - - 0.076 74 images
Ameling et al. [16] polyp / texture AUC=95% - - - - 1,736 images

[ EIR-system [ abnormalities/30 features [ 98.50% [ 9388% | 7249% [ 87.70% [ 30-65 | 18,781 frames |

scenario and; (iii) provide a performance too low for a real-
time system or ignore the system performance entirely. Last,
but not least, we are targeting a holistic end-to-end system
where a VCE that traverses the entire tract with its video
signals is algorithmically analyzed.

IV. EIR BASIC IDEA

Our objective is to develop a system that supports doctors
in disease detection in the GI tract. The system must (i) be
easy to use and less invasive for the patient that existing
methods, (ii) be easy to extend to different diseases, (iii) handle
of multimedia content in real time, (iv) be usable for real-
time computer-aided diagnosis, (v) achieve high classification
performance with minimal false-negative classification results
and (vi) have a low resource consumption. These properties
potentially provide a scalable system with regard to cost, med-
ical specialists required for a larger population, and number
of users potentially willing to be screened. Therefore, EIR
consists of three parts: The annotation subsystem, the detection
and automatic analysis subsystem and the visualization and
computer-aided diagnosis subsystem.

A. Annotation Subsystem

The purpose of the annotation subsystem is the efficient
collection of training data for the detection and automatic
analysis subsystem. It is well known that training data is very
important for a good classification system. Nevertheless, in the
medical field, the time of the experts and access to multimedia
data are two resources that are quite limited. This is primarily
because of high everyday workload for physicians, but also due
to legal issues. For each image or video, patient consent has
to be collected before research can be done, making it a very
cumbersome task. Moreover, the annotation of videos itself is
very time-consuming, and the quality of annotations depends
on the experience and concentration of the physicians [20].
For example, in a VCE procedure, there are about 216,000
images per examination, and a very experienced endoscopist
needs at least 60 minutes to view and analyse all the video
data [21]. Due to this limitation, it is important to develop
automatic methods that can reduce the burden on physicians
and speed up the screening process. We therefore developed
an efficient semi-automatic annotation subsystem [22]. This
annotation system is the entry point into our whole system.

Since the medical doctor is usually located in a hospital with
restrictions to data security, the implementation of the software
is done with standard web technologies, which do not require
any installation on the hospital’s systems. This includes the
storing of all information on the system-side and moves the
responsibility of maintaining the system and the data integrity
from the user to the system. Besides getting data for the
EIR system to enable automatic screening, the annotation
subsystem makes it possible to use the annotated videos in a
medical video archive for documentation or teaching purposes.

B. Detection and Automatic Analysis Subsystem

These subsystems for algorithmic analysis are designed in a
modular way, so that they can be extended to different diseases
or subcategories of disease, as well as other tasks like size
determination, etc. At the moment, this subsystem consists of
two parts, the detection subsystem that detects irregularities
in video frames and images and the localisation subsystem
that localizes the exact position of the disease. The detection
can not determine the location of the found irregularity. The
location determination is done by the localisation subsystem.
The localisation subsystem uses the output of the detection
system as input.

1) Detection Subsystem: This part of the system is not
designed to detect the precise position of an abnormality like
a polyp or bleeding, but rather to detect whether there is
something in the current frame of the video or not. All the
frames that we process can be separated into two disjoint
sets which can also be seen as the model for the detector.
These two sets contain example images for abnormalities and
images without any abnormality. Each of these sets can be
seen as the model for a specific disease. The detection system
is built in a modular way and can easily be extended with new
models. This would for example allow to first detect a polyp
and then to distinguish between a polyp with low or high risk
to developing into CRC by using the NICE classification?.
To compare and determine the abnormalities in a given video
frame, we use global image features, i.e., because they are easy
and fast to calculate, and because the exact position is at this
point of the system not needed. In previous work, we showed
that global features can indeed outperform or at least reach
the same results as local features [23]. The basic idea is based

Zhttp://www.wipo.int/classifications/nice/en/
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on an improved version of a search based method for image
classification presented in [23]. We create the indexes from
visual features extracted from video frames or images. How-
ever, the number of needed examples is rather low compared
to other methods. The index also contains information about
the presence and type of any disease in the frame or image.
A classifier can then search the index for the frames that are
most similar to a given input frame. Based on the classification
of the results, the detection subsystem then decides which
abnormality the input frame belongs to. The whole detector is
realised with two separate tools, an indexer and a classifier. We
have released the indexer and the classifier as a separate project
called OpenSea®. The computational nature of the indexing
part is similar to what we know as batch processing. Therefore,
creating the models for the classifier could be done off-line,
and it is not influencing the real-time capability of the system,
because it is only done once at the very first time when the
training data is inserted into the system. Visual features to
calculate and store in the indexes can be chosen based on the
abnormality because, for different types of disease different set
of features or combinations are better. For example, bleeding
is easier to detect using color features, whereas polyps require
shape and texture information.

The classifier can be used to classify video frames from an
input video into as many classes as the detection subsystems
model consists of. The classifier uses indexes generated by the
indexer described before. In contrast to other classifiers that
are commonly used, this classifier is not trained in a separate
learning step. Instead, the classifier searches previously gen-
erated indexes, which can be seen as the model, for similar
visual features. The output is weighted based on the ranked
list of the search results. Based on this, a decision is made.
The classifier is parallelized and allows to choose how many
CPU cores are used. Ongoing work includes to port parts of
the system to GPUs to further increase the performance.

2) Localisation Subsystem: The localisation subsystem is
intended for exact positioning of a lesion, which is used to
show markers on the frame or image containing the disease.
This information is then used in the visualization subsystem.
All images that we process during the localisation step come
from the positive frames list generated by the detection subsys-
tem. Processing of the images is implemented as a sequence
of intraframe pre- and main-filters. Pre-filtering is needed
because we use local image features to find the exact position
of objects in the frames. Lesion objects or areas itself can
have different shapes, textures, colors and orientations. They
can be located anywhere in the frame and also partially be
hidden and covered by biological substances, like seeds or
stool, and lighted by direct and ambient light. Moreover, the
image itself can be interleaved, noisy, blurry and over or under
exposed, and it can contain borders and subimages. Apart from
that, it can have various resolutions depending on the type of
endoscopy equipment used. Endoscopic images usually have
a lot of flares and flashes caused by high power light source

3https://bitbucket.org/mpg_projects/opensea

located close to the camera. All these nuances affect the local
features detection methods negatively and have to be specially
treated to reduce localisation precision impact. In our case,
several, sequentially applied filters are used to prepare raw
input images for the following analysis. These analyses are
RGB to YCbCr color space conversion, borders and subimages
removing, flares masking and low-pass filtering. After the pre-
filtering, the images are used for further analysis.

At the moment, we have implemented the detection of colon
polyps using our local features approach. The main idea of this
localisation algorithm is to use the polyps’ physical shape to
find the exact position in the frame. In most cases, the polyps
have the shape of a hill located on relatively flat underlying
surface or the shape of a more or less round rock connected to
an underlying surface with stalks of varying thickness. These
polyps can be approximated with an elliptically shaped region
consisting of local features that differ from the surrounding
tissue with high probability. To detect those types of objects,
we use the following sequence of filters: binary noise reduction
filter, 2D-gradient filter, threshold borders detection filter and
binary noise removing filter. The next step creates a filtered
binary image approximated by a set of ellipses from which we
build energy maps based on the ellipse’s size and border points
precision approximation and matching. The final coordinates
of one or more polyps in the frame are chosen by looking for
the maximum in the energy map.

C. Visualization and Computer Aided Diagnosis Subsystem

This subsystem has two main purposes. First, it should help
in evaluating the performance of the system and get insights
into why things work well or not. Second, it can be used
as a computer-aided diagnostic system for medical experts.
Therefore, we have the TagAndTrack subsystem [22] that can
be used for visualization and computer-aided diagnosis. We
developed a web technology-based visualization that can be
used to support medical experts while being very easy to
use and distribute. This tool simply takes the output of the
systems detection and localisation part and creates a web-
based visualization, which can then be combined with a video
sharing platform where doctors are able to watch, archive,
annotate and share information.

V. EVALUATION

For all of the subsequent measurements, we used the same
computer (32 AMD CPU cores Linux server, 128GB ram). It
is important to point out that the used hardware is quite old
(ca. 4 years). Newer hardware would most probably lead to
better performance for all the tests, but the evaluation shows
that even on old hardware the system performs as intended.
For all experiments, we used the ASU-Mayo Clinic polyp
database*. This is currently the biggest publicly available
dataset consisting of 20 videos from standard colonoscopies
(converted from WMV to MPEG-4 for the experiments) with
a total of 18,781 frames and different resolution up to full

“http://polyp.grand-challenge.org/
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HD [24]. For the detection and localisation accuracy, we used
the common standard metrics precision, recall/sensitivity and
F1 score. We conducted a leave-one-out cross-validation to
evaluate this part of the system, which is a method that
assesses the generalization of a predictive model. In our case,
it describes the process where the training and testing datasets
are rotated, leaving out a single different non-overlapping
item or portion for testing, and using the remaining items for
training. This process is repeated until every item or portion
has been used for testing exactly once [25].

EIR allows us to use several different global image features
for the classification. The more image features we use, the
more computationally expensive the classification becomes.
Further, not all image features are equally important or provide
equally good results for our purpose. As a first step, we
therefore need to find out which image features we want to use
for classification. In order to understand which image features
provide the best results, we generated indexes containing all
possible image features for all frames of all video sequences
from the ASU-Mayo Clinic database. These indexes can be
used for several different measurements and also for leave-one-
out cross-validation. Using our detection system, the built-in
metrics functionality can provide information on the perfor-
mance of different image features for benchmarking. Further,
it provides us with separate information for every single image
feature, as well as the late fusion of all the selected image
features. All used features are described in detail in [26].

Accuracy. Based on the evaluation of different combi-
nations of image features using 30 different features and
information gain analysis, the image features JCD and Tamura
were identified to be the best ones for polyp detection. The
last row of table I shows our approaches’ performance to give
a comparison. We achieve an average precision of 0.9388, an
average recall of 0.9850, and an average F1 score value of
0.9613. In other words, the results mean that we can detect
polyps with a precision of almost 94%, and we detect almost
99% of all polyp containing frames. If we compare this to the
best performing system in table I, it seems that Polyp-Alert
reaches slightly higher detection accuracy. But, our system is
faster and can detect polyps in real-time. Furthermore, our
system is not designed and restricted to detect only polyps,
and can be expanded to any possible disease if we have
the correct training data.To evaluate the performance of the
localisation subsystem we used the exact positions of the
polyps as provided in the ASU-Mayo clinic polyp database
as ground truth. Overall, we reached for the localisation an
average precision of 0.3207, a recall of 0.3183 and a F1 score
of 0.3195.

Speed. We also performed some initial system performance
tests. For all these tests, we used 3 videos from 3 different
endoscopic devices and different resolutions. The three videos
have the resolutions 1, 92021, 080, 8562480 and 7122480. We
chose these videos to show the performance under different
requirements that the system will have to face when it is used.
As figure 3 shows, EIR reaches the required 30 frames per
second with 16-26 CPUs. This is true for all three videos that
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Fig. 3. Processing performance in frames per second.

we used. For the future an implementation using GPUs will
be important to cope with the high number of needed cores.

VI. REAL WORLD USE CASES

In this section, we will describe two real world use cases
where the presented system can be used. The first one is a live
system that will support medical doctors during endoscopies.
Currently, we are working on setting it up in one of our partner
hospitals. The second one is a system that will automatically
analyse videos captured by VCEs. Several hospitals all over
Europe and US are involved in this part, and currently, we are
collecting data. The first use case requires fast and reliable
processing, and the second requires a system that is able to
process a large amount of data in a reliable and scalable way.

Live System. Endoscopy is a common gastrointestinal
examination and is essential for the diagnosis of most mucosal
diseases in the gastrointestinal tract, particularly diagnosis of
CRC and its precursors. Previous studies have demonstrated
that a major challenge is the detection rate of lesions [27].
The aim of the live system is to provide live feedback to the
doctors, i.e., a computer aided diagnosis in real-time. While
the endoscopist performs the colonoscopy, the system analyses
the video frames that are recorded by the colonoscope. At
the beginning, we plan to optically show the physician (for
example with a red or green frame around the video) when
the system detects something abnormal in the actual frame or
not. This can also be extended to the determination of what
disease the system most probably detected and provide this
information to the doctor. Apart from supporting the medical
expert during the colonoscopy, the system can also be used to
document the procedure. After the colonoscopy, an overview
can be given to the doctors where they can make changes or
corrections, and add additional information. This can then be
stored for later purposes or used as a written endoscopy report.
A demo of the live system is presented and described in [28]

Wireless Video Capsule Endoscope. The present VCEs
have a resolution of around 2562256 with 3-35 frames per
second (adaptive frame rate with a feedback loop from the re-
ceiver to the transmitter). They do not have optimum lighting,
making it difficult use the images. Nevertheless ongoing work
tries to improve the state-of-the-art technology which will
make it possible to use the methods and algorithms developed
for colonoscopies also for VCEs [29]. The multi-sensor VCE



is swallowed in order to visualize the GI tract for subsequent
diagnosis and detection of GI diseases. Thus, people may be
able to buy VCEs at the pharmacy, and connect and deliver the
video stream from the GI tract to the phone over a wireless
network. The video footage can be processed in the phone
or delivered to our system, which finally analyses the video
automatically. In the best case, the first screening results are
available within eight hours after swallowing the VCE, which
is the time the camera typically spends traversing the GI tract.

VII. CONCLUSION

In this paper, a multimedia system for disease detection and
classification in the GI tract has been presented. We briefly
described the whole pipeline of the system from annotation
(data collection for system learning) to visualization (doctor
feedback). A detailed evaluation in terms of detection and
localisation accuracy and system performance has been per-
formed. These experiments showed that the proposed system
can achieve equal results to state-of-the-art methods in terms
of detection accuracy for state-of-the-art endoscopic data.
Further, we showed that the system outperforms state-of-the-
art systems in terms of system performance, that it scales in
terms of data throughput and that it can be used in a real-time
scenario. We also presented automatic analysis of VCE videos
and live support of colonoscopies as two real-world use cases
that will benefit from the proposed system and will actually
be tested and used in our partner hospitals. For future work,
we plan to improve the detection and localisation accuracy of
the system and include more different abnormalities to detect.
Presently, we are working with medical experts to collect
more training data. Additionally, we currently work on the
set-up of the real-world use cases in the hospitals. Finally, to
further improve the performance of the system, we work on
an extension that allows the system to use GPUs to further
utilize the parallelization potential of the workload [30].
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