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Abstract—Angiectasia, formerly called angiodysplasia, is one
of the most frequent vascular lesions and often the cause of
gastrointestinal bleedings. Medical specialists assessing videos
or images of examinations reach a detection performance of
16% for the detection of bleeding to 69% for the detection of
angiectasia [1]. This shows that automatic detection to support
medical experts can be useful. In this paper, we present several
machine learning-based approaches for angiectasia detection
in wireless video capsule endoscopy frames. In summary, the
most promising results for pixel-wise localization and frame-
wise detection are obtained by the proposed deep learning
method using generative adversarial networks (GANs). Using
this approach, we achieve a sensitivity of 88% and specificity
of 99.9% for pixel-wise localization, and a sensitivity of 98%
and a specificity of 100% for frame-wise detection. Thus, the
results demonstrate the capability of using deep learning for
automatic angiectasia detection in real clinical settings.

Index Terms—Angiectasia, computer aided diagnosis, deep
learning, machine learning, video capsular endoscopy

I. INTRODUCTION

An obscure gastrointestinal (GI) bleeding is a com-
mon finding in the GI tract and caused by different dis-
eases/conditions. The most challenging part is to detect
the bleeding source in the small bowel either using video
capsule endoscopes (VCEs) or via very invasive enteroscopy
examinations. Superficial vascular lesions called angiectasia
(see Figure 1 for an example) represent one of the most
common source of bleeding in the small bowel and are
therefore important to detect [2].

The most common procedure to detect angiectasia is to
use VCEs. A VCE provides visualization of the GI tract
by capturing images or recording a video by swallowing
a pill-like disposable capsule equipped with one or more
cameras. The camera pill contains a small processing device,
a memory or wireless transmitter, and a battery. The VCE
is swallowed by the patient, and it traverses and visualizes
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the GI tract for subsequent diagnosis and detection of GI
diseases, such as angiectasia, by a doctor manually inspecting
the video recordings. The latest generation of VCEs supports
a maximum resolution of 520x520 pixels and is able to
collect around 60,000 images per patient. Medical specialists
assessing the images detect only around 69% of angiectasias
(16% for the detection of bleeding to 69% for the detection
of angiectasias) [1].

(a) Input frame (b) Ground truth mask (c) Segmentation mask
Fig. 1. Example of an angiectasia lesion marked with a green circle (a),
a corresponding ground truth mask (b) and a segmentation mask generated
using our GAN approach (c). Image taken from the GIANA dataset [3].

State-of-the-art software from the industry is able to reach
an automatic detection sensitivity of 41% and a specificity
of 67%. For a clinical scenario, this is clearly not reliable
enough for automatic analysis. Both, sensitivity and speci-
ficity should be as close as possible to 100%, but at least
larger than 85% for being used in a real clinical setting [1],
[4]. Automatic detection of angiectasia is not very well
researched, and there are only a few publications on the
topic using saliency detection [5], [6]. However, no work
has looked into machine learning using deep learning or
handcrafted features. In this work, we therefore test different
machine learning approaches to tackle automatic angiectasia
detection in VCE videos. Using a publicly available and
unbiased (equal number of negative and positive examples)
dataset [3], we are testing algorithms (deep learning and
handcrafted features-based) for frame-wise detection and
pixel-wise localization. The best achieved results in this
paper are a sensitivity of 88% and specificity of 99.9%
for pixel-wise localization and a sensitivity of 98% and a
specificity of 100% for frame-wise detection.

The rest of the paper is organized as follows: first, we
give an overview of the related work in the field. This is
followed by a description of our methods, which we next
experimentally evaluate. Finally, we conclude the paper and
give directions for future work.



II. RELATED WORK

To the best of our knowledge, there exists almost no
related work about automatic detection of angiectasia in VCE
images or videos. The only known work is from Deeba et al.
[5], [6] who present a saliency-based approach. The method
is two-staged and unsupervised. In the first step, a patch
distinctness (PD) map and an Index of Hemoglobin (IHb)
map are created. In the second step, the PD and IHb maps
are combined to create the final saliency map. On this final
map, a local maximum search is performed to find regions-
of-interests containing the lesions. In [5], a sensitivity of
100%, a specificity of 82.5% and an accuracy of 90.1% are
reported on a dataset containing 50 normal images and 50
images containing angiectasia. In [6], the dataset is extended
to 3,602 images with 968 containing angiectasia and 2,634
normal ones. The images are taken from 9 different videos,
whereas 5 are from wired endoscopy and 4 from VCE. For
the VCE videos, a sensitivity of 94.44% and a specificity of
83.92% are reported. The localization score is 95.04% and
measures the fraction of correctly detected regions compared
to the regions containing angiectasia.

Furthermore, since bleeding angiectasia looks quite similar
to regular GI bleeding, a very common condition, work
addressing automatic bleeding detection should be consid-
ered. For bleeding detection, a lot of related work exist,
and the main challenge is that the bleedings do not occur
in specific patterns, shapes, textures or colors, which makes
them hard to detect. Furthermore, bleeding is usually caused
by other intestinal diseases like angiectasia or cancer, etc
[7]. The main methods to detect bleeding are based on
handcrafted color and textural features. In [8], chrominance-
moments-based texture and uniform local binary patterns in
combination with a multi-layer perception neural network
classifier are used to localize the source of bleeding in the
VCE video. Methods working on pixel-level are shown to
be more accurate to distinguish between bleeding and non-
bleeding. Yuan [9] utilizes color features on pixel level
of VCE frames and thresholds the color space to segment
bleeding from normal mucosa. In [10], the authors perform
super-pixel based segmentation to reduce the computational
complexity and at the same time achieve high accuracy.
In general, pixel level methods have higher accuracy than
frame based, but are computationally more costly. This is an
important factor taking into account that usually more than
60,000 frames have to be processed for one patient.

Most recent work is focusing on deep learning for bleeding
detection by utilizing convolutional neural networks (CNN).
In [11], the authors present a bleeding detection approach
that uses CNNs. The presented CNN consists of eight
layers and is basically a simple variation of the Imagenet
architecture [12]. They report a recall/sensitivity of 99.2%,
a precision of 99.9% and F1 score of 99.55%. For the
training, 8,200 images were used, and 1,800 images were
used for the testing. Both the training and testing dataset
were biased towards the negative class. Furthermore, no cross

validation for the evaluation was performed. Therefore, it
cannot be ruled out that the almost perfect performance is
based on overfitting. This was followed by another study
using the same approach [13], but with a different dataset
and on pixel accuracy level for segmentation. As the main
metric, region intersection over union (IU) was used. For
active bleeding, an IU of 0.7750 and for inactive bleeding
an IU of 0.7524 were achieved. Another recent work that
does not use deep learning but classifier fusion is the work
by Deeba et al. [14] that combines two optimized Support
Vector Machine (SVM) classifiers to detect bleeding. The
features used by the classifiers are based on the RGB and
HSV color spaces. For parameter tuning and evaluation, a
cross validation approach is used, and they report an average
accuracy of 95%, sensitivity of 94% and specificity of 95.3%
for a dataset of 8,872 VCE frames.

The presented related work contains only two papers about
angiectasia and some related work in the field of bleeding
detection. As one can observe, even if deep learning is in the
rise, handcrafted features still achieve good performance if
used in a clever way. In the context of angiectasia, one can
see that the VCE datasets used in the related work are biased
and too small. Therefore, the goal of this work is to compare
and evaluate deep learning and hand crafted features based
approaches on a large and unbiased dataset.

III. PIXEL-WISE SEGMENTATION APPROACH

The segmentation approach presented in this paper is
able to pixel-accurate mark the angiectasia in the given
frame. Based on our previous experience [15], [16], we
decided to use generative adversarial network (GAN) to
perform the segmentation. GANs [17] are machine learning
algorithms that are usually used in unsupervised learning and
are implemented by using two neural networks competing
with each other in a zero-sum game. We used a GAN
model architecture initially developed for the retinal vessel
segmentation in fundoscopic images called V-GAN as basis
for our angiectasia segmentation approach. The V-GAN
architecture [18] is designed for RGB images and provides
a per-pixel image segmentation as output. To be able to
use the V-GAN architecture in our angiectasia segmenta-
tion approach, we added an additional output layer to the
generator network that implements an activation layer with
a step function which is required to generate the binary
segmentation output.

IV. FRAME-WISE DETECTION APPROACHES

Frame-wise detection approaches are designed to detect
angiectasia on a frame level, i.e., if there is angiectasia in the
frame or not. For frame-wise detection, we propose different
methods where we conducted experiments using various
configurations of our main methods. The main methods are
global features (GF), deep features (DF) and a variation of
our GAN approach. For the classification, we used the Ran-
dom Tree (RT), Random Forrest (RF) and Logistic Model
Tree (LMT) classifiers provided in the WEKA library [19].



Global features. For the GF method, we extracted
handcrafted global features (describing the image on a global
level, e.g., texture, color distribution, etc.) using the LIRE
framework [20]. The features are Joint Composite Descriptor,
Tamura, Color Layout, Edge Histogram, Auto Color Correl-
ogram and Pyramid Histogram of Oriented Gradients. We
performed early fusion by combining all extracted features
resulting in a feature vector with the size of 1186.

Deep features. For the DF approach, we used different
well known working deep learning architectures to extract
either the features directly (FEA) or to classify the images
and using the whole range of concepts and their probabilities
as input for the classifiers (CON). The architectures that we
used are ResNet50 [21], VGG19 [22], and InceptionV3 [23].

Data augmentation. For fair performance comparison
of the GF and DF approaches with the GAN approach, we
implemented the same data augmentation (AUG) scheme
(rotation and flipping of frames) as used in the training
process of the GAN. Rotation was performed with 20° steps
for the original and the flipped frames, resulting in 35 new
frames complementary to the original ones.

GAN. The GAN detection approach utilizes a simple
threshold activation function, which takes the number of
positively marked pixels in the frame as an input. In the
cross-validation experiments, we evaluated the activation
thresholds from one pixel to a quarter of the frame. The
best results were achieved with a threshold value of 2 pixels,
which has been used for the detection experiments.

V. EXPERIMENTS

The data used for all the experiments is from the GIANA
2017 challenge [3], and it is publicly available for research
purposes. The data consists of training (development) and
test frame sets. The training set consists of 600 fully an-
notated frames from VCEs (300 with angiectasia and 300
without). The frames with angiectasia also have a pixel-wise
ground truth (GT) mask depicting the exact lesion location
inside each frame that allows both pixel-wise localization
and frame-wise detection experiments. The test set consists
of 600 unannotated frames. In order to perform valida-
tion and performance evaluation of the developed detection
algorithm, we annotated the test set frame-wise with the
help of an experienced researcher with medical pathology
diagnosis background. The 600 frames from the development
set are used for training and the 600 frames (300 with
angiectasia and 300 normal) from the test set for verification.
The advantages of the used dataset are (i) the number of
images (compared to related work, this is the largest one
for VCEs), (ii) the even split between positive and negative
examples and (iii) that it is publicly available making it
easy to compare different approaches. For evaluation of the
experiments, we used the precision (PREC), recall/sensitivity
(SENS), specificity (SPEC), accuracy (ACC), F1 score (F1),
Matthew correlation coefficient (MCC) and processing speed
in number of frames per second (FPS) metrics. A detailed
description and reasoning for the used metrics can be found

TABLE I
TEN-FOLD CROSS-VALIDATION RESULTS OF THE PIXEL-WISE
ANGIECTASIA AREAS THE GAN SEGMENTATION APPROACH.

Fold PREC SENS SPEC ACC F1 MCC
1 0.805 0.877 0.999 0.999 0.839 0.839
2 0.893 0.908 0.999 0.999 0.901 0.900
3 0.870 0.871 0.999 0.999 0.871 0.870
4 0.808 0.884 0.999 0.998 0.844 0.844
5 0.876 0.894 0.999 0.999 0.885 0.885
6 0.838 0.849 0.999 0.998 0.843 0.842
7 0.900 0.887 0.999 0.999 0.893 0.893
8 0.863 0.900 0.999 0.999 0.881 0.880
9 0.866 0.914 0.999 0.999 0.889 0.889
10 0.873 0.817 0.999 0.999 0.844 0.844

95% CI 0.859
±0.020

0.880
±0.018

0.999
±0.001

0.999
±0.001

0.869
±0.015

0.869
±0.015

TABLE II
TEN-FOLD CROSS-VALIDATION RESULTS OF THE ANGIECTASIA

FRAME-WISE DETECTION USING THE GAN APPROACH.
Fold PREC SENS SPEC ACC F1 MCC
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 0.967 1.000 0.983 0.983 0.967
3 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 0.967 1.000 0.983 0.983 0.967
6 1.000 0.967 1.000 0.983 0.983 0.967
7 1.000 1.000 1.000 1.000 1.000 1.000
8 1.000 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 0.967 1.000 0.983 0.983 0.967

95% CI 1.000
±0

0.987
±0.011

1.000
±0

0.993
±0.005

0.993
±0.005

0.987
±0.011

in [24]. The localization metrics are calculated pixel-wise
using the provided GT masks. For the best working approach
(GAN), we also report detailed results for the ten-fold cross-
validation including 95% confidence intervals (CI). For the
detection part, we use a ZeroR classifier as baseline which
assigns the label from the majority class (most common label
in the dataset) to all the instances.

A. Results

Table I shows the results for the GAN localization algo-
rithm (see Figure 1(b) and 1(c) for a comparison between the
GT and the output of the GAN). On average, sensitivity and
specificity are above the 85% margin recommended for a real
clinical settings. This can be seen as very good results since
we perform pixel-wise evaluation. The processing speed for
the GAN approach is 1.5 FPS. The frame-wise detection
performance of the GAN approach for the development set is
presented in Table II. The detection outperforms significantly
the 85% requirements. Both result sets are a strong indicators
that our GAN approach performs well for the tasks of
angiectasia localization and detection. Finally, in Table III,
we report the frame-wise detection performance on the test
set for all our runs. All tested approaches outperform the
ZeroR baseline, but most of them do not even come close
to the 85% margin for clinical use. The handcrafted features
outperform the VGG19 and InceptionV3 approaches but not
the RestNet50. From the classifiers LMT performs best most
of the time, followed by RF. The best performing not-GAN
approach is AUG DF ResNet50 FEA + LMT. The GAN
approach achieves superior performance compared to all
other detection methods for the frame-wise detection with
a sensitivity of 98% and a specificity of 100%. The best



TABLE III
RESULTS FOR THE ANGIECTASIA FRAME-WISE DETECTION APPROACHES

EVALUATED WITH THE ANNOTATED TEST SET.
Approach PREC SENS SPEC ACC F1 MCC FPS
GF+RT 0.570 0.568 0.568 0.568 0.566 0.138 130
GF+RF 0.628 0.623 0.623 0.623 0.620 0.252 105
GF+LMT 0.695 0.680 0.680 0.680 0.674 0.375 80
DF ResNet50 CON+RT 0.636 0.636 0.636 0.636 0.636 0.271 88
DF ResNet50 CON+RF 0.742 0.742 0.742 0.742 0.742 0.483 78
DF ResNet50 CON+LMT 0.734 0.732 0.732 0.732 0.731 0.465 53
DF ResNet50 FEA+RT 0.558 0.557 0.557 0.557 0.554 0.114 79
DF ResNet50 FEA+RF 0.721 0.720 0.720 0.720 0.720 0.441 70
DF ResNet50 FEA+LMT 0.748 0.738 0.738 0.738 0.736 0.486 46
DF VGG19 CON+RT 0.538 0.538 0.538 0.538 0.538 0.077 60
DF VGG19 CON+RF 0.594 0.593 0.593 0.593 0.592 0.187 49
DF VGG19 CON+LMT 0.545 0.545 0.545 0.545 0.544 0.090 32
DF VGG19 FEA+RT 0.515 0.515 0.515 0.515 0.515 0.030 54
DF VGG19 FEA+RF 0.548 0.548 0.548 0.548 0.548 0.097 47
DF VGG19 FEA+LMT 0.525 0.525 0.525 0.525 0.525 0.050 29
DF InceptionV3 CON+RT 0.537 0.537 0.537 0.537 0.537 0.073 66
DF InceptionV3 CON+RF 0.617 0.617 0.617 0.617 0.617 0.233 50
DF InceptionV3 CON+LMT 0.663 0.663 0.663 0.663 0.663 0.327 37
DF InceptionV3 FEA+RT 0.515 0.515 0.515 0.515 0.513 0.030 56
DF InceptionV3 FEA+RF 0.551 0.548 0.548 0.548 0.542 0.099 43
DF InceptionV3 FEA+LMT 0.533 0.533 0.533 0.533 0.533 0.067 30
AUG GF+RT 0.545 0.545 0.545 0.545 0.544 0.090 130
AUG GF+RF 0.650 0.643 0.643 0.643 0.639 0.293 105
AUG GF+LMT 0.627 0.625 0.625 0.625 0.624 0.252 80
AUG DF ResNet50 CON+RT 0.620 0.620 0.620 0.620 0.620 0.240 88
AUG DF ResNet50 CON+RF 0.787 0.787 0.787 0.787 0.787 0.574 78
AUG DF ResNet50 CON+LMT 0.765 0.763 0.763 0.763 0.763 0.529 53
AUG DF ResNet50 FEA+RT 0.553 0.553 0.553 0.553 0.553 0.107 79
AUG DF ResNet50 FEA+RF 0.727 0.723 0.723 0.723 0.722 0.450 70
AUG DF ResNet50 FEA+LMT 0.797 0.788 0.788 0.788 0.787 0.585 46
GAN 1.000 0.980 1.000 0.990 0.990 0.980 1.5
Baseline (ZeroR) 0.250 0.500 0.500 0.500 0.333 0.000 -

processing speed is reached by the GF approach using RT.
In terms of fastest speed and best classification performance,
AUG DF ResNet50 CON + RF performs best with a sensitiv-
ity of 78.7% , a specificity of 78.7% and a processing speed
of 78 FPS. The processing speed of the GAN method for
detection is the lowest with 1.5 FPS.

B. Conclusion

In this paper, we presented hand crafted and deep learning-
based methods for automatic detection of angiectasia on a
pixel- and frame-wise level. We compared several approaches
(handcrafted and deep learning) and demonstrated, on a
public available dataset, the capability of our proposed GAN
approach to reach and exceed clinical requirements (sensi-
tivity and specificity higher than 85%) for localization and
detection performance. In summary, we achieved a sensitivity
of 88% and a specificity of 99.9% for pixel-wise localization,
and a sensitivity of 98% and a specificity of 100% for frame-
wise detection. For future work, the improvement of the
processing speed and verification with other pathologies for
our best working approach is planed.
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