
Program obfuscation by strong cryptography

Željko Vrba∗†, Pål Halvorsen∗†, Carsten Griwodz∗†

∗Simula Research Laboratory, Oslo, Norway
†Department of Informatics, University of Oslo, Norway

{zvrba,paalh,griff}@ifi.uio.no

Abstract—Program obfuscation is often employed by malware
in order to avoid detection by anti-virus software, but it has many
other legitimate uses, such as copy protection, software licensing
or private computing in the cloud. In this paper, we present a
program obfuscation method that is based on the combination
of strong encryption of code and data and a CPU simulator
(CSPIM) that implements the MIPS I instruction set. Our method
is different from existing methods in that only a single word (32-
bits) of the protected code or data is present as plain-text in
main memory. Furthermore, our method allows the possibility
of externally supplying the decryption key to the simulator. We
have extensively tested the simulator, and it is able to successfully
execute C programs compiled by the gcc cross-compiler. Even
though purely software-based method cannot provide perfect
protection, we argue that this approach significantly raises the
bar for reverse-engineers, especially wen combined with existing
program obfucation techniques.

I. INTRODUCTION

Program obfuscation techniques aim to make the program’s

code unintelligible to a reverse-engineer (attacker). Such tech-

niques are most often employed by computer viruses in order

to avoid detection, but they have also many legitimate uses. For

example, a software vendor may want to implement software

licensing schemes that hinder unauthorized copying or use of

their products. Another example are grid and cloud computing

technologies [1], [2] offer enormous distributed computing

resources at affordable price, but where different clients want

to be protected from each other.

A common characteristic of both scenarios is that a de-

ployed application is under full control of the administrator of

the machine it is executing on, a situation that may be undesir-

able for several reasons. For example, the administrator can in-

spect the application’s code to learn about its algorithms, some

of which may be secret intellectual property, or maliciously

manipulate the application’s inputs and outputs. Likewise, the

data processed by the application may be confidential, and

its uncovering could damage the application’s owner (and

potentially bring financial gain to the administrator). Since

hardware-assisted virtualization has become a standard feature

of new Intel and AMD CPUs, monitoring (and potentially

manipulation) of applications can be performed with minimal,

almost undetectable, interference [3].

Using simulated CPUs for obfuscating code in order to pro-

tect it from reverse-engineering is not a new idea, and it is used

by commercial tools like VMProtect [4] or Themida [5] as well

as by virus-writers, who often use custom-designed instruction

sets. The problem with custom instruction sets is lack of tools:

there are no code generators from high-level languages, and

Fig. 1. Encrypted execution overview. The light-green rectangle labelled with
“I” represents the portion of the host’s code that interprets the guest code.

developing one is a complex task. Alternatively, one could

implement a translator from the target instruction set (e.g.,

i386 or AMD64) to the simulated instruction set. However,

this is an extremely complex and tedious task for a CISC

architecture such as AMD64, which has irregular instruction

encoding and hundreds of instructions.

In this paper, we present an approach in which we combine

strong encryption with a software-simulated CPU in order to

hide the application’s code and data from casual inspection and

even from determined attackers. The high-level idea is shown

in figure 1, where two main elements are the host and guest

CPUs, each with its own code and data. The state of the guest

CPU is part of the host CPU’s data. The host CPU’s code

contains, alongside other functions, also the interpreter that

is able to simulate the guest CPU and execute code written

for it. The guest CPU’s code and data are held encrypted;

the interpreter decrypts them with fine granularity only when

needed. Note also that the decryption key does not need to

be a part of the host CPU’s program or data – it may be, for

example, acquired over the network, typed in by the user, or

computed from environmental parameters, such as CPU model

and amount of installed memory.

We have chosen to implement a simulator, which we have

named CSPIM, for the basic MIPS I [6] instruction set,

because this is one of the simplest CPUs for which the freely

available gcc compiler can generate code. This means that

the code to be protected can be developed in a high-level

language (C or C++), and fully tested and debugged with the

usual development tools. When the developer is convinced that

the code is functioning correctly, he can cross-compile it for

our simulator just before deployment, which saves time in the

development cycle. Our approach is orthogonal to, and can be

combined with, the existing code obfuscation techniques [7],

[8], [9], which can be applied on both the host and guest

executables.

The rest of this paper is organized as follows. In section II

we discuss existing approaches to code and data obfuscation.

In section III, we describe CSPIM design and implementation

and discuss its limitations. In section IV, we describe our test

applications and present some performance measurements. In

section V, we present some envisioned usage scenarios and

discuss security issues, and in section VII, we conclude and

outline our envisioned future work.

II. RELATED WORK

There exist many MIPS I simulators, such as SPIM, gxemul,

qemu, vmips and Nachos. All of them, except SPIM [10], im-

plement full-system emulation, which has too large overhead

for our purposes. Also, none of them satisfy the following two

basic requirements:

• Availability of a clean library interface that allows the

host application to control all aspects of simulation.

• Ability to run in a freestanding environment, i.e., that the

simulator does not use any external library functions.

Because of the second requirement, the CPU simulation code

is platform-independent and can be also easily interfaced with

an OS kernel in order to provide further protection.

There exist executable code encryptors that use strong

cryptography, such as Burneye [11] and Shiva [12], but their

weakness is that they leave rather large portions of the exe-

cutable’s memory pages in plain-text. While they do employ

some powerful anti-debugging techniques, such techniques

prevent debugging only from user-space and can be defeated

by using custom kernel modules or virtualization. Filiol [13]

has outlined an architecture of a computer virus that is fully-

encrypted and uses environmental data to derive its decryption

keys. As with Shiva and Burneye, the virus is decrypted in its

entirety before execution.

Similarly to Shiva, Morris and Nair [14] have proposed a

secure context-switch mechanism, which is integrated with the

OS’s scheduler. When the scheduler is about to schedule a

protected application, it decrypts all protected pages before

it transfers control to it. When the application is about to

be descheduled, all protected pages are reencrypted. Their

approach works only on single-processor systems; in a multi-

processor system, the attacker could stop the protected applica-

tion (by sending it a SIGSTOP signal) just at the moment it is

executing, and thus access its pages in plain-text. Furthermore,

they limit the application’s size to 4 MB, because encryption

and decryption overheads become overwhelming beyond this

limit. This method is easily defeated by program analysis

techniques based on virtualization, such as Ether [3]. The

hypervisor can stop the guest operating system just when it

is about to perform context-switch and obtain the program’s

complete code and data in plain-text.

We know of only two other approaches that decrypt an

instruction at a time. The first was used in the DOS virus

called DarkParanoid [15], [16], which uses single-stepping to

decrypt an instruction at a time. The “encryption” does not

use a strong encryption algorithm, but a polymorphic engine

which thwarts signature-based detection. While convenient,

single-stepping invokes the CPU’s exception handlers and thus

incurs large run-time overheads, as we shall show later in

this paper. The other solution [17] uses self-modifying code

to execute encrypted i386 code. However, due to transparent

interoperability with non-encrypted code and the complexity

of disassembling i386 code, it does not support on-the-fly

encryption and decryption of data accesses.

Flicker [18] uses the trusted platform module (TPM) and

virtualization extensions to provide application secrecy and

integrity. Flicker ensures that only unmodified applications are

run, and it can, in addition, ensure that the application’s data

is never revealed to the rest of the operating system (and other

applications) in plain-text. The encrypted data can additionally

be protected from tampering. However, Flicker does not ad-

dress code protection at all, and its current implementation has

some serious limitations: it disables all interrupts and suspends

the operating system as well as all processors but one.

In summary, we know of no published program protection

methods that use strong encryption and leave only a tiny

fraction (single machine word) of the protected program’s code

and data in plain-text. The method closest to ours is secure

context switch [14], but it has two drawbacks: it is limited

to single-processor machines, 2) even on a single-processor

machine, it is easily defeated by using analysis toolkits based

on virtualization, such as Ether [3].

III. THE CSPIM SIMULATOR

CSPIM is implemented in portable C language1 and has the

following features:

• It simulates the integer instruction subset of MIPS I CPU

in little-endian mode.

• The simulated CPU is fully jailed, i.e. the simulated

program cannot by any means access the simulator’s or

the host program’s state.

• Clean library interface that includes CPU control, instruc-

tion decoding, ELF loading,2 symbol and address lookup.

• Extensive tests that test every instructon for correct op-

eration.

• Implements most of SPIM [10] system calls with (almost)

the same calling convention, and also adds some new

system calls.

• RC5 encryption algorithm with 32-bit block size and 128-

bit key for protecting code and data accesses.

The simulator has been tested on Solaris 10, Linux and

Windows operating systems using native compilers (SunCC,

gcc and VC, respectively) in 32- and 64-bit mode. In every

configuration, the simulator has successfully executed the

correctness tests, which have been compiled with the gcc

cross-compiler.

In the next sections, we present in detail the simulator’s

internal structure and discuss its limitations.

A. Architecture

Figure 2 shows the internal organization of CSPIM. The

host program uses the ELF component to prepare the MIPS

1The code is available at http://zvrba.net/software/cspim.html
2Executable and Linkable Format; commonly used on UNIX systems.

Fig. 2. The CSPIM architecture.

executable for execution, and the CPU component to actually

run the guest program instruction by instruction. The outcome

of each instruction may be success, fault, syscall, or break; the

last two are generated by the respective MIPS instructions.

Memory layer. The memory layer handles all data transfers

between the host and simulated CPUs. This is also the layer

at which on-the-fly encryption and decryption of memory

accesses takes place. The memory layer ensures that mem-

ory accesses cannot reach locations outside of the simulated

CPU’s memory space. If a simulated program attempts to

access memory outside of the memory range allocated to the

simulated CPU, the control is immediatelly returned to the host

program with error code signaling invalid memory access. The

memory layer also provides utility functions for copying data

between guest and host CPUs.

CPU layer. The CPU layer maintains the state of the

simulated CPU (e.g., registers) and decodes and executes

single instructions. Memory reads and writes of all sizes (1, 2

and 4 bytes) are vectored through two function pointers, which

makes it possible to plug-in various kinds of transformations,

such as encryption and endian-swapping. The latter would

enable CSPIM to run in little-endian mode also on big-endian

platforms.

Figure 3 shows the address space in which the simulated

program executes. base is the address in the host’s address

space where the memory allocated for the simulated CPU

starts, and memsz is the total amount of memory allocated

for the simulated CPU. Addresses generated by the simulated

CPU are interpreted by the host as offsets into the memory

region allocated to the simulated CPU. _end is the symbol

that marks the end of the code, data and uninitialized data

segments (i.e., it is the address where the heap starts), while

stksz is the total amount of memory allocated for the stack.

The heap grows upward and its current limit is known as “the

break” (brk), while the stack grows downwards; $sp is the

stack pointer register which points to the current stack top

location.

ELF layer. The ELF layer prepares an in-memory ELF

image for execution. This includes thorough validation of all

segment and section data before they are used, copying text

and data segments to their respective places in memory, and

initializing the $pc (program counter) and $gp registers. The

public API also provides functions for symbol lookup and

address-to-symbol mapping. When compiling programs that

target CSPIM, the following options must be given to the

gcc compiler: -mips1 -mno-check-zero-division

-mlong-calls; these options force the compiler to use only

Fig. 3. The simulated program’s memory layout. The dashed lines represent
values that vary during execution.

the MIPS I instruction set and disable checks for division

by 0.3 Also, the following options must be given when

linking object files to produce the final executable: -Wl,-q

-nostdlib -Ttext 0x1000. These options instruct the

linker to leave relocation data in the final ELF file, to not link

in the standard libraries, and to set the address of the first

instruction to 0x1000 (hexadecimal).

The ELF loader ensures that there is sufficient space for

the program so that its segments do not overflow into the

stack area. However, like the real CPU, the simulator does not

check for stack overflows at run-time as this would prevent the

simulated program from using the stack pointer as a temporary

general-purpose register or from implementing coroutines. The

simulator guards the first 4kB of the guest’s address space

from accesses by the guest program, which in effect provides

NULL pointer protection. The host uses this area to store the

simulator’s control state.

System call layer. The system call layer is available only

when the host application executes in a hosted environment,

i.e., in user-space under an operating system. The system calls

provide support for console I/O of characters, strings and

integers, dynamic memory allocation through the sbrk call

having the same semantics as under UNIX, and (binary) file

I/O. A system call is invoked in three steps:

1) The system call parameters are placed in registers,

following the usual MIPS calling convention.

2) The system call number is placed in register $2.

3) The SYSCALL instruction is invoked with the code field

set to 0x9107C (an arbitrary value).

This is almost the same system call convention as defined by

the SPIM simulator. The only difference is that SPIM seems

to ignore the code field of the SYSCALL instruction, whereas

CSPIM mandates that it be set to the above value. The purpose

of this check is to ensure that the calling code follows the

SPIM calling convention; in the future, it could be also used

to support different system call conventions.

To protect the host’s file descriptors from the guest program,

the guest CPU maintains its own file-descriptor (FD) table.

FDs 0, 1 and 2 are always hard-wired to the host’s stdin,

stdout and stderr streams, while other guest’s FDs are

remapped to the host’s. Thus, accessing a given FD in the

3Unlike many other CPUs, MIPS I does not generate an exception on
division by 0; instead, it sets the result registers to undefined values.

guest will not necessarily access the same FD in the host. The

maximum number of available file-descriptors in the guest is

configurable at compile-time, and is by default set to 16.

Host: execution and error-handling. The host program is

responsible for allocating the chunk of memory in which the

guest will execute, loading the ELF image and initializing the

guest CPU state, and controlling execution. The host controls

execution of the guest CPU by repeatedly invoking a function

that executes a single instruction at a time. This function

returns an error code that indicates whether the instruction suc-

ceeded; possible failure causes are integer overflow, accessing

an invalid address, attempting to execute an invalid instruction,

encountering a SYSCALL or BREAK instruction, or because

the simulator has detected an unrecoverable internal error.

Since the guest CPU cannot access host’s memory, the host

is also responsible for providing the guest program with inputs

and getting the results out. CSPIM provides utility functions to

move data between host and guest memory. Host can use the

provided ELF symbol lookup functions to access data items in

the guest’s memory through symbolic names instead through

absolute addresses, which are susceptible to change each time

the guest program is recompiled.

B. Limitations

The current version of the simulator also departs in some

ways from the real MIPS I CPU:

• Big-endian mode is not supported, neither in the host

nor in the guest. However, support for big-endian hosts

can be easily added by providing the memory layer with

endianness-swapping functions.

• Coprocessor instruction sets is not supported. Specifi-

cally, neither floating point nor system control coproces-

sors are implemented, nor any kind of cache or virtual

memory simulation. Floating-point support may be added

in the future, but the other features are simply not

necessary for correct execution of user-mode programs.

• Consequently, there is no way to handle exceptions from

MIPS code – all exceptions are instead reflected to the

host program for processing, as explained above. If an

instruction in the branch delay slot causes an exception,

the exception is reported to the host for that instruction.

• Delayed loads are not simulated; the target register is

instead immediately loaded with memory contents. This

departure from the specification does not matter for any

correct program, and we assume that GCC generates

correct code in this respect.4

• As with the real CPU, division by zero produces an

undefined result – the current implementation always

returns -1 for both quotient and remainder.

Despite these differences, CSPIM successfully and correctly

executes programs compiled and linked by the mipsel-elf-gcc

compiler, when using the previously given flags.

4This is not an issue even for incorrect programs, since the real CPU returns
an undefined value if the program attempts to use the target register’s value
immediatelly after the load instruction.

TABLE I
SLOWDOWN FACTOR WITH RESPECT TO NATIVE EXECUTION.

Benchmark mips crypt sstep

hanoi-16 130 513 40423
hanoi-24 144 578 —

mmult-50 56 196 12288
mmult-100 108 379 —
mmult-150 128 449 —
mmult-200 138 485 —
mmult-250 143 503 —

IV. PERFORMANCE

In this section, we compare execution speed of native code,

single-stepped native code, simulated code, and simulated code

with data and code encryption. To test the speed of single-

stepped native code, we have written a program that uses

the ptrace system call to execute the tested application

instruction at a time. We have evaluated the performance of a

recursive Hanoi towers solver (with no output), and multipli-

cation of square matrices of various sizes. The Hanoi towers

solver has a relatively complex control-flow (doubly-recursive

function), while matrix multiplication is data intensive.

The host programs have been compiled with gcc 4.3.2 in 64-

bit mode with maximum optimizations (-O3), while the guest

programs have been compiled with the mipsel-elf-gcc 4.2.4

cross-compiler, also at maximum optimization level. The tests

have been run on an otherwise idle 2.6 GHz AMD Opteron

machine with 4 dual-core CPUs, 64 GB of RAM running

Linux kernel 2.6.27.3. We have used the numactl program

to bind the program to a single CPU.

Table I shows the slowdown factor of single-stepped (sstep),

simulated (mips) and simulated and encrypted execution

(crypt) with respect to the native code running at full speed.

We have run the Hanoi solver for n ∈ {16, 24}, and matrix

multiplications for sizes 50, 100, 150, 200 and 250.

From the table, we can see that hardware-assisted single-

stepping with ptrace has worst performance and causes the

target program to run more than 104 times slower than the

native version. Because of the extreme slow-down, we have

been able to run only the smallest problem instances. This

experiment also shows that single-stepping is not a viable

method for on-the-fly decryption of code and data. The main

cause of low performance are the high overheads of kernel

involvement for every executed instruction.

Executing the applications with CSPIM incurs slow-down

up to a factor of ∼ 140. In the matrix multiplication test

(mmult), the slowdown increases with the matrix size; the

largest increase in slowdown happens at transition from n =
50 to n = 100. We believe that this is due to cache effects, as

three 50× 50 integer matrices use 30kB of RAM, which still

fits into the CPU’s L1 cache. For n > 100, matrices do not

fit into the L1 cache anymore, so they compete also with the

simulated CPU’s instructions.5 The table also shows that using

encrypted memory accesses slows down the Hanoi benchmark

5Recall that instructions that the guest CPU executes are also data in the
host’s memory.

Fig. 4. Loading of ELF image where all loadable segments are encrypted.

by an additional factor of ∼ 4, while the matrix multiplication

benchmark is slowed down by an additional factor of ∼ 3.5.

In summary, simulating a 32-bit MIPS CPU incurs ∼ 140-

fold performance penalty, which increases to ∼ 580-fold per-

formance penalty when encryption of code and data is enabled.

In comparison, the secure context switch mechanism [14]

incurs a 2.5-fold performance penalty on programs with 4

MB of protected memory space; the penalty would increase

with larger sizes of the protected memory. Even though sig-

nificantly faster than our method, secure context switch does

not obfuscate the code, is not applicable to multi-processor

systems, and is not resilient against observation within a virtual

machine even on single-processor systems. Other program

obfuscation methods, like VMProtect, are proprietary and have

no published performance data.

V. USE CASES

CSPIM executes MIPS I binaries on a virtual CPU. As such,

it is already a powerful program obfuscation tool. Additionally,

CSPIM supports encryption of instructions and data at the

(simulated) physical memory layer, so only a single machine

word (32 bits) is present in unencrypted form in the host’s

memory. Lastly, to provide an even larger degree of obfusca-

tion, CSPIM can simulate itself, i.e., it is possible to construct

recursive simulations. The provided code archive includes

example programs demonstrating all these capabilities.

When encrypted execution is desired, the MIPS program

must first be compiled into an ELF executable, which is in

turn encrypted by the elfcrypt program, also provided

in the code archive. The elfcrypt program encrypts all

loadable ELF segments using the RC5 algorithm configured

with 128-bit key and 32-bit block size. Such small block

size guarantees that no loadable segment needs padding to

the cipher’s block size before being encrypted. For simplicity,

elfcrypt uses ECB mode of operation, but there is no

obstacle to using a more secure mode such as CTR, where the

address of the simulated memory location would be used as

the counter. Feedback and chained modes, e.g., CBC or OFB,

are unsuitable because encrypted data cannot be randomly

accessed in constant time.

CSPIM’s ELF loader copies encrypted ELF segments verba-

tim into the simulated memory, and takes care that the unini-

tialized data section (.bss) is filled with encrypted zeros,

as shown in figure 4. Once the encrypted ELF executable is

embedded as data in the host’s memory, its contents cannot

be interpreted until a valid key is obtained. The key can, for

example, be stored verbatim in the host’s executable, generated

by some algorithm, supplied by the user, or acquired over the

network. Since the simulator incurs significant performance

penalties, we envision that only the truly security-sensitive

parts of the application would be run in the guest environment.

VI. DISCUSSION

Our current scheme has several weaknesses that the attack-

ers can use to their advantage when attempting to recover the

encrypted code and data.

Plain-text ELF headers. The elfcrypt program en-

crypts only the contents of the loadable segments, while

ELF headers and symbol tables remain in plain-text. In our

proof-of-concept implementation, we have used ELF because

it allows us to access objects in the simulated program by

symbolic names instead of by absolute addresses. In produc-

tion use, the host program would embed just the previously

prepared in-memory image shown in figure 4, and access all

objects by their absolute addresses. Since the presence of an

ELF image(s) in the host’s data segment would be easily

detected, this approach additionally obfuscates the presence

of the encrypted program.

Plain-text key. Once the key has been acquired, it must

be present in plain-text in the host’s memory. By finding

and reading the key, the attacker will gain full access to the

program’s code and data. In the simplest case, the key will be

as a sequence of bytes in the host’s memory, so the attacker

can extract all l-byte sequences, l being the key size, from the

host and use them to attempt to decrypt the guest’s code and

data. This is an O(n) process, n being the total size of the

host’s data. By scattering the key material through the host’s

memory, the complexity of the search process can be raised

to O(nl) (exactly
(

n

l

)

l! combinations, l being constant).

Plain-text simulator code. The simulator’s code and func-

tioning is fully exposed in the host code. Thus, an attacker

could reverse-engineer the simulator code, find the memory

layer functions responsible for encrypting and decrypting

memory accesses, and use an OS-level or hypervisor-level

monitor to observe the inputs and outputs of these functions.

If the attacker in addition observes the accessed addresses

instead of just data, he can know whether every instruction

in the guest’s code segment has been decrypted, and thus

reconstruct the full guest’s code. Such attack can be made

significantly more complicated by using self-modifying code

in the guest because successful decryption of the instruction at

some address does not give any information about the number

of different possible decryptions of the same address.

No tamper protection. Our scheme does not provide

tamper-protection, i.e., it does not ensure that the guest

code has not been manipulated before execution. Even if

the attacker does not know the key, he can still maliciously

manipulate the encrypted code or the encrypted data that the

guest operates on. The former will lead to invalid instructions

in the majority of cases, while the latter will allow the attacker

to subtly manipulate the inputs and the outputs of the guest

program. Tamper-protection cannot be implemented purely in

software, and an orthogonal, hardware-based approach, such

as Flicker [18], is needed.

Small block size. For reasons already explained in sec-

tion V, the encryption block size is only 32 bits, which

might facilitate dictionary and matching cipher attacks [19].

We do not consider this as a serious drawback because

the weaknesses described above are much easier to exploit.

Increasing the block size is possible, but it would make the

compilation and decryption process slightly more complicated.

Orthogonality. CSPIM is orthogonal to existing obfusca-

tion techniques [7], [8], [9], which can be used to additionally

obfuscate the host and the guest code.

Nevertheless, none of these measures are perfect: they can

only make the reverse-engineering process so tedious that the

attacker will simply give up. With enough time and resources

at hand, the attacker will eventually gain full knowledge

about the guest application. Again, this weakness can only be

countered by executing the simulator in a hardware-protected

environment. Execution with hardware protection would also

solve the problem of tamper protection: the results of the

guest program would be signed with the private key that is

otherwise inaccessible to other concurrently running programs

and, indeed, the operating system (or hypervisor) itself.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a technique that combines

MIPS I CPU simulation and strong symmetric encryption

(RC5 algorithm) to provide code and data protection for

applications. Unlike existig approaches, which decrypt large

portions of the application’s code and data, our method never

decrypts more than a single memory word (32 bits) at any time

during the execution of the simulated CPU. This complicates

the reverse-engineers’ task because they have to penetrate

several obfuscation layers to learn about the program’s inner

workings: the CPU simulator layer, the encryption layer,

finding the encryption key, and deducing the encryption mode.

The CPU simulator layer and the simulated program can

additionally be obfuscated by existing program obfuscation

methods.

Our simulator (CSPIM) is written in cross-platform C code

and has been tested on Windows, Solaris and Linux operating

systems, compiled with three different compilers for 32- and

64-bit mode. We have benchmarked its performance using

a recursive towers of Hanoi solver and multiplication of

square matrices, and established that the slow-down factors

of simulation with encryption disabled and enabled are up to

150 and 580, respectively.

Although costly, our method provides both obfuscation and

encryption, and, unlike secure context switch, is resilient to

virtualization-based analysis tools. Furthermore, the decryp-

tion key does not need to be an integral part of the executable

containing the protected code, which makes the protected code

completely resilient to reverse-engineering until the key has

been obtained.

Also, unlike secure context switch, our method is applicable

to systems with multiple CPUs. In fact, the host program

can use today’s modern multi-core machines to its advantage:

the guest program can be spawned to asynchronously run on

another core, while the host program proceeds at full speed.

As part of our future work, we would like to investigate

two directions: applying our method to protecting programs

particularly susceptible to reverse-engineering (e.g., Java and

.NET applications) and improving performance. Performance

can, in turn, be improved in two ways: by improving the

current simulator code, and by parallelizing it. Parallelization

could, for example, emulate pipelined execution and spawn

separate threads for on-the-fly encryption and simulation. Par-

allelization would complicate the reverse-engineers’ task even

more, because they would have to follow several concurrent

control flows instead of one.

REFERENCES

[1] “Amazon Elastic Compute Cloud,” Available online., Accessed August
2009, http://aws.amazon.com/ec2/.

[2] I. Foster, “Globus toolkit version 4: Software for service-oriented
systems,” in IFIP International Conference on Network and Parallel

Computing, Springer-Verlag LNCS 3779, 2005, pp. 2–13.
[3] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis

via hardware virtualization extensions,” in CCS ’08: Proceedings of the

15th ACM conference on Computer and communications security. New
York, NY, USA: ACM, 2008, pp. 51–62.

[4] VMProtect Software, “Vmprotect,” http://www.vmprotect.ru/.
[5] Oreans technologies, “Themida,” http://www.oreans.com/.
[6] Silicon Graphics Inc., “MIPS Assembly Language Programmer’s

Guide,” 1992, part number 02-00036-005.
[7] P. Beaucamps and E. Filiol, “On the possibility of practically obfuscating

programs towards a unified perspective of code protection,” Journal in

Computer Virology, vol. 3, no. 1, pp. 3–21, 2007.
[8] J.-M. Borello and L. Mé, “Code obfuscation techniques for metamorphic

viruses,” Journal in Computer Virology, vol. 4, no. 3, pp. 211–220, 2008.
[9] Y. Guillot and A. Gazet, “Semi-automatic binary protection tampering,”

Journal in Computer Virology, vol. 5, no. 2, pp. 119–149, 2009.
[10] J. Larus, “SPIM: A MIPS32 Simulator,” Available online., Accessed

August 2009, http://pages.cs.wisc.edu/∼larus/spim.html.
[11] grugq and scut, “Burneye,” Available online., Accessed August 2009,

http://www.phrack.com/issues.html?issue=58&id=5&mode=txt.
[12] N. Mehta and S. Clowes, “Shiva,” Available online, Accessed August

2009, http://cansecwest.com/core03/shiva.ppt.
[13] E. Filiol, “Strong cryptography armoured computer viruses forbidding

code analysis: the BRADLEY virus,” in V. Broucek ed., Proceedings of

the 14th EICAR Conference, 2005.
[14] T. Morris and V. Nair, “Secure context switch for private computing

on public platforms,” in Global Telecommunications Conference, 2008.

IEEE GLOBECOM 2008. IEEE, 30 2008-Dec. 4 2008, pp. 1–5.
[15] “DarkParanoid virus description,” Available online., Accessed August

2009, http://www.viruslist.com/en/viruses/encyclopedia?virusid=2622.
[16] “Engine of eternal encryption,” Available online., Accessed August

2009, http://vx.netlux.org/vx.php?id=ee02.
[17] Željko Vrba, “Encrypted execution engine,” Phrack, no. 63, Accessed

August 2009, http://phrack.org/issues.html?issue=63&id=13&mode=txt.
[18] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,

“Flicker: an execution infrastructure for tcb minimization,” in Eurosys

’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European Confer-

ence on Computer Systems 2008. New York, NY, USA: ACM, 2008,
pp. 315–328.

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1996.

