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Abstract. The data retrieval operations in servers and proxies
for Media-on-Demand applications represent a severe bottle-
neck, because a potentially (very) high number of users con-
currently retrieve data with high data rates. In the Intermediate
Storage Node Concept (INSTANCE) project, we have devel-
oped a new architecture for Media-on-Demand storage nodes
that maximizes the number of concurrent clients a single node
can support. We avoid the traditional bottlenecks, like copy
operations, multiple copies of the same data element in main
memory, and checksum calculation in communication pro-
tocols, by designing, implementing, and tightly integrating
three orthogonal techniques: a zero-copy-one-copy memory
architecture, network level framing, and integrated error man-
agement. In this paper, we describe the INSTANCE storage
node, and present an evaluation of our mechanisms. Our ex-
perimental performance results show that the integration of
these three techniques in NetBSD at least doubles the number
of concurrent clients that a single storage node can serve in
our testbed.
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1 Introduction

In the last few years, there has been a tremendous growth in
the use of Internet services. In particular, the world-wide web
and audio- and video streaming applications like News- and
Video-on-Demand have become very popular. Thus, the num-
ber of users, as well as the amount of data each user downloads
from servers in the Internet, is rapidly increasing. The use of
multimedia data to represent information in a user-friendly
way is one important reason for these two developments. To-
day, contemporary mid-price personal computers are capable
of handling the load that such multimedia applications im-
pose on the client system. However, the potentially (very) high
number of concurrent users that download data from Media-
on-Demand (MoD) servers represents a generic problem for
this kind of client-server applications. To solve this problem,
proxies are used to cache data closer to the client and of-
fload MoD servers by serving clients directly from the proxy

with the cached data. However, proxies are confronted with
the same scalability problem as MoD servers: a successful
caching strategy can lead to the situation that a high num-
ber of concurrent clients has to be served by a single proxy.
Servers and proxies do not only share the scalability problem,
they also use exactly the same operating system mechanisms
to retrieve stored multimedia data and transmit it to receivers.
Since servers and proxies are placed somewhere in the dis-
tribution chain between information provider and information
consumer, we call them intermediate storage nodes, or simply
storage nodes.

The scalability of storage nodes can be improved by three
orthogonal approaches: (1) improve the I/O performance to
maximize the number of concurrent clients a single storage
node can support; (2) combine multiple single storage nodes
in a server farm or cluster; and (3) use multiple single storage
nodes in the distribution infrastructure as proxies. In the In-
termediate Storage Node Concept (INSTANCE) project, we
concentrate on the first approach developing a new architec-
ture for single storage nodes. This architecture is optimized
to support concurrent users in MoD-like applications retriev-
ing multimedia data from the storage node. Thus, the task of
reading data from disk and transmitting it through the network
to remote clients with minimal overhead is our challenge and
aim. In this context, we are currently interested in the maximal
possible I/O improvements for concurrent retrieval. Optimized
protocols for loading data from servers to proxies and caches
are beyond the scope of this paper, and subject to ongoing
research.

It was already recognized many years ago (1990) that op-
erating systems are not getting faster as fast as hardware [1].
Until today, the gap in speedup of operating systems and hard-
ware has not been reduced. Therefore, commodity operating
systems represent a major performance bottleneck in MoD
storage nodes. The crucial issues that contribute to this situa-
tion include copy operations, context switches, multiple copies
of the same data element in main memory, and checksum cal-
culation in communication protocols [2]. The key idea of IN-
STANCE is to avoid the above mentioned bottlenecks and im-
prove the storage node performance by designing and tightly
integrating the following three orthogonal techniques in a new
operating system architecture:
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• Zero-copy-one-copy memory architecture: memory copy
operations have been identified as a bottleneck in high
data rate systems. Several zero-copy architectures have
been designed removing physical data copy operations to
optimize resource usage and performance using shared
memory, page remapping, or a combination of both [2].
These approaches reduce resource consumption of indi-
vidual clients, but concurrent clients requesting the same
data require each its own set of resources. Traditional
broadcast or multicast is an easy way of dealing with per
client resource allocation, but start-up delay might be a
problem. To minimize the start-up delay, a couple of broad-
cast partitioning schemes have been proposed [2]. Still,
zero-copy and delay-minimized broadcasting only reduce
the per-data or per-client resource usage, respectively. To
optimize both, we integrate both mechanisms to have no
physical in-memory copy operations and to have only one
shared copy of each data element in memory.

• Network level framing (NLF) mechanism: each time a
client retrieves data from a storage node, the data is pro-
cessed through the communication system protocols exe-
cuting the same operations on the same data element sev-
eral times, i.e., once for each client. To reduce this work-
load, we regard the server or the proxy as an intermediate
node in the network, where only the lower layers of the
protocol stack are processed. When new data is sent to the
storage node to be stored on disk, only the two lowest pro-
tocol layers in the TCP/IP protocol suite are handled, and
the resulting transport protocol packet is stored on disk.
When data is requested by remote clients, the transport
level packet is retrieved from disk, the destination IP ad-
dress and port numbers are filled in, and the checksum
is updated by adding the checksum value of the new ad-
dresses. Thus, the end-to-end protocols that perform the
most costly operations in the communication system, espe-
cially the transport level checksum, are almost completely
eliminated.

• Integrated error management scheme: when transferring
data from disk in a storage node through the network to
remote clients, the correctness of the transferred data is
checked multiple times, i.e., there is redundant error man-
agement functionality. In INSTANCE, we integrate the
error management in a disk array and a forward error cor-
rection (FEC) scheme in the communication system. Con-
trary to the traditional data read from a redundant array of
inexpensive disks (RAID) system, where the parity infor-
mation is only read when a disk error occurs, we retrieve
also the redundant error recovery data (also called parity
data). All data is passed over to the communication sys-
tem, where the parity information from the RAID system is
reused as FEC information over the original data. Thus, by
using the same parity information in both subsystems, the
FEC encoder can be removed from the storage node com-
munication system, and both memory and CPU resources
are made available for other tasks.

Zero-copy solutions have been studied before, and there
is some work related to our NLF idea (see Sect. 3.5). How-
ever, our work presents several unique contributions: (1) the
integrated error management concept or similar ideas have
not been reported by others; (2) there are no publications that

describe the integration of zero-copy and NLF, or of all three
mechanisms; and (3) there are no research results reported that
come close to the server performance improvement we have
demonstrated in the INSTANCE project.

In earlier publications [3,4], we have individually described
design considerations, as well as some early performance eval-
uations of the three mechanisms. It is the goal of this paper to
present design, implementation, and an in-depth performance
evaluation of the integrated system. The rest of the paper is
organized as follows. In Sect. 2, we describe the design and
implementation of our system. Section 3 presents the results
of our performance experiments. We summarize and conclude
the paper in Sect. 4.

2 Design, implementation, and integration

The basic idea of the INSTANCE project is to create a fast
in-kernel data path for the common case operation in a stor-
age node, i.e., retrieval of data from the storage system and
sending it to receiver(s). Consequently, we remove as many
instructions as possible per read and send operation. In this
section, we describe the design, implementation, and integra-
tion of our mechanisms tuning the I/O performance in a storage
node.

2.1 Zero-copy-one-copy memory architecture

The term zero-copy-one-copy refers to a combination of a
zero-copy implementation of an in-kernel data path with a
broadcasting scheme that serves multiple clients with one in-
memory copy.This section describes our memory architecture.

2.1.1 In-kernel data path

The basic idea of our zero-copy data path is shown in Fig. 1.
The application process is removed from the data path, and
in-kernel copy operations between different sub-systems are
eliminated by sharing a memory region for data. The file sys-
tem sets theb_data pointer in thebuf structure to the shared
memory region. This structure is sent to the disk driver, and
the data is written into the buf.b_data memory area. Fur-
thermore, the communication system also sets the m_data
pointer in the mbuf structure to the shared memory region,
and when the mbuf is transferred to the network driver, the
driver copies the data from the mbuf.m_data address to the
transmit ring of the network card.

To implement this design, we have analyzed several pro-
posed zero-copy data path designs [2]. In INSTANCE, we
have a specialized system and do not need to support all gen-
eral operating system operations. Therefore, we have used a
mechanism that removes the application process from the data
path, and transfers data between kernel subsystems without
copying data (for example, see work from Buddhikot [5] and
Fall and Pasquale [6]). As a starting point, we have chosen
to use the MMBUF mechanism [5], because of its clean de-
sign and reported performance. We have made the following
modifications in order to support our requirements and sys-
tem components, including a later version of NetBSD, and
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to further increase the performance: First, the allocation and
deallocation of MMBUFs have been changed to use the pool
mechanism in NetBSD to reduce the time used to allocate
and free a buffer item. On a PentiumIII 933 MHz machine,
malloc() and free() (which is used in the original de-
sign) used 5.80 µs and 6.48 µs, respectively. Using the pool
mechanism, these times are reduced to 0.15 µs for both al-
locating and deallocating the MMBUF. Second, the network
send routine is changed to allow UDP/IP processing, because
the native MMBUF mechanism used ATM. Third, the native
stream operation blocks if data from previous operations is
not yet transmitted onto the network before issuing a new op-
eration of the current chain. Instead, a new memory block is
allocated for the chain regardless whether the data is transmit-
ted or not. Therefore, we do not issue a wait on the chain, and
the possible blocking delay is removed.

2.1.2 Broadcasting schemes

The zero-copy data path eliminates the in-memory copy oper-
ations in our storage node, but each client that is served by the
storage node still requires its own set of resources in the stor-
age node. For each client request, the data for the respective
client has to be stored in the virtual address space of the serv-
ing process. This means that physical memory is allocated and
mapped into the virtual address space of the process according
to available resources and a global or local allocation scheme.
This approach is also called user-centered allocation, because
each client has its own share of the resources. However, tradi-
tional memory allocation on a per-client basis suffers from a
linear increase of required memory with the number of clients.

To better use the available memory, several systems use
so-called data-centered allocation, where memory is allocated
to data objects rather than to a single process. In our stor-
age node we use a periodic service like pyramid broadcasting
[7], or derivatives [8,9,10]. The data is split into partitions
of growing size, because the consumption rate of one par-
tition is assumed to be lower than the downloading rate of
the subsequent partition. Each partition is then broadcast in
short intervals on separate channels. A client does not send a
request to the storage node, but instead it tunes into the chan-
nel transmitting the required data. The data is cached on the
receiver side, and during the playout of a partition, the next

partition is downloaded. Performance evaluations show that
the data-centered allocation schemes scale much better with
higher numbers of users, compared to user-centered allocation
[7]. The total buffer space required is reduced, and the average
response time is minimized by using a small partition size at
the beginning of a movie.

2.1.3 Integration of data path and broadcasting scheme

The integration of the zero-copy data path and the delay-
minimized broadcasting scheme is depicted in Fig. 2. The
data file is split into partitions of growing size. Each of these
partitions are transmitted continuously in rounds using the
zero-copy data path (see Fig. 1), where data is sent to the
network using UDP and IP multicast. Thus, our memory ar-
chitecture removes all in-memory copy operations, making a
zero-copy data path from disk to network, i.e., the resource
requirement per-data element is minimized. Additionally, this
mechanism reduces the per-client memory usage by applying
a delay-minimized broadcasting scheme running on top of the
in-kernel data path.

2.2 Network level framing

Each time data is retrieved from a storage node, it is processed
through the communication system protocols executing the
same operations on the same data element several times (i.e.,
an identical sequence of packets, differing only in the desti-
nation IP address and the port number fields, is created each
time). Most of the time consumed is due to reformatting data
into network packets and calculating the checksum. Since the
common operation in a storage node is to retrieve data from the
storage system and send it to receivers, we regard the transport
layer packet processing as unnecessary overhead and process
only the lower layers of the protocol stack like in an interme-
diate network node. When new data is uploaded to a storage
node for disk storage, only the lowest two protocol layers of the
TCP/IP protocol suite are handled, and the resulting transport
protocol packets are stored on disk. When data is requested by
remote clients, the transport level packets are retrieved from
disk, the destination port number and IP address are filled
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in, and the checksum is updated over the new header desti-
nation fields. Thus, the overhead of the end-to-end protocol
which performs the most costly operations in the communica-
tion system, especially the transport level checksum, is almost
completely eliminated.

In the current implementation of our NLF prototype, we
use UDP as transport protocol, because it is suited for multi-
cast and real-time environments [11], i.e., it is fast and does not
suffer from large delay variations due to retransmissions. How-
ever, as incoming packets will have invalid headers, meaning
that the port numbers and IP addresses are incorrect, we can-
not put these packets directly on disk. Furthermore, to assure
that the storage node receives all the data, a reliable protocol
like TCP or hybrid ARQ [12] must be used to upload data
to a storage node. In order to prefabricate UDP packets and
to store them on disk, we split the protocol, which is imple-
mented by the NetBSD udp_output() procedure, in two
parts (Fig. 3). The first part, called udp_PreOut(), is exe-
cuted “off-line” during the data upload operation. It calculates
the checksum over the packet payload and stores the check-
sum in a meta-data file. The packet header itself is not gen-
erated or stored in the current prototype. The second part of

our UDP protocol, named udp_QuickOut(), is performed
at transmission time and generates the packet header, adds
the checksum over the header to the stored checksum, which
is prefetched into memory at stream initialization time, and
transmits the packet via IP to the network (please refer to [3]
for more details).

2.3 Integrated error management

In INSTANCE, we look at a storage node using a RAID system
for data storage, and to move the CPU intensive data recov-
ery operations in the communication system to the clients, we
use FEC for network error correction. Thus, when transferring
data from disk in a storage node through the communication
system to remote clients, the correctness of the information is
normally checked multiple times, i.e., when data is retrieved
from the disk array and when data arrives at the client side.
The FEC encoding operation is a CPU intensive operation and
represents a severe bottleneck in the storage node when trans-
mitting data to a large amount of concurrent users. To remove
this bottleneck, we integrate the error management in the stor-
age system and the communication system. This is achieved
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by reusing the storage system parity data as FEC recovery
data in the communication system, as shown in Fig. 41. When
uploading data to the storage node, we write data to the disk
array in a manner similar to RAID level 4, i.e., having one
parity disk, but replace the traditional RAID XOR parity cal-
culation by a correcting code that can be used by both storage
and communication system. A read operation retrieves both
application level data and the new RAID parity data. All this
data is transferred to the communication system where the
parity data is used in the FEC decoder at the client side.

However, the storage system and the communication sys-
tem have different error models, and it is a challenge to find
a code that recovers from all kinds of errors and at the same
time is efficient enough to enable high data rate multimedia
streams. In the storage system, a disk block may be damaged,
and in the network, bit errors occur due to noise, and pack-
ets are lost because of congestion. To create an error model
for the network, we have studied several loss statistics from
measurements done by others [4].

We have evaluated different codes to see if an integrated
error management scheme could be designed. We performed
several tests measuring coding performance using different
code configurations. Our analysis shows that the Cauchy-based
Reed Solomon Erasure code [13], which is able to correct
known errors (erasures), has the necessary properties and can
achieve adequate performance. Therefore, the storage system
in our prototype stores parity data that is generated with this
code. When transmitting data to a remote client, the storage
system parity data is reused for FEC parity data reconstructing
lost packets. Bit errors, for example introduced by noise in the
network, are detected at the client side with the help of the
transport level (UDP) checksum. If a packet is corrupted, i.e.,
one or more bits are damaged, it is detected by the checksum
algorithm, and the packet is marked as corrupted. Afterwards,
the FEC scheme is applied to reconstruct both lost and dam-
aged packets using the storage system parity data.

We decided to configure our prototype such that it is able
to correct maximum 12.5% lost or corrupted data packets. For
an eight disk RAID system, we tailor the size of the code-
word, which is the amount of data subject to reconstruction,
to contain 256 symbols, i.e., 224 symbols for application data
and 32 symbols for parity data. A symbol is a single data ele-

1 The idea of saving CPU cycles this way does not require reuse
of storage system parity data. FEC computations can be done offline
and stored as briefly suggested by Rizzo [14], but the integrated error
management scheme additionally saves disk bandwidth and storage
space as the disk array already provides parity data.

ment within the codeword. The symbol size is a configurable
parameter, and each symbol is transmitted as a single packet,
i.e., packet size equals symbol size (for details, see Halvorsen
et al. [4]).

2.4 Integration

Our three mechanisms can be used separately or tightly inte-
grated. In order to prove our assumption, that the total system
performance gain integrating the three techniques is approx-
imately the sum of each individual gain, we have designed
and implemented an integrated version. However, a tight in-
tegration requires that the three mechanisms are adapted to
each other. The purpose of this subsection is to outline these
necessary adaptions.

For the integrated error management scheme, we must find
a symbol size that is appropriate for the disk blocks to be able
to recover from disk errors. At the same time, a symbol is
transmitted as a single packet in the communication system,
and the size should be suitable for the used network. As de-
scribed later, we have chosen and tested symbol sizes of 1 KB,
2 KB, 4 KB, and 8 KB.

In our integrated server design, the data stored on our stor-
age node is processed through a “prefabrication filter” before
put on disk. This generates FEC information for the integrated
error management scheme and packet payload checksums for
NLF. Thus, these operations are not performed on-the-fly dur-
ing transmission. An important integration issue is the order
of the operations, i.e., parity packets should also have precal-
culated checksums, and must be generated before processing
the data through the NLF filter.

At transmission time, the server uses a periodic service
like the cautious harmonic broadcasting protocol [10], reduc-
ing the number of streams transmitted for the most popular
(prefabricated) data elements. The in-kernel zero-copy data
path, integrated with the NLF “lightweight” version of the
UDP protocol, is used during data retrieval to minimize the
overhead of moving both application level data and FEC data
from the disk to the network card. Finally, any lost or corrupted
data is restored at the client side using the FEC information in
an error correcting layer in the client application.

3 Performance evaluation

We have performed several tests to monitor the performance
of different data transmissions using a Dell Precision Work-
Station 620 with an Intel 840i chipset [15] with two PCI
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busses (32 bit, 33 MHz and 64 bit, 66 MHz), a PentiumIII
933 MHz processor, 32 KB first-level cache, 256 KB second-
level cache, and 256 MB RDRAM with a theoretical band-
width (measured bandwidth is reported in detail in the thesis
from Halvorsen [16]) of 25.6 gigabit-per-second (Gbps), i.e.,
dual 12.8 Gbps memory controller interface and 25.6 Gbps
system bus. This machine has only one 9.1 GB, 10,000 rounds-
per-minute SCSI hard disk. Therefore, we simulated a RAID
system by storing both application level data and parity data
on the same disk. We connected this machine to another PC
using an isolated, point-to-point gigabit Ethernet network. To
measure time in kernel and user space, we have implemented
a software probe using the Intel RDTSC instruction. This in-
struction reads the processor cycle count giving a nano-second
granularity [17]. To avoid issues affecting the measured cycle
count like out-of-order execution, we used the CPUID instruc-
tion in the software probe forcing every preceding instruction
in the code to complete before allowing the program to con-
tinue. The overhead of executing this software probe com-
prises 206 cycles (0.22 µs) running inside the kernel and 273
cycles (0.29 µs) in user space. In the performance results pre-
sented in the following subsections, this overhead is already
subtracted.

3.1 Memory management

The broadcasting scheme enables several clients to share a
single data element in memory, i.e., we are able to support
a lot of users, but still only a limited amount of concurrent
streams. To determine the maximum amount of concurrent
streams that a single storage node can support, we have ana-
lyzed the performance of the zero-copy data path by measuring
the time transmitting a 1 GB file from storage system to the
network. Our first observation is that a single top-end disk in
our test system is too slow compared to the rest of the system
to see the benefits of the zero-copy data path. With this disk
we can only achieve a maximum throughput of 205 megabits-
per-second (Mbps), regardless of whether copy operations are
used. Therefore, we used a memory file system to perform the
same measurements, which means the data retrieval times are
reduced from a disk access time to the time to perform a mem-
ory copy operation. Since we cannot store a 1 GB file in main
memory on our test machine, we read instead a 28662512 B
file 38 times (1.015 GB) in a tight loop. The average results are
plotted in Fig. 5. If there is no load on the system (Fig. 5a), the
time to transmit the data through the storage node is reduced
by 45.81% (1 KB packets), 45.04% (2 KB packets), 49.33%
(4 KB packets), and 52.70% (8 KB packets). Furthermore, if
we have a highly loaded2 machine (Fig. 5b), the respective
times are reduced by 70.73% (1 KB packets), 71.49% (2 KB
packets), 71.33% (4 KB packets), and 73.43% (8 KB packets).
This shows that a zero-copy data path also scales much better
than the traditional mechanisms, because less resources, like
memory and CPU, are used. The performance of the zero-
copy mechanism degrades from low system load to high sys-
tem load by factors 6.30 (1 KB packets), 5.90 (2 KB packets),

2 A workload of 10 CPU intensive processes, performing float and
memory copy operations, were added, i.e., the CPU was available
for about 9% (time for context switches not included) of the time to
serve client requests.

6.20 (4 KB packets), and 6.08 (8 KB packets) whereas the
performance of the traditional storage node is reduced by fac-
tors 11.67 (1 KB packets), 11.37 (2 KB packets), 10.96 (4 KB
packets), and 10.83 (8 KB packets).

Since some of these values indicate a throughput close to
1 Gbps when reading data from the memory file system, we
checked if the network card could be a bottleneck. Our tests
show that packets sent to the network card’s transmit ring are
occasionally put back to the driver queue meaning that the
1 Gbps network card is a bottleneck in our implementation.

The amount of time spent in the kernel is significantly
reduced when removing the copy operations. The total time is
reduced in average by 34.27% (1 KB packets), 36.95% (2 KB
packets), 39.88% (4 KB packets), and 36.10% (8 KB packets).

Additionally, we have looked at the performance when
transmitting several concurrent streams using a packet size of
2 KB3. Each stream transmitted 1 GB data from a memory
file system4 through the communication system to the net-
work, and we measured the transmission completion time for
each individual stream. During these tests the memory file sys-
tem consumed approximately 35 % of the CPU resources for
all tests. Our results show that our zero-copy mechanism per-
forms better than the native NetBSD mechanisms. Figure 6a
presents the difference in time to transmit the data per stream,
and this time increases faster using traditional system calls
compared to our stream mechanism. In the Zero-Copy 1 mea-
surement, we have used separate stream read and send system
calls. The test Zero-Copy 2 represents a scenario where the
system call overhead is reduced by merging the read and send
operations into one single system call. Figure 6b shows the
per client throughput, and the Zero-Copy 2 test indicates a
throughput improvement per stream of at least a factor two
(about 2.5). The number of concurrent clients may therefore
be increased similarly5. Compared to the single-user scenario
(Fig. 5), the total server performance decreases slightly due to
context switch overhead.

3.2 Network level framing

To see the performance gain of using NLF, we have mea-
sured the time spent in the traditional UDP protocol and the
respective time spent in our protocol which used prefabricated
checksum over the packet payload. We transmitted a large data
file of 225 MB via the zero-copy data path with packet sizes
of 1 KB, 2 KB, 4 KB, and 8 KB. The results are shown in
Fig. 7. The first observation is that small packets require more
time to transmit the whole file, because more packets have
to be generated and especially more header checksums have

3 Due to time restrictions, we could only test one packet size, and
2 KB is randomly chosen from the supported packet sizes.

4 As memory is a scarce resource, several streams had to read the
same file, i.e., streams using traditional system calls could have a
caching effect on the buffer cache which will not be present in our
storage node broadcasting data. To have equal conditions for all tests,
we removed this caching effect by reducing the buffer cache size from
13,168 KB to 200 KB.

5 Figure 6b indicates an increase of almost a factor three, e.g.,
about 12 (6) Mbps can be transmitted to 25 (50) concurrent clients
using native NetBSD mechanisms whereas Zero-Copy 2 can manage
about 75 (150) clients.
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Fig. 7. Accumulated UDP protocol execution time versus total time spent on checksum operation

to be calculated. Moreover, as we can see from the figures,
our version of the UDP protocol is faster than the traditional
protocol. In average, the time to execute the checksum pro-
cedure is reduced by 95.98% (1 KB packets), 97.87% (2 KB

packets), 98.91% (4 KB packets), and 99.45% (8 KB pack-
ets) when using NLF. Furthermore, as we only compute the
checksum over the packet headers, the overhead of processing
the packet through the UDP protocol is nearly constant using
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NLF. Using the traditional protocol, we see that this overhead
depends on the packet payload and varies more, because it is
more vulnerable to context switches. Finally, the amount of
effective time used in the operating system kernel by the stor-
age node is also greatly reduced using NLF compared to using
the traditional UDP protocol, i.e., in average by 51.32% (1 KB
packets), 54.07% (2 KB packets), 61.16% (4 KB packets), and
61.66% (8 KB packets).

3.3 Integrated error management

The codeword symbol size (which is equal to the packet size)
has impact on the decoding performance. Decoding through-
put and additional introduced start-up delay due to decoding
depends on the codeword configuration, the symbol size, and
the available CPU resources. To find suitable symbol size val-
ues, we tested the Cauchy-based Reed Solomon Erasure code
with symbol sizes ranging from 32 B to 64 KB using the code-
word configuration described in Sect. 2.3 in a worst case loss
scenario. This scenario is defined by the maximum loss that
can be repaired, i.e., losing 12.5% of the packets, and a 167
MHz Sun UltraSparc1 machine simulating a low performance
client.

Figure 8a shows that the throughput increases with larger
symbol sizes. If we use symbol sizes equal or larger than 1
KB, the client system will be able to decode streams with data
rates of 6 Mbps and more on this system. However, increas-
ing throughput by using larger symbol sizes also increases the
worst case start up delay (see Fig. 8b), because there is more
data to decode per codeword. Therefore, to reduce the expe-
rienced start-up delay, we do not use symbol sizes larger than
8 KB. This results in a (worst-case) decoding delay of two
seconds or less on the Sun UltraSparc 1.

To further analyze the performance of our prototype, we
have designed a simple benchmark application in which we
transfer a 225 MB file between the server process and the client
process. We performed a worst-case decoding performance
test introducing a maximum amount of errors within the code’s
correcting limit on several different machines using symbol
(packet) sizes of 1 KB, 2 KB, 4KB, and 8 KB.

3.3.1 Client side

By reconstructing the lost data at the client side instead of wait-
ing for a retransmission, the clients experience a better data
presentation at the cost of increased memory and CPU usage.
Our measurements show that our code is able to decode the
data in time for a high data rate presentation. The average de-
coding performance on our different machines is displayed in
Table 1. Most of our experiments show that a standard MPEG-
2 Digital Versatile Disk (DVD) video data stream (average bit
rate of 3.5 Mbps and maximum bit rate of 9.8 Mbps [30])
with a maximum data loss (of 12.5%) can be recovered in
time. Furthermore, there are no large performance differences
varying the symbol size between 1 KB and 8 KB, and all these
configurations are adequate regarding throughput. However,
our tests indicate some minimal hardware requirement, de-
pending on the supported data rate, because the Tech Pentium
(166 MHz) machine is unable to support a higher data rate
than about 3 Mbps.

Table 1 also shows the experienced start-up decoding de-
lays (time to decode the first codeword) in our experiment. Due
to the decoding cost, the client might experience an increased
start-up delay ranging from about 0.1–4.5 seconds (if a max-
imum amount of repairable errors occur), depending on the
processor speed and the used block size. The delay increases
with the size of the symbol, and since there are no large dif-
ferences in throughput for the evaluated schemes on the same
machine, a symbol size of 1 KB or 2 KB is appropriate.

Finally, as there usually is some variance in the accessi-
bility of the processor (unless some kind of reservation-based
scheduling is provided), and thus in the decoding throughput,
some client-side buffering should be provided. Nevertheless,
despite all the overhead introduced on the client side, the re-
covery of a 3.5 Mbps video stream can be made in time, with
exception of the Intel Pentium (166 MHz) machine, assum-
ing client hardware similar to the machines we used in our
experiments.

3.3.2 Server side

The server side performance gain, integrating the error man-
agement mechanisms and reading the parity data from disk,
is substantial. Storing and retrieving parity data from disk re-
quires no extra storage space compared to traditional RAID
systems, because one disk is already allocated for parity data.
Furthermore, it requires no extra time for data retrieval, be-
cause the recovery disk is read in parallel with the original
application data. We have no overhead managing retransmis-
sions, and the usage of the parity data from the RAID sys-
tem as FEC recovery data offloads the storage node from the
encoding operation resulting in severe performance improve-
ments. A PC with a PentiumIII 933 MHz CPU is capable of
encoding data at a maximum throughput of 24.34 Mbps (1 KB
packets), 22.07 Mbps (2 KB packets), 22.67 Mbps (4 KB
packets), 22.94 Mbps (8 KB packets) using the Cauchy-based
Reed Solomon Erasure code. Without this encoding opera-
tion, the same system can achieve a throughput of 1 Gbps (see
Sect. 3.1). The only overhead on the storage node side in our
approach is 12.5% of increased buffer space and bandwidth re-
quirement to hold the redundant data in memory and transmit
it over the buses and the network. Thus, using our integrated
error management mechanism, the storage node workload is
greatly reduced compared to traditional FEC schemes, and
the clients experience a smoother data playout compared to
ARQ based schemes, because no latency is introduced due to
retransmissions.

3.4 Integrated server performance

The INSTANCE enhancements are orthogonal, and as shown
in the previous sections, each mechanism increases perfor-
mance in a particular part of the system. In this section, we
show that our assumption in Sect. 2.4 holds quite well, i.e.,
the performance gains of a tightly integrated server increase
approximately equal to the sum of each individual gain.

The integrated error management removes the 24 Mbps
(1 KB packets) encoding bottleneck on our test machine at
the cost of 12.5% extra required storage space and bandwidth
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Fig. 8. Cauchy-based Reed Solomon erasure decoding

Table 1. Average decoding throughput (Mbps) and start-up delay (seconds) varying the symbol (packet) size

Throughput (Mbps) Delay (s)
Machine 1 KB 2 KB 4 KB 8 KB 1 KB 2 KB 4 KB 8 KB
Sun UltraSparc 1, 167 MHz, Solaris 2.6 6.02 6.51 6.36 6.20 0.30 0.56 1.16 2.45

Sun Ultra 4, 300 MHz, Solaris 2.6 9.99 10.71 10.55 10.49 0.18 0.33 0.69 1.47

Dell PowerEdge 6300 500 MHz, Red Hat Linux 6.1 8.16 7.43 6.52 6.47 0.14 0.49 1.11 2.25

Dell Inspiron 7000, 400 MHz, Red Hat Linux 6.1 10.03 9.27 9.48 9.59 0.18 0.40 0.82 1.54

Cinet PPI-600, 350 MHz, Red Hat Linux 6.1 8.96 9.22 9.05 8.89 0.20 0.39 0.85 1.63

Tech Pentium, 166 MHz, Red Hat Linux 6.1 3.18 3.32 3.34 3.25 0.58 1.11 2.16 4.50

Tech AMD K7, 700MHz, Red Hat Linux 6.1 17.10 17.40 16.67 16.53 0.11 0.21 0.44 0.95

Cinet PPI-600, 350 MHz, NetBSD 1.4.1 10.35 10.71 10.37 10.12 0.18 0.34 0.71 1.45

Dell Inspiron 7000, 400 MHz, NetBSD 1.4.2 10.62 10.05 10.52 10.66 0.17 0.36 0.70 1.38

Cinet PPI-600, 350 MHz, OpenBSD 2.6 14.87 16.28 14.85 14.22 0.12 0.22 0.49 1.04

Dell Precision 620, 933 MHz, NetBSD 1.5ALPHA2 23.03 20.67 20.80 20.75 0.08 0.18 0.35 0.71

using the current configuration. The encoding bottleneck and
the retransmission overhead are removed, which means that
an effective throughput of about 875 Mbps could be achieved
as the zero-copy measurements show a total throughput close
to 1 Gbps.

Figure 9 shows the gain in used CPU time in the ker-
nel (Fig. 5 shows corresponding completion time) running a
server without FEC. We see that using the zero-copy data path
together with NLF reduces the used CPU time by 66.18%
(1 KB packets), 70.37% (2 KB packets), 75.95% (4 KB pack-
ets), and 75.25% (8 KB packets) compared to the traditional
data path. In total, a traditional server used approximately 10
seconds on the processor to transmit the whole data file. If the
server should also perform FEC encoding, an additional over-
head of 346.92 seconds (1 KB packets), 388.54 seconds (2 KB
packets), 380.50 seconds (4 KB packets), and 375.45 seconds
(8 KB packets) must be added using the traditional data path.
Additionally, the total time used by the system includes the
time spent executing instructions in the server application,
but as these times are below 0.5 seconds, regardless of which
server we use, we have not added this overhead into the figure.

A broadcast protocol for periodic services also improves
the efficiency of our MoD server. Such schemes reduce the
server bandwidth requirement at the cost of increased client
workload and resource requirements. For example, using a
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cautious harmonic broadcasting protocol [10], the total server
bandwidth requirement in a News-on-Demand (NoD) sce-
nario, i.e., transmitting 3.5 Mbps video streams to n concurrent
clients (a bandwidth requirement of n × 3.5 Mbps for each
video clip using unicast), can be reduced to 16.26 Mbps [16]
per video clip, regardless of the number of concurrent clients
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assuming a maximum startup latency of five seconds and a
video-clip length of three minutes. However, such a broad-
casting scheme increases the client reception rate in that the
client receives data from several segments of the data file con-
currently (but not the consumption rate). If we perform error
correction when the data arrives, the broadcasting scheme in-
fluences the integrated error management scheme, i.e., error
correction must be performed on several file segments at the
same time. If loss recovery is performed as the data is played
out, the scheme does not influence the integrated error man-
agement mechanism except that additional storage space is
needed for parity data. Independent of when the data is de-
coded, all machines with reasonable performance are capable
of decoding multiple streams from the broadcast protocol, e.g.,
our NoD example requires a 16.26 Mbps reception rate and
some of the tests indicate that even a 350 MHz machine can
decode (error correct) these streams.

Conclusively, the gain of our bottleneck removals in our
integrated server implementation approximately adds up as
assumed in Sect. 2.4. The integrated error management and
the periodic broadcasting scheme do not influence the perfor-
mance of other mechanisms, but remove the FEC encoding op-
eration and share data between concurrent users, respectively.
The gain of removing copy operations is a about 40% (see
Sect. 3.1 and [16]), and the removal of checksum operations
should further decrease processing cost of the communication
system, which comprises most of our remaining overhead, by
about 60% [18]. Our measurements (see Fig. 9) indicate sim-
ilar numbers and thus verifies the total gain assumption.

3.5 Comparison with related work

The research area of improving system performance for MoD
applications, especially memory management and communi-
cation protocol processing, has received much attention, and
there are a lot of existing research results. However, our ap-
proach differs from other works in that we integrate several
mechanisms and look at the total server performance gain.

We have presented in [16,2] several copy-free data paths
and compared several different broadcasting schemes. Never-
theless, for our kind of application scenarios, there are no other
mechanisms that perform better (maybe equally good), be-
cause we have designed a tailored streaming system and have
optimized the code to meet our needs. For example, our sys-
tem performs better compared to more general-purpose mech-
anisms using page remapping or transfers of access rights.
Furthermore, to the authors’ knowledge, there are no other
mechanisms trying to combine mechanisms to both reduce in-
memory copy operations and reduce per-client data elements.

Figure 7 shows that, by using NLF, packet header gener-
ation is the most time consuming operation in our modified
UDP protocol. Thus, by either including the packet header
in the NLF implementation (as in the basic design), or addi-
tionally using the idea of pregenerating header templates on
connection setup [19,20], the overhead of filling in header
fields can be reduced. In this context, the headers will al-
ways be identical, with the exception of the checksum field,
so it will probably be preferable to only pregenerate a header
template at stream initialization time, instead of retrieving all
this information from disk. The checksum for the header tem-

plate could also be precalculated during stream initialization,
minimizing the checksum operation without storing the entire
packet including header. If we precalculate the header template
checksum, the template can, after performing the checksum
operation (due to using the pseudo-header in this operation),
also include most of the IP protocol header fields, and the IP
protocol processing will thereby also be minimized. However,
such an implementation of NLF and a further analysis of this
topic is ongoing work.

Another approach to reduce communication system over-
head is to use special hardware on the network adapters which
have become available in the last few years. These cards come
with on-board firmware that may calculate the checksum(s) on
the network adapter. Furthermore, there are several proposed
solutions of how to move the whole protocol processing on-
board the network adapter [21,22,23], where performance is-
sues like copying, checksumming, context switching, policing
offloading, etc., are addressed. These new network adapters
may make the NLF mechanism unnecessary in some cases,
but yet this hardware is not available for all platforms, and
they have limited CPU power and amount of memory. This
hardware can replace NLF, but can also be used together with
NLF. Since the number of CPU cycles is limited, there might
be resource shortage if several streams perform checksum op-
erations, encryption, and FEC. Doing NLF checksumming of-
fline and providing header templates will also save CPU cycles
and memory references on the network adapter and reduce the
end-to-end latency. We are about to start investigating whether
such a design can be implemented, and whether it will be cost-
effective with respect to protocol complexity and performance
gain.

Several approaches try to optimize error correction, e.g.,
trying to find optimal codes or making hybrid solutions for spe-
cific application scenarios [16]. However, to our best knowl-
edge there are no solutions that take the server workload into
consideration. Our approach minimizes the server overhead to
optimize performance, and is able to recover a corrupted data
stream on the client side.

There are several important results in the area of zero-
copy implementation and in the area of pyramid broadcasting
schemes. Some works report the usage of prefabricated pack-
ets [24,25]. However, none of them has reported a combination
of these three techniques or any two of them or a corresponding
performance improvement.

3.6 Discussion

Experience with communication protocol processing shows
that bigger packets are better due to less costs for transmit-
ting the data [26]. The packet sizes are so far determined only
by the recovery code’s coding performance, and based on the
experiments evaluating these schemes, a packet size of 1 KB
or 2 KB is appropriate with respect to start-up latency and
decoding throughput. However, the packet size also affects
performance in other components like the network itself and
the routers. Using large packets, the reduced costs associated
with the network are less data to send (less packet headers),
fewer routing decisions, and reduced protocol processing and
device interrupt handling overhead. Smaller packets give less
packet fragmentation and reduce latency in the intermediate



66 Pål Halvorsen et al.: Improving the I/O performance of intermediate multimedia storage nodes

nodes. Thus, the optimal packet size is determined by several
factors which vary for each link in a heterogeneous environ-
ment, and more research is required in this area [26].

In our experiments, we have a source of errors in the mea-
surements, because we experienced some congestion in the
Ethernet queue. This means that not all low level (ethernet)
protocol code is executed for all the packets processed through
UDP/IP. The loss-experiments show that the error margin is
about 2–3% [16] in single-stream scenarios transmitting 1 GB
in about 10 seconds (about 10−7%, i.e., insignificant, in the
multi-stream scenarios). However, if we add the execution
time of these functions for the lost packets (approximately
200 ms for the 1 GB transmission), we still have a large im-
provement compared to the traditional data path using about
20 seconds transmitting the same amount of data. Thus, even
though we have some server side loss, the results give a good
indication of the improvements using our mechanisms. How-
ever, there is a need for either (1) some rate control mechanism
which is not provided by UDP or a mechanism which waits if
the queue is overloaded so that we do not lose packets in the
server end-system, or (2) some higher performance network
cards than our 1 Gbps network card (available today).

If we look at the used CPU time and assume that the disks
and the network card are not a bottleneck, the used CPU times
to process data through the system indicate a throughput of
1.49 Gbps and 3.83 Gbps using the zero-copy data path with-
out and with NLF, respectively. Thus, if the operating sys-
tem processing is the only bottleneck, we are able to achieve
data transmissions at these speeds. This means that using the
mechanisms described in this paper, the operating system is
no longer a bottleneck, because data can be processed through
the system faster than our hardware components can manage.

Our performance experiments show that a single disk stor-
age system, a 1 Gbps network card, and a 64 bit, 66 MHz
PCI bus are severe bottlenecks in a Gbps MoD environment.
However, there are several hardware components for a similar
testbed that is better than ours. The storage system bottleneck
can be solved using parallel off-the-shelf disks. For example,
the Seagate Cheetah X15 [27] achieves a minimum data rate
of 299 Mbps. Connecting several such disks to the new SCSI
fiber channel interface, which offers bus data rates of up to
3.2 Gbps for a dual loop, may solve the Gbps storage system
bottleneck. Likewise, a 10 Gbps network card, like the Intel
IXP 2800 [28], and a (coming) 64 bit, 533 MHz PCI-X I/O bus
(34.1 Gbps) [29] may solve the network card and I/O bus limi-
tations, respectively. However, there also exist more powerful
processors able to process data faster through the operating
system reintroducing the same bottlenecks. Thus, removing
the bottlenecks addressed in this paper is a step towards the
goal of invalidating the phrase operating systems are not get-
ting faster as fast as hardware [1] – at least in the context of
our special read-only MoD scenario.

In summary, our mechanisms perform as expected, and the
total performance gain in our server is approximately equal to
the sum of each mechanism’s individual gain. Storing parity
data on disk removes the FEC encoding bottleneck. The zero-
copy data path and NLF reduce the time to process data from
disk to network interface, and the broadcasting protocol en-
ables data sharing between concurrent clients by broadcasting
one set of data to all clients viewing the same file.

4 Conclusions

The overall goal of INSTANCE is to improve the I/O perfor-
mance of intermediate storage nodes by avoiding the major
bottlenecks in the common case operation of storage nodes,
i.e., retrieving data from disk and sending it to remote clients.
We have achieved this goal by tightly integrating three or-
thogonal techniques: zero-copy-one-copy memory architec-
ture, NLF, and integrated error management.

The integrated error management frees the storage node
from all resource intensive error management tasks by using
precomputed parity data. The described scheme allows to re-
cover from one disk failure. Reusing the storage system parity
data allows us to correct correspondingly 12.5% of packet loss
or corruption in the network. Furthermore, the decoding time
at the client is relative to the amount of network errors and
introduces in the worst case only a delay of 100–700 ms de-
pending on the packet size on a client with a 933 MHz CPU.
The removal of copy operations reduces the amount of needed
memory and CPU resources, and minimizes the time to trans-
mit data. We have shown that the zero-copy data path increases
the number of concurrent clients that can be supported by at
least 100%. The NLF mechanism further reduces the resource
requirement per stream, and combined with our in-kernel data
path, the kernel time is reduced by 66.18% (1 KB packets),
70.37% (2 KB packets), 75.95% (4 KB packets), and 75.25%
(8 KB packets). In summary, the total number of concurrent
streams is increased by a factor of two, the kernel process-
ing cost is reduced to a quarter, we eliminate per-client data
elements, and we remove the FEC encoding bottleneck.

In this paper, we show that the INSTANCE approach and
its potential to improve the I/O performance of a single storage
node by a factor of at least two is to the best of our knowledge
unique. There are several important results in the area of op-
timizing performance for multimedia applications. However,
none of them have reported a combination of these three tech-
niques or any two of them, or a corresponding performance
improvement.

Ongoing work in this area includes extensions to NLF to
cover the whole communication system, and the integration
of NLF and on-board processing. We are also working on
the design and implementation of optimized upload protocols.
Future extensions of the described work include the study of
the impact of using standardized protocols like RTP and RTCP,
and a TCP-friendly congestion control combined with UDP.
Furthermore, we are currently working on the usage of hybrid
FEC/ARQ schemes in INSTANCE.
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