
Transparent Protocol Translation for Streaming

Håvard Espeland1, Carl Henrik Lunde1, Håkon Kvale Stensland1,2, Carsten Griwodz1,2,
Pål Halvorsen1,2

1IFI, University of Oslo, Norway 2Simula Research Laboratory, Norway

{haavares, chlunde, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT

The transport of streaming media data over TCP is hindered
by TCP’s probing behavior that results in the rapid reduc-
tion and slow recovery of the packet rates. On the other side,
UDP has been criticized for being unfair against TCP con-
nections, and it is therefore often blocked out in the access
networks. In this paper, we try to benefit from a combined
approach using a proxy that transparently performs trans-
port protocol translation. We translate HTTP requests by
the client transparently into RTSP requests, and translate
the corresponding RTP/UDP/AVP stream into the corre-
sponding HTTP response. This enables the server to use
UDP on the server side and TCP on the client side. This is
beneficial for the server side that scales to a higher load when
it doesn’t have to deal with TCP. On the client side, stream-
ing over TCP has the advantage that connections can be es-
tablished from the client side, and data streams are passed
through firewalls. Preliminary tests demonstrate that our
protocol translation delivers a smoother stream compared
to HTTP-streaming where the TCP bandwidth oscillates
heavily.

Categories and Subject Descriptors

D.4.4 [OPERATING SYSTEMS]: Communications Man-
agement—Network communication

General Terms

Measurement, Performance

1. INTRODUCTION
Streaming services are today almost everywhere available.

Major newspapers and TV stations make on-demand and
live audio/video (A/V) content available, video-on-demand
services are becoming common and even personal media are
frequently streamed using services like pod-casting or up-
loading to streaming sites such as YouTube.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’07, September 23–28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 9781595937018/07/0009 ...$5.00.

The discussion about the best protocols for streaming has
been going on for years. Initially, streaming services on the
Internet used UDP for data transfer because multimedia ap-
plications often have demands for bandwidth, reliability and
jitter than could not be offered by TCP. Today, this ap-
proach is impeded with filters in Internet service providers
(ISPs), by firewalls in access networks and on end-systems.
ISPs reject UDP because it is not fair against TCP traf-
fic, many firewalls reject UDP because it is connectionless
and requires too much processing power and memory to en-
sure security. It is therefore fairly common to use HTTP-
streaming, which delivers streaming media over TCP. The
disadvantage is that the end-user can experience playback
hiccups and quality reductions because of the probing be-
havior of TCP, leading to oscillating throughput and slow
recovery of the packet rate. A sender that uses UDP would,
in contrast to this, be able to maintain a desired constant
sending rate. Servers are also expected to scale more easily
when sending smooth UDP streams and avoid dealing with
TCP-related processing.

To explore the benefits of both TCP and UDP, we ex-
periment with a proxy that performs a transparent proto-
col translation. This is similar to the use of proxy caching
that ISPs employ to reduce their bandwidth, and we do in
fact aim at a combined solution. There are, however, too
many different sources for adaptive streaming media that
end-users can retrieve data from to apply proxy caching for
all of them. Instead, we aim at live protocol translation in a
TCP-friendly manner that achieves a high perceived quality
to end-users. Our prototype proxy is implemented on an
Intel IXP2400 network processor and enables the server to
use UDP at the server side and TCP at the client side.

We have earlier shown the benefits of combining the use
of TFRC in the backbone with the use of TCP in access net-
works [1]. In the experiments presented in that paper, we
used course-grained scalable video (scalable MPEG (SPEG)
[4]) which makes it possible to adapt to variations in the
packet rate. To follow up on this idea, we describe in this
paper our IXP2400 implementation of a dynamic transport
protocol translator. Preliminary tests comparing HTTP
video streaming from a web-server and RTSP/RTP-streaming
from the komssys video server show that, in case of some
loss, our solution using a UDP server and a proxy later trans-
lating to TCP delivers a smoother stream at play out rate
while the TCP stream oscillates heavily.

2. RELATEDWORK
Proxy servers have been used for improved delivery of

771

Figure 1: System overview

streaming media in numerous earlier works. Their tasks in-
clude caching, multicast, filtering, transcoding, traffic shap-
ing and prioritizing. In this paper, we want to draw atten-
tion to issues that occur when a proxy is used to translate
transport protocols in such a way that TCP-friendly trans-
ports mechanisms can be used in backbone networks and
TCP can be used in access networks to deliver streaming
video through firewalls. Krasic et al. argue that the most
natural choice for TCP-friendly traffic is using TCP itself [3].
While we agree in principle, their priority progress stream-
ing approach requires a large amount of buffering to hide
TCP throughput variations. In particular, this smoothing
buffer is required to hide the rate-halving and recovery time
in TCP’s normal approach of probing for bandwidth which
grows proportionally with the round-trip time. To avoid
this large buffering requirement at the proxy, we would pre-
fer an approach that maintains a more stable packet rate at
the original sender. The survey of [7] shows that TFRC is a
reasonably good representative of the TCP-friendly mecha-
nisms for unicast communication. Therefore, we have chosen
this mechanism for the following investigation.

With respect to the protocol translation that we describe
here, we do not know of much existing work, but the idea is
similar to the multicast-to-unicast translation [6]. We have
also seen voice-over-IP proxies translating between UDP and
TCP. In these examples, a packet is translated from one type
to another to match the various parts of the system, and we
here look at how such an operation performs in the media
streaming scenario.

3. TRANSLATING PROXY
An overview of our protocol translating proxy is shown

in figure 1. The client and server communicates by the
proxy, which transparently translates between HTTP and
RTSP/RTP. Both peers are unaware of each other.

The steps and phases of a streaming session follows. The
client tries to set up a HTTP streaming session, by initiat-
ing a TCP connection to the server. All packets are inter-
cepted by the proxy, and modified before passing it on to the
streaming server. The proxy also forwards the TCP 3-way
handshake between client and server, updating the packet
with the server’s port. When established, the proxy splits
the TCP connection into two separate connections that al-
low for individual updating of sequence numbers. The client
sends a GET request for a video file. The proxy translates
this into a SETUP request and sends it to the streaming
server using the TCP port of the client as its proposed
RTP/UDP port. If the setup is unsuccessful, the proxy will
inform the client and close the connections. Otherwise, the
server’s response contains the confirmed RTP and RTCP
ports assigned to a streaming session. The proxy sends a
response with an unknown content length to the client and
issues a PLAY command to the server. When received, the
server starts streaming the video file using RTP/UDP. The
UDP packets are translated by the proxy as part of the

Figure 2: Packet flow on the IXP2400

HTTP response, using the source port and address matching
the HTTP connection. Because the RTP and UDP headers
combined are longer than a standard TCP header, the proxy
can avoid the penalty of moving the video data in mem-
ory, thus permitting reuse of the same packet by padding
the TCP options field with NOPs. When the connection is
closed by the client during or after playback, the proxy is-
sues a TEARDOWN request to the server to avoid flooding
the network with excess RTP packets.

4. IMPLEMENTATION
Our prototype is implemented on a programmable net-

work processor using the IXP2400 chipset [5], which is de-
signed to handle a wide range of access, edge and core ap-
plications. The basic features include a 600 MHz XScale
core running Linux, eight 600 MHz special packet proces-
sors called micro-engines (µEngines), several types of mem-
ory and different controllers and busses. With respect to the
different CPUs, the XScale is typically used for the control
plane (slow path) while µEngines perform general packet
processing in the data plane (fast path).

The transport protocol translation operation1 is shown in
figure 2. The protocol translation proxy uses the XScale
core and one µEngine application block. In addition, we use
two µEngines for the receiving (RX) and the sending (TX)
blocks. Incoming packets are classified by the µEngine based
on the header. RTSP and HTTP packets are enqueued for
processing on the XScale core (control path) while the han-
dling of RTP packets is performed on the µEngine (fast
path). TCP acknowledgements with zero payload size are
processed on the µEngine for performance reasons.

The main task of the XScale is to set up and maintain
streaming sessions, but after the initialization, all video data
is processed (translated and forwarded) by the µEngine.
The proxy supports a partial TCP/IP implementation, cov-
ering only basic features. This is done to save both time and
resources on the proxy.

To be fair with competing TCP streams, we implemented
congestion control for the client loss experiment. TFRC [2]
computation is used to determine the bandwidth available
for streaming from the server. TFRC is a specification for
best effort flows competing for bandwidth, designed to be
reasonable fair to other TCP flows. The outgoing bandwidth
is limited by the following formula:

X =
s

R ∗

q

2 ∗ b ∗
p

3
+ (tRT O ∗ 3 ∗

q

3 ∗ b ∗
p

8
∗ p ∗ (1 + 32 ∗ p2))

1Our proxy also performs proxying of normal RTSP sessions
and transparent load balancing between streaming servers,
but this is outside of the scope of this paper. We also have
unused resources (µEngines) enabling more functionality.

772

 0
 50

 100
 150

 200

 0
 0.2

 0.4
 0.6

 0.8
 1

 750
 800
 850
 900
 950

 1000
 1050
 1100

Average throughput (Kbps)
IXP

HTTP

RTT (ms)

Percentage dropped

Average throughput (Kbps)

(a) HTTP and translation results

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

(K
b

p
s
)

RTT (ms)

Std. Dev. as errorbars

(b) HTTP streaming

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

(K
b

p
s
)

RTT (ms)

Std. Dev. as errorbars

(c) Protocol translation

Figure 3: Achieved bandwidth varying drop rate and link latency with 1% server-proxy loss

where X is the transmit rate in bytes per second, s is the
packet size in bytes, R is the RTT in seconds, b is the number
of packets ACKed by a single TCP acknowledgment, p is the
loss event rate (0-1.0), and tRTO is the TCP retransmission
timeout. The formula is calculated on a µEngine using fixed
point arithmetic. Packets arriving at a rate exceeding the
TFRC calculated threshold are dropped.

We are aware that this kind of dropping has different ef-
fects on the user-perceived quality than sender-side adapta-
tion. We have only made preliminary investigations on the
matter and leave it for future work. In that investigation,
we will also consider the effect of buffering for at most 1
RTT.

5. EXPERIMENTS AND RESULTS
We investigated the performance of our protocol transla-

tion proxy compared to plain HTTP-streaming in two dif-
ferent settings. In the first experiment, we induced unre-
liable network behavior between the streaming server and
the proxy, while in the second experiment, the unreliable
network connected proxy and client. We performed several
experiments where we examined both the bandwidth and
the delay while changing both the link delays (0 - 200 ms)
and the packet drop rate (0 - 1 %). We used a web-server
and an RTSP video server using RTP streaming, running on
a standard Linux machine. Packets belonging to end-to-end
HTTP connections made to port 8080 were forwarded by
the proxy whereas packets belonging to sessions initiated by
connection made to port 80 were translated. The bandwidth
was measured on the client by monitoring the packet stream
with tcpdump.

5.1 ServerProxy Losses
The results from the test where we introduced loss and

delay between server and proxy are shown in figure 3. Fig-
ure 3(a) shows a 3D plot where we look at the latency that
we achieved for the different combinations of loss and link
delays. Additionally, figures 3(b) and 3(c) show the respec-
tive results for the HTTP and protocol translation scenarios
when keeping the loss rate constant at 1% (keeping the link
delay constant gives similar results). The plots show that
our proxy that translates transparently from RTP/UDP to
TCP achieves a mostly constant rate for the delivered stream.
Sending the HTTP stream from the server, on the other
hand, shows large performance drops when the loss rate
and the link delay increase. From figures 3(b) and 3(c),

 600

 700

 800

 900

 1000

 1100

 0 50 100 150 200

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(K

b
p
s
)

RTT (ms)

TCP Cubic 0.25% drop rate
TCP Cubic 1.00% drop rate
TCP TFRC 0.25% drop rate
TCP TFRC 1.00% drop rate

Figure 4: TCP cubic congestion vs. TFRC

we see also that the translation provides a smoother stream
whereas the bandwidth oscillates heavily using TCP end-to-
end.

5.2 ProxyClient Losses
In the second experiment, loss and delay are introduced

between the proxy and the client, and the data rate is lim-
ited according to TFRC measuring RTT and packet loss
during the transfer. Furthermore, packets are not buffered
on the network card, meaning that the traffic exceeding the
calculated rate of TFRC are dropped and that TCP retrans-
missions contains only data with zero values.

In figure 4, we first show the average throughput of stream-
ing video from a web-server using cubic TCP congestion con-
trol compared with our TCP implementation using TFRC.
As expected, the TFRC implementation behaves similar (fair)
to normal TCP congestion control with a slightly more pes-
simistic approach. Moreover, figure 5 is a plot of the re-
ceived packets’ interarrival time. This shows that the delay
variation of normal TCP congestion control increases with
the drop rate, while TFRC is less affected. Thus, we see
again that that our proxy gives a stream without large vari-
ations whereas the bandwidth oscillates heavily using TCP
throughout the path.

6. DISCUSSION
Even though our proxy seems to give better, more stable

bandwidths, there is a trade-off, because instead of retrans-
mitting lost packet (and thus old data if the client does not
buffer), the proxy fills the new packet with new updated
data from the server. This means that the client in our pro-

773

 0

 10

 20

 30

 40

 50

 0 40 80 120 160 200

A
v
e

ra
g

e
 i
n

te
ra

rr
iv

a
l
d

e
la

y
 (

m
s
)

Round-trip time (ms)

TFRC 0.0% packet loss

 0 40 80 120 160 200

Round-trip time (ms)

TCP 0.0% packet loss

(a) 0% drop rate

 0

 10

 20

 30

 40

 50

 0 40 80 120 160 200

A
v
e

ra
g

e
 i
n

te
ra

rr
iv

a
l
d

e
la

y
 (

m
s
)

Round-trip time (ms)

TFRC 0.50% packet loss

 0 40 80 120 160 200

Round-trip time (ms)

TCP 0.50% packet loss

(b) 0.5% drop rate

 0

 10

 20

 30

 40

 50

 0 40 80 120 160 200

A
v
e

ra
g

e
 i
n

te
ra

rr
iv

a
l
d

e
la

y
 (

m
s
)

Round-trip time (ms)

TFRC 1.00% packet loss

 0 40 80 120 160 200

Round-trip time (ms)

TCP 1.00% packet loss

(c) 1.0% drop rate

Figure 5: Average interarrival delay and variation with proxy-client loss

totype does not receive all data, and some artifacts may be
displayed. On the other hand, in case of live and interactive
streaming scenarios, delays due to retransmission may intro-
duce dropped frames and delayed play out. This can cause
video artifacts, depending on the codec used. However, this
problem can easily be reduced by adding a limited buffer
per stream sufficient for one retransmission on the proxy.

One issue in the context of proxies is where and how it
should be implemented. For this study, we have chosen the
IXP2400 platform as we earlier have explored the offload-
ing capabilities of such programmable network processors.
Using such an architecture, the network processor is suited
for many similar operations, and the host computer could
manage the caching and persistent storage of highly pop-
ular data served from the proxy itself. However, the idea
itself could also be implemented as a user-level proxy appli-
cation or integrated into the kernel of an intermediate node
performing packet forwarding.

The main advantage of the scheme proposed in this pa-
per is a lower variation in bandwidth and interarrival times
in an unreliable network compared to normal TCP. It also
combines some of the benefits of HTTP streaming (firewall
traversal, client player support) with the performance of
RTP streaming. The price of this is uncontrolled loss of
data packets that may impact the perceived video quality
more strongly than hiccups.

HTTP streaming may perform well in a scenario where
a stored multimedia object is streamed to a high capac-
ity end-system. Here, a large buffer may add a small, but
acceptable, delay to conceal losses and oscillating resource
availability. However, in the case where the receiver is a
small device like a mobile phone or a PDA with a limited
amount of resources, or in an interactive scenario like con-
ferencing applications where there is no time to buffer, our
protocol translation mechanisms could be very useful.

The server-proxy losses test can be related to a case where
the camera on a mobile phone is used for streaming. Mobile
devices are usually connected to unreliable networks with
high RTT. The proxy-client losses test can be related to a
traditional video conference scenario.

In the experiment, we compare a normal web-server stream-
ing video with a RTP server (komssys) to a client by encap-
sulating the video data in HTTP packets on a IXP network
card close to the video server. The former setup runs a
simple web-server on Linux, limiting the average bandwidth
from user-space to the video’s bit rate.

Using RTP/UDP from the server through the backbone
to a proxy is also an advantage for the resource utilization.
RTP/UDP packets reduce memory usage, CPU usage and

overhead in the network compared to TCP. This combined
with the possibility of sending a single RTP/UDP stream to
the proxy, and make the proxy do separation and adapta-
tion of the stream to each client can reduce the load in the
backbone. Therefore the proxy should be placed as close to
the clients as possible, e.g. in the ISP’s access network, or
in a mobile provider’s network.

7. CONCLUSION
Both TCP and UDP have their strengths and weaknesses.

In this paper, we use a proxy that performs transparent
protocol translation to utilize the strengths of both protocols
in a streaming scenario. It enables the server to use UDP on
the server side and TCP on the client side. The server gains
scalability by not having to deal with TCP processing. On
the client side, the TCP stream is not discarded and passes
through firewalls. The experimental results show that our
protocol transparent proxy achieves translation and delivers
smoother streaming than HTTP-streaming.

8. REFERENCES
[1] Griwodz, C., Fiksdal, S., and Halvorsen, P.

Translating scalable video streams from wide-area to
access networks. Campus Wide Information Systems
21, 5 (2004), 205–210.

[2] Handley, M., Floyd, S., Padhye, J., and Widmer,

J. TCP Friendly Rate Control (TFRC): Protocol
Specification. RFC 3448 (Proposed Standard), Jan.
2003.

[3] Krasic, B., and Walpole, J. Priority-progress
streaming for quality-adaptive multimedia. In
Proceedings of the ACM Multimedia Doctoral
Symposium (Oct. 2001).

[4] Krasic, C., Walpole, J., and Feng, W.-C.

Quality-adaptive media streaming by priority drop. In
Proceedings of the International Workshop on Network
and Operating System Support for Digital Audio and
Video (NOSSDAV) (2003), pp. 112–121.

[5] Intel Corporation. Intel IXP2400 network processor
datasheet, Feb. 2004.

[6] Parnes, P., Synnes, K., and Schefström, D.

Lightweight application level multicast tunneling using
mtunnel. Computer Communication 21, 515 (1998),
1295–1301.

[7] Widmer, J., Denda, R., and Mauve, M. A survey
on TCP-friendly congestion control. Special Issue of the
IEEE Network Magazine ”Control of Best Effort
Traffic” 15 (Feb. 2001), 28–37.

774

