
Integrated Storage and Communication System
Error Management in a Media-on-Demand Server

Pål Halvorsen, Thomas Plagemann Vera Goebel
UniK, University of Oslo Department of Informatics, University of Oslo

P.O. Box 70, N-2027 KJELLER, Norway P.O. Box 1080, Blindern, N-0316 OSLO, Norway

{paalh, plageman}@unik.no goebel@ifi.uio.no

Technical Report I-2000.018-R, UniK, March 2000

Abstract

Internet services like the world-wide web and applications like News-on-Demand have become very
popular in the last years. The number of users, as well as the amount of multimedia data downloaded
by each user from servers in the Internet, is rapidly increasing. In this context, the potentially (very)
high number of concurrent users that retrieve data from servers represents a generic problem. In the
Intermediate Storage Node Concept (INSTANCE) project, we develop a radically new architecture for
Media-on-Demand servers that maximizes the number of concurrent clients a single server can sup-
port. Traditional bottlenecks, like copy operations, multiple copies of the same data element in main
memory, and checksum calculation in communication protocols are avoided by applying the three or-
thogonal techniques: zero-copy-one-copy memory architecture, network level framing, and integrated
error management. In this paper, we describe design, implementation, and evaluation of the integrated
error management. Our results show that the reuse of parity information from a RAID system as forward
error correction information in the transport protocol drastically reduces the server workload and enables
smooth playout at the client.

1 Introduction

In the last years, there has been a tremendous growth in the use of Internet services. In particular,
the world-wide web and applications like News-on-Demand (NoD) have become very popular. Thus, the
number of users, as well as the amount of data each user downloads from servers in the Internet, is rapidly
increasing. The usage of multimedia data to represent information in a user-friendly way is one impor-
tant reason for these two developments. Today, contemporary mid-price personal computers are capable
of handling the load that such multimedia applications impose on the client system. However, the poten-
tially (very) high number of concurrent users that download data from NoD, Video-on-Demand, or more
generally Media-on-Demand (MoD), servers represents a generic problem for this kind of client-server
applications. There are two orthogonal approaches for this problem: (1) development of an architec-
ture for a single server that makes optimal use of a given set of resources, i.e., maximize the number of
concurrent clients a single server can support; and (2) combination of multiple single servers, e.g., in a
server farm or cluster, to scale up the number of concurrent users.

In the Intermediate Storage Node Concept (INSTANCE) project [28], we concentrate on the first
approach developing a new architecture for single servers. This architecture is optimized to support
concurrent users in MoD-like applications retrieving multimedia data from the server. Thus, the task of
reading data from disk and transmitting it through the network to remote clients with minimal overhead
is our challenge and aim. Our target application domain comprises MoD-like applications in the smaller
scale, like MoD for entertainment in hotels or airplanes, and in the medium scale, like MoD provided
by city-wide cable companies or pay-per-view companies. Whether the INSTANCE approach is also
beneficial for large scale systems like NoD services from CNN or BBC is subject to further research.

It is a well known fact, that operating systems are not getting faster as fast as hardware [24], and that
commodity operating systems represent today the major performance bottleneck in MoD servers. The
crucial issues that contribute to this situation include copy operations, context switches, multiple copies
of the same data element in main memory, and checksum calculation in communication protocols [29].

The key idea of INSTANCE is to avoid the above mentioned bottlenecks and improve the server
performance by combining the following three orthogonal techniques in a radically new architecture
[17]:

� Zero-copy-one-copy memory architecture: Memory copy operations have been identified as a bot-
tleneck in high data rate systems. Several zero-copy architectures removing physical data copy-
ing have been designed to optimize resource usage and performance using shared memory, page
remapping, or a combination of both [29]. These approaches reduce resource consumption of indi-
vidual clients, but concurrent clients requesting the same data require each its own set of resources.
Traditional broadcast or multicast is an easy way of dealing with per client resource allocation, but
startup delay might be a problem. To minimize the startup delay, a couple of broadcast partition-
ing schemes are proposed [29]. Still, zero-copy and delay-minimized broadcasting only reduce
the per-data or per-client resource usage, respectively. To optimize both, we integrate both mech-
anisms to have no physical in-memory copy operations and to have only one shared copy of a data
element in memory.

� Network level framing mechanism: Each time a client retrieves data from a server, the data is
processed through the communication system protocols executing the same operations on the same
data element several times, i.e., for each client. To reduce this workload, we regard the server as an
intermediate node in the network where only the lower layers of the protocol stack are processed.
When new data is sent to the server to be stored on disk, only the lowest three protocol layers
are handled and the resulting transport protocol packet is stored on disk. When data is requested
by remote clients, the transport level packet is retrieved from disk, the destination port number
and IP address are filled in, and the checksum is updated (only the new part for the checksum,
i.e., the new addresses, is calculated). Thus, the end-to-end protocols which perform the most
costly operations in the communication system, especially the transport level checksum, are almost

1

completely eliminated.

� Integrated error management scheme: When transferring data from disk in a server through the
network to remote clients, the correctness of the information is checked multiple times, i.e., the
error management functionality is redundant (see Figure 1). In INSTANCE, we integrate the error
management in a disk array and a forward error correction (FEC) scheme in the communication
system. Opposed to the traditional data read from a RAID system where the parity information is
only read when a disk error occurs, we retrieve also the redundant error recovery data, i.e., making
a RAID level 0 read operation. All data is passed over to the communication system, where the
parity information from the RAID system is re-used as FEC information over the original data (see
Figure 2). Thus, by using the same parity information in both subsystems, the FEC encoder can be
removed from the server communication system, and both memory and CPU resources are made
available for other tasks.

Network

Client
Communication SystemStorage System

Error Decoder

Server
Communication System

Error Encoder

Figure 1: Traditional error management.

Network

Server
Communication System

Client
Communication SystemStorage System

Error Decoder

Figure 2: Integrated error management.

This paper focuses on design, implementation, and evaluation of the integrated error management
scheme, that enables us to reduce the server workload and support a faster data corruption recovery
giving the clients a smooth multimedia presentation.

The rest of this paper is organized as follows: In Section 2, we discuss the requirements that have
to be fulfilled when successfully combining error management in storage and network system. Section
3 describes our (experimental) evaluation of different design alternatives. Our prototype design is de-
scribed in Section 4, and results from a performance measurement of our prototype are presented in
Section 5. Finally, we summarize and conclude the paper in Section 6.

2 Background and Requirements

To design an integrated error management mechanism, the recovery scheme must be able to correct both
failures occurring in the storage system and data corruption and losses during a transmission through the

2

network. In the following subsections, we describe the different system error models, and we use these
models to present our requirements.

2.1 Storage System Error Model

The primary medium for long-term on-line storage of data is the magnetic disk, because it usually is
very reliable. Nevertheless, although disk failures are much less frequent than other system errors, the
disk devices themselves may sometimes fail. For example, the high-end SCSI disk drives from Seagate
(Barracuda and Cheetah) [35] have a mean time between failure of at least

�����
hours. Furthermore, the

disks have one seek error for every
�������	����

bits read, a recoverable error rate of
�

in
������
����������

bits
read, and an unrecoverable error rate of

�
in
��� ��� �	��� ���

bits read.
A single disk usually does not provide the requested data rate retrieving multimedia data for several

different streams each requiring a high bandwidth [18]. Hence, performance can be increased through
disk parallelism using techniques like data striping, and disks combined in an array are often used for
delay sensitive applications on high performance storage servers. However, as the number of disks
increases, the mean time to failure is also reduced. A variety of disk organizations have been proposed
where the different levels of RAID [13, 25] are often used to increase reliability and performance.

2.2 Network Error Model

Transmitting a data element across a network can introduce errors in the bit stream, and each transmission
medium has its own typical error source [16]. Any signal carried on a transmission medium is affected by
attenuation, noise, bandwidth, and distortion where the amount of bit errors depends on several different
parameters like the underlying network technology and the length of the network. Wired networks are
today usually very reliable. For example, the 10BASE-T (Ethernet) allows one corrupted bit per

���

bits transmitted, but typical performance is 1 in
�������

or better [1]. 100BASE-T and 1000BASE-T both
perform with less than one erroneous bit in

��� ��

[15]. Wireless networks are more exposed to noise

than wired networks, and bit errors are therefore more common. Some frequencies are more susceptible
to atmospheric disturbances such as rain attenuation, and mobile receivers may be more vulnerable to
distortion and shadowing, e.g., blockage by buildings. Typical bit error rates in satellite networks are in
the order of 1 error per

�����
bits transmitted or less [2].

Besides bit errors, whole packets may be lost, e.g., due to congestion. This is the predominant cause
of loss [27]. Unfortunately, there exists no precise knowledge about error occurrence or error models in
the Internet, and only a few measurements are reported in literature. In [10], 384 Kbps and 1 Mbps MPEG
video is transmitted over the Internet with different packet sizes using UDP/IP. The average packet loss
rates vary between 3% and 13.5% with greater loss rates during periods of high network activity, and on
average, 1.7% to 15.4% of the packets arrived out-of-order. Measurements of packet loss transmitting
320 B audio packets between southern France and London is presented in [9]. Consecutive losses of
up to 30 packets are reported both for unicast and multicast connections, but the vast majority loss is
one or two consecutive packets. Furthermore, in a study described in [39], the packet loss in an MBone
multicast network, transmitting small packets (320 B and 640 B) of audio data, is measured. On average,
most losses occur at the receiver side. There are a significant amount of both small burst (consecutive)
losses and single, isolated losses. Only a few long bursts, i.e., spanning over 100 packets, of congestion
loss were observed.

The network error models indicate that different kind of data corruption may occur in a client-server
based system, and some receivers will therefore experience packet loss or destruction during data retrieval
from a remote server [27]. Different recovery techniques have been developed to more effectively deal
with different sources of errors [20]. For example, noise is of short duration and should have no lasting
effect on error rate. Hence, error recovery can focus on a small time window. Congestion, on the other
hand, may last for an extended time, requiring mechanisms to manage multiple packet losses over a
longer time period.

3

2.3 Correction Scheme Requirements

In our design of a cost effective, high performance MoD server, the integrated recovery scheme must be
able to correct the described data losses in both storage and communication system. The most obvious
and used method of detecting and restoring corrupted data is to calculate some redundant data over a
group of information frames. Each frame consists of one or more bits and is referred to as a symbol.
The composite message of information symbols and corresponding parity symbols is referred to as a
codeword. In general, we differentiate between two kinds of data corruption: erasures, where the location
of the damaged data is known, and errors, in which the position of the corrupted data is unknown. Thus,
we have an erasure if a disk fails or a packet containing a sequence number is lost, but a packet damaged
by noise changing some bit values is an error. To summarize, our integrated mechanism for an MoD
server must have the following properties:

1. Error/erasure correcting capability: The coding scheme must be able to correct both bursts of
bit errors and large groups of erasures. In the network, bit errors occur for example due to noise
(error), and packets are lost due to congestion (erasure). In the storage system, a disk may fail
(erasure). Thus, the striping units in the RAID system and the network packets in the communi-
cation system are units of recovery, and the correcting capability of the error management scheme
must therefore suit all kinds of recovery.

2. Decoding throughput (performance): The decoding1 algorithm must be efficient and fast enough
to be able to reconstruct the multimedia data at the client side in time for playout and still have
available resources for other tasks. For example, an audio stream requires about 16 Kbps for
telephony and 1.4 Mbps for CD-quality. A video stream’s requirement ranges from approximately
1.2 Mbps for MPEG to 20 Mbps for compressed and more than 1 Gbps for uncompressed HDTV
[22]. The current MPEG 2 Digital Versatile Disk (DVD) standard has an average bit rate of 3.5
Mbps, and the maximum bit rate is 9.8 Mbps [21].

3. Amount of redundant data: The correction information that is transmitted to the remote client
together with the original data imposes higher throughput needs. Since the throughput requirement
of multimedia streams is already very high and an enlarged amount of transmitted data further
increases network utilization, which potentially increases congestion and noise-caused damage,
we should find a scheme which minimizes the amount of redundant information. However, this is
a contradictory requirement compared to property 1, because the correction capability depends on
the amount of redundant parity information.

4. Applicable within a single file: A traditional RAID system performs recovery based on stripes
regardless of which file the data belongs to. We want only to transmit the original information
and the stored parity information of a single file to the client. Correction schemes which calculate
parity information based on disk setup regardless of which files the disk blocks (or striping units)
belong to are not suitable to serve our purpose.

5. Quality-of-Service (QoS) determines decoding cost: The use of FEC means that all receivers are
forced to receive and decode the data stream consisting of application data and redundant data;
including those that do not need the improved probability of an error free connection or better
quality of the multimedia playout [14]. We require that the decoding cost depends on the appli-
cation QoS requested by the client and the QoS provided by the underlying network itself. In
particular, the cost of the decoding function should be negligible in the following two cases: (1)
the network provides already error free transmission, and (2) a receiver is willing to tolerate errors
in the multimedia data (to reduce the load on other client resources).

1Please note that encoding throughput is less important, because the encoding operation is only done off-line, and the parity
information is stored on and retrieved from disk.

4

3 Design Alternatives

In order to find a mechanism that meets the above mentioned requirements, we have evaluated existing
techniques for the applicability in INSTANCE.

3.1 Existing Recovery Schemes

As we can see from the error models described in Sections 2.1 and 2.2, different kinds of data destruc-
tions and losses occur in the different subsystems. Distinct mechanisms are therefore applied for recov-
ery. There exist several schemes ranging from single parity calculations using XOR to more complex
algorithms like Reed-Solomon (RS) or Convolutional codes [16, 34]. Following, we describe recovery
mechanisms for storage and communication systems.

3.1.1 Storage System Recovery

To detect errors during an I/O operation, the disk controller attaches checksums to each sector derived
from the data on the respective blocks. When performing a read operation, the checksum is computed
again and compared to the stored value. If the two checksums are different, the controller rereads the
requested data, and if the error continues to appear, the controller will signal a read failure. Thus, tran-
sient errors, e.g., caused by dust on the head, and seek errors can often be corrected by the controller, but
permanent errors, e.g., physically damaged disk blocks, will cause a data loss if no other error recovery
mechanism is used.

Parity Parity Recovery

unit location capability

Level 0 None None None

Level 1 Mirroring Disk duplicating One disk failure per parity disk

Level 2 Bit Predefined disk One disk failure

Level 3 Bit Predefined disk One disk failure

Level 4 Block Predefined disk One disk failure

Level 5 Block Distributed One disk failure

Level 6 Block Distributed Two disk failures

Table 1: RAID levels.

Both performance and reliability can be increased through disk parallelism in RAID systems, and the
applied solution to restore data if a disk fails is to introduce redundant data for error recovery. As shown
in Table 1 describing the RAID levels [13, 25], adding correcting information can be done in several
ways. If the read operation fails, the disk controller first tries to re-read the disk block, but if the error is
permanent, it is corrected with help of the error correction scheme in the particular RAID level. Since
the controller knows which disk failed, the parity data and the remaining data from the other disks can
be used to determine the bit values of the lost data.

In today’s RAID solutions, XOR correction schemes are usually applied for reliability, but there are
also other schemes proposed for disk arrays in general or as improvements of the RAID mechanisms.
For example, the EVENODD [5] double disk failure scheme uses a two-dimensional XOR parity cal-
culation which shows good results both regarding redundant information overhead and performance. In
[18], the problem of designing erasure-correcting binary linear codes protecting against disk failures in
large arrays is addressed. Several two-dimensional erasure-correcting solutions capable of correcting
multiple disk failures are presented. RS RAID systems are described in [30] where � disk failures can
be recovered by applying � redundant disks.

5

3.1.2 Error Management in Communication Systems

In the communication system, different kinds of data losses occur depending on the underlying network
technology, the length of the network, etc., and irrespective of the kind of errors that occur, a mechanism
is needed to obtain a copy of the correct information. The applied data correction mechanism must be
able to correct the occurring damages, and at the same time fulfill all application requirements, e.g.,
throughput and latency. In general, there are two basic approaches to achieve this [4, 16]: automatic
repeat request (ARQ) or FEC.

Traditionally, ARQ is usually more efficient, i.e., using a checksum for error detection followed by
a retransmission, because the complexity of FEC algorithms makes the execution of these procedures
too slow and expensive. Nevertheless, the attractiveness of FEC has changed during the past decades.
Significant changes in communication technology for switched networks reducing the amount of bit
errors makes congestion the dominant source of errors. This enable the use of more efficient codes
[20]. Correction codes are therefore used for data transmission if retransmission is not available or not
preferred as described in the following situations:

� Using ARQ as the end-to-end error control scheme in multicast performs poorly, because it does
not scale well. The transmitter complexity is proportional to the amount of receivers and requires
a lot of buffer space for potential retransmissions. FEC-based multicast protocols scale much
better, since packet losses will be handled at the receiver and do not require retransmissions in
the multicast tree. Thus, FEC is a good solution for broadband communications where data is
multicast over wide area networks to a large group of clients [12, 14, 20, 23, 33].

� For real-time data services, or time sensitive and delay critical services in general, ARQ is not
suitable [3, 12, 19, 22]. The feedback channel overhead and the retransmission latency are the most
important limitations. For example, a retransmitted video frame may be too old for presentation
when arriving at the client side. Low latency is necessary for applications supporting multimedia
playouts or human interactions in which the delay and delay jitter caused by retransmission will be
unacceptable. Consequently, FEC may be an appropriate error recovery scheme for time sensitive
applications providing reliability without increasing end-to-end latency.

Several codes have been used for FEC. Convolutional code [16, 34] with Viterbi decoding has been a
de facto standard for over 30 years, and it is a good scheme for correcting randomly occurring errors. It
is used in many real-world systems [34], especially in satellites and space communications. RS erasure
(RSE) codes are used in ATM networks and selected broadband applications [3, 4, 20, 36]. The Internet
Engineering Task Force (IETF) recently proposed to standardize a new scheme [26], used for audio data
in [7] and video data in [8], where a low quality copy of the data is sent as redundant data in subsequent
packet(s).

3.1.3 Summary of Existing Schemes

The potential of FEC to recover from losses is highly dependent on the loss behavior of the network [4].
Furthermore, the need of a disk array depends on required storage system performance and reliability. In
our approach, it is necessary to protect the transmitted data stream against losses by adding a moderate
level of redundancy using some kind of FEC and to increase performance, reliability, and load balancing
of the disks in the storage system by using a disk array. Thus, an ARQ scheme is not appropriate, due to
retransmission delays and the impossibility of integrating the mechanisms. The remaining solutions then
use either an error and erasure correcting code, an erasure correcting code, or a combined error detection
and erasure correction code. These three techniques are further evaluated by looking at reported studies
of several available codes with appropriate correcting capabilities and by using Quantify (a software
monitor) estimating the amount of needed CPU cycles on a 167 MHz Sun UltraSparc1.

6

3.2 Error and Erasure Correcting Codes

A straight forward solution is to use a correction code which corrects both errors and erasures. However,
our experiments with these types of codes show that they do not meet our requirement number 1. Table
2 shows the measured throughput using an RS code. We introduced different amounts of losses and
corruption, and we tested different code configurations able to restore the codeword if up to 12.5 % of
the data is corrupted: (scheme 1) 1 B symbol, 255 symbols codeword and (scheme 2) 2 B symbol, 65535
symbols codeword. The main conclusion is that this code is inappropriate. Using a large codeword,
the performance is the main bottleneck. Depending on the amount of damaged data and available CPU
resources, the best data rate the code can deliver is 0.01 Mbps, i.e., no data is damaged. Using a small
codeword, performance is still a problem where a data rate of 3.62 Mbps can be achieved during an
error-free transmission, but due to the small codeword, a complex data interleaving must be introduced
to scatter the codeword symbols. This is necessary to correct all the possible errors, because the amount
of loss may exceed the small codeword size. Nevertheless, it gives an additional reorganization cost at
the client side gathering the codeword symbols for decoding. As the results show, the decoding overhead
is substantial irrespective of the amount of corrupted or lost data. Since we do not know whether there
has occurred an error, we have to check and possibly correct the codeword. Furthermore, we have to
send more redundant data in order to both detect and correct an unknown error.

no errors max # errors max # erasures

Scheme 1 3.620 1.772 1.394

Scheme 2 0.011 0.008 0.007

Table 2: RS decoding throughput in Mbps.

3.3 Erasure Correcting Codes

Conventional FEC schemes like RS have a uniform error correction capability which can result in poor
bandwidth utilization due to a complex algebraic decoding operation, and since we do not know whether
the data is damaged or not, the decoding function must be run every time. Furthermore, as the bit error
rate has dropped in wired networks, the packet loss rate due to random bit errors has been assumed
negligible. Thus, congestion losses are often the dominant form of data loss, and the network can then be
modeled as a well-behaved erasure channel where the unit of loss is a packet. Thus, by only using erasure
correction, the recovery can be greatly simplified [3], and the correcting power can be approximately
doubled [4].

Several erasure correcting schemes are developed, but not all are appropriate for our purpose. The
traditional XOR based recovery of a stripe in a RAID system is not suitable, because of the missing
ability to correct several random losses in the network. The idea of multi-dimensional parity calculations
used in some disk array configurations to correct more than one disk failure, like RAID level 6 and as
proposed in [5, 18], are not usable since the parity information corrects disk blocks spanning several
different files, i.e., contradictory to requirement number 4. Moreover, the IETF scheme [26], using a low
quality copy of the data for error recovery, is not suitable for our purposes, because it cannot handle disk
failure and fails to meet requirement number 1.

RSE codes have the required capability to correct random packet losses in our scenario. Different
implementations exist and are based on for example Cauchy matrices [6] and Vandermonde matrices [33]
over finite fields. Since the Cauchy-based code is reported faster than the Vandermonde-based code [12],
we have evaluated this code in the same way as the RS code above. This code is also more flexible with
regard to choosing codeword and symbol size, so we were able to perform tests on more configurations of
the code. The decoding performance in a worst-case loss scenario, i.e., 32 randomly selected packets out
of 256 packets are lost, is illustrated in Figure 3. As the figure shows, the decoding throughput increases
with the symbol size, but unfortunately, so does also the experienced startup delay. Furthermore, the

7

encoding times are approximately constant, but the decoding times may vary, i.e., increasing with the
number of redundant symbols that are needed [6]. However, our measurements show that this code can
give an adequate performance by choosing an appropriate codeword and symbol size.

 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

2

3

4

5

6

7

8

Block Size (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
0

2000

4000

6000

8000

10000

12000

14000

Block Size (bytes)

D
el

ay
 (

m
s)

(A) Decoding throughput. (B) Startup delay.

Figure 3: Cauchy-based RSE decoding.

Nevertheless, bit errors will also be a source of loss in future networks, especially in wireless net-
works. One of our goals in designing a multimedia storage server is to support presentation of multimedia
data to a wide range of remote receivers. The above RSE codes are not able to correct unknown errors,
and the received data may therefore have undetected and unrecovered errors. Hence, a solution may be
to integrate different schemes which we look at in the next subsection.

3.4 Combined Codes

Possible solutions can be based on the fact that congestion (packet) loss is the dominant data corruption
source. Therefore, a combination of the erasure correcting scheme described above with some kind of
error correction or detection scheme can be used.

When combining the erasure code with an error correcting code, a fast, efficient inner error correcting
code is first applied within each packet to correct bit errors introduced by noise. Then an outer erasure
correcting scheme is used on a larger information block spanning several packets capable to correct
packet losses. If an error is detected which cannot be corrected by the inner mechanism, or the packet
is lost, the symbol represented in this packet is marked as an erasure where the outer recovery scheme
is responsible for restoring the original data block. In such an integrated recovery mechanism, the outer
erasure correcting scheme will work as the storage system recovery mechanism and correct failures due
to bad disk blocks or disk crashes.

This scheme is able to correct the types of data corruption which we address in our scenario, but
we introduce even more redundant data, and performance might still be a problem. However, as packet
loss is the dominant source of data damage, we can replace the error correction scheme with a less CPU
intensive error detection code. Thus, if an error is detected, the packet is only marked damaged and
corrected by the outer erasure code. This approach seems to be the best solution, and in the next section,
we show how it is realized in our prototype design.

4 Prototype Design

Based on the results from our evaluation of some of the existing codes, we present our MoD server proto-
type, which will be implemented in NetBSD, and especially the integrated error management mechanism.

8

Since retransmissions are not suitable for our purposes, we use UDP as the transport level protocol. For
data loss and corruption recovery, we use a combination of an outer Cauchy-based RSE correcting code
and an inner error detecting code. To avoid introducing extra overhead and redundant data, we use the
UDP checksum [11], which is calculated by dividing the whole packet, including header and pseudo
header, in 16-bit blocks and adding each block using 1’s complement sum, for error detection. Thus, if
the UDP protocol finds a bit error in the received packet by re-calculating the checksum at the client side,
it is marked as a lost packet and then corrected by the outer erasure code.

Our three techniques to improve performance in an MoD server can be used alone or combined in a
system. The memory architecture has no direct implications on the integrated recovery scheme, but since
we use the UDP checksum for error detection, the network level framing design is closely integrated with
the recovery scheme. Hence, in the next subsections, we first describe the relation between the integrated
error management scheme and network level framing. Then, we analyze the impact of the crucial pa-
rameters codeword size, symbol (and packet) size, and disk block size on the system performance and
its recovery capability. In our prototype, we actually use a single disk system and simulate a disk array
of eight disks, i.e., seven information disks and one parity disk. However, the disk configuration has no
effect on the resulting encoding and decoding performance and memory usage.

4.1 Integrated Error Management and Network Level Framing

To preprocess data through the UDP layer and store packets on disk, we split the traditional udp_output
procedure [38] into two distinct functions: (1) udp_PreOut, where the UDP header is generated, the
checksum is calculated, and the packet is written to disk, and (2) udp_QuickOut, in which the re-
maining fields are filled in and the checksum is updated with the checksum difference of the new header
fields.

UDP-PreOut

…

…

…
…

…

…

…

…

…

…

information data

redundant data

UDP header

UDP payload } UDP packet

Figure 4: Writing data to disk.

9

As depicted in Figure 4, write operations are done à la RAID level 4/5 where the information data is
used to generate a set of redundant parity data for recovery, i.e., using the Cauchy-based RSE code. Each
of the codeword symbols are then processed through udp_PreOut to prefabricate and store the UDP
packet, i.e., the output of CPU intensive operations like the checksum calculation is stored in the packet
header. Finally, to optimize storage system performance, several codeword symbols are concatenated to
form a disk block, and the newly formed blocks are written to disk.

To reuse the stored parity data for FEC in the communication system, read operations are performed
in a RAID level 0 fashion as sketched in Figure 5. The whole UDP packet is retrieved from disk con-
taining either media data or parity data and processed through the udp_QuickOutwhere only a quick
assembly of the packet is performed. Consequently, the server side UDP protocol operations are reduced
to a minimum at transmission time (see Section 4.5).

UDP-QuickOut

…

…

…

…

…

…

…

…

IP

information data

redundant data
UDP header

UDP payload}UDP packet

IP header

}IP packet

Figure 5: Retrieving data from disk.

4.2 Codeword Configuration

The codeword should be stored in one or more whole stripes, i.e., codeword_size = stripe_size � n, n
��� , to avoid having data from more than one file within a codeword and to avoid fragmentation due to
leaving some of the disk stripes empty. In our prototype approach, we use a codeword consisting of 256
symbols of which 32 symbols are redundant symbols. Thus, the codeword symbols are easily distributed
among the striping units without any fragmentation. We can recover from one disk failure, and the code
corrects most of the errors in the network, i.e., we can lose any 32 out of 256 packets which covers most
of the network errors occurring in the packet loss reports described earlier.

10

4.3 Symbol Size

The size of the codeword symbol has impact on the decoding performance. Decoding throughput and
additional introduced startup delay due to decoding is dependent on the codeword configuration, the
symbol size, and the available CPU resources. To find suitable symbol size values, we use the worst-
case evaluation results (see Section 3.3) to see the behavior of the code according to the symbol size.
Figure 3A shows that the throughput increases with larger symbol sizes. If we use symbol sizes equal or
larger than 1 KB, the client system will be able to decode streams with data rates of 6 Mbps and more.
However, increasing throughput by using larger symbol sizes also increases the startup delay (see Figure
3B), because there is more data to decode per codeword. Therefore, to reduce the experienced startup
delay, we do not use symbol sizes larger than 8 KB. This corresponds to a decoding delay of 2 seconds
or less.

4.4 Disk Block Size

In the storage system, the performance of an I/O operation is highly dependent on the disk characteristics.
The disk throughput is dependent on the disk arm movement speed (seek time), the spindle speed (rota-
tional latency and data transfer speed), the size of the transfer request, the scheduling of the requests, etc.
Data is retrieved from disk in blocks which consist of multiple disk blocks (usually of 512 B each), and
a striping unit in a disk array may similarly consist of a configurable number of disk blocks. Different
applications may use different storage systems where striping units of varying sizes can be applied, i.e.,
sizes up to 64 KB are suggested for multimedia data whereas traditional systems usually use sizes of 4
KB or 8 KB. By using a simple analytic model and the average disk characteristics of a Seagate Cheetah
disk, we present the relationship between disk efficiency and amount of consecutive data read per I/O
operation in Figure 6. Disk seeking and rotation latencies are main bottlenecks in disk I/O operations.
Therefore, the larger the amount of data read per operation, the higher the throughput. In other words,
increasing disk block size increases performance. However, some operating systems have an upper limit
of the disk block size. Thus, in the full implementation of our server, we will use a block size, depending
on the symbol size, of 32 KB (1 KB symbols) or 64 KB (2 KB, 4 KB, or 8 KB symbols). Nevertheless,
it is important to note that in the performance evaluation below, the disk block size will not affect the
evaluated code performance.

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Amount of data read per operation (KB)

E
ffi

ci
en

cy
 in

 %
 o

f m
ax

. t
hr

ou
gh

pu
t

Figure 6: Disk efficiency vs read operation size.

11

4.5 Precalculated Checksum

Before storing data in the RAID system, we process the data through the udp_PreOut function to
generate UDP packets with (precalculated) checksums (see Figure 4). Originally, the UDP checksum is
calculated over the three areas displayed in Figure 7: a 12 B pseudo header containing fields from the
IP header, the 8 B UDP header, and the UDP data [38]. To use the prefabricated packet for transmission
from server to client, we have to fill in the corresponding, i.e., future, source and destination IP addresses
and port numbers. However, most of these values are unknown when storing the data. The source IP
address will be the server’s IP address, but the source port number will be allocated dynamically at
transmission time and the client’s destination IP number and destination port number are also unknown.
Therefore, these unknown fields are initialized with zero before the checksum is calculated from the
modified UDP sender.

In order to transmit data from server to clients, the prefabricated UDP packets are read from disk and
then processed through the communication protocols UDP/IP, but using udp_QuickOut instead of the
traditional udp_output at the transport layer. In udp_QuickOut, only the following four steps are
performed: (1) the missing values, i.e., source port number, destination port number, and destination IP
address, are filled in the appropriate fields of the UDP packet, (2) a checksum over these three fields
is calculated, (3) the value of the UDP checksum field is updated by adding the checksum of the three
new field values to the precalculated UDP checksum, and (4) the UDP packet is handed over to the IP
protocol.

32-bit source IP address

32-bit destination IP address

16-bit UDP length

16-bit UDP checksum

16-bit destination port number

16-bit UDP length

16-bit source port number

8-bit protocolzero

0 15 16 31

}
}

data

UDP
pseudo-
header

UDP
header

precalculated checksum field

checksum has to be updated

Figure 7: Pseudo header, UDP header, and data used for checksum computation.

The gain of the checksum precomputation depends on the packet size. In our scenario using four
packet sizes of 1 KB, 2 KB, 4 KB, and 8 KB, updating only the source port (16 bit), destination port (16
bit), and destination IP address (32 bit), the on-line checksum procedure is executed over only 0.77 %,
0.39 %, 0.19 %, and 0.10 % of UDP data, respectively.

4.6 Prototype Configuration Summary

We have chosen and tested four different schemes using a correcting code with a codeword consisting of
224 information symbols and 32 parity symbols and where the symbol size is varied among 1 KB, 2 KB,
4 KB, and 8 KB. As depicted in Figure 4, we gather several symbols in one striping unit of 32 KB or 64
KB. In the next section, we present the performance measurements of our integrated recovery scheme
using the Cauchy-based RSE code for storage recovery and FEC in the communication system.

12

5 Results and Observations

To analyze the performance of our prototype, we have designed a simple benchmark application in
which we transfer a 225 MB file with 6 Mbps between the server process and the client process. A
worst-case evaluation is made by introducing during transmission a maximum amount of errors within
the correcting limits of the code, i.e., 32 out of 256 packets are damaged or lost. To test different server
and client hardware, we have run our experiments on six different machines, i.e., three running as multi-
user servers (A-C) and three as “stand-alone” client machines (D-F): (A) Sun UltraSparc1 167 MHz,
Solaris, (B) Sun Enterprise 450 (Ultra 4) 300 MHz, Solaris, (C) Dell PowerEdge 6300 500 MHz, Linux,
(D) Dell Inspiron 7000 400 MHz, Linux, (E) Cinet PPI-600 350 MHz, Linux, and (F) Tech Pentium 166
MHz, Linux.

5.1 Server Side

The server side performance gain, integrating the error management mechanisms and reading the parity
data from disk, is substantial. Storing and retrieving parity data from disk require neither extra storage
space (compared to traditional RAID systems where one disk is already allocated for parity data) nor
extra time for data retrieval (as the recovery disk is read in parallel with the original information data).
Since we use FEC, there is no overhead managing retransmissions, and since the parity data is pre-
calculated, all the encoding operations are omitted. This means that encoding performance is not a
bottleneck, and the number of concurrent users retrieving data from the multimedia storage server is
limited by the performance of the system components, e.g., bus, host-network interface, and disk I/O
throughput.

For example, on our Sun UltraSparc1 (machine A), the measured encoding throughput is, of course
highly dependent on available CPU resources, about 11.2 Mbps for all our evaluated schemes (using
symbols of 1 KB, 2 KB, 4 KB, and 8 KB). This means that if encoding operations were to be done by
the communication system, less than two 6 Mbps streams could be transmitted concurrently assuming
that encoding performance is the bottleneck. The only overhead on the server side in our approach is
12.5% in increased buffer space and bandwidth requirement to hold the redundant data in memory and
transmitting it over the buses and the network.

5.2 Client Side

By reconstructing the lost data at the client side rather than having a retransmission, the clients may
experience a better data presentation at the cost of increased memory and CPU usage. The different
configurations using symbol sizes of 1 KB, 2 KB, 4 KB, and 8 KB have a memory requirement of
approximately 2 MB, 3 MB, 5 MB, and 9 MB, respectively. Thus, if the amount of physical memory
available is less, the decoding throughput decreases due to data paging, but this will usually not be a
bottleneck today.

The average decoding performance on our different machines is displayed in Table 3 where most of
our experiments show that a 6 Mbps data stream, with maximum data loss, can be recovered in time
at the client side, i.e., using similar hardware as in our machines. However, the 166 MHz machine F
is not able to support a higher data rate than about 3 Mbps which indicates some minimum hardware
requirements depending on the supported data rate.

Figure 8 shows that the decoding throughput varies over time according to available CPU time on
two selected machines, i.e., machines A and D. According to Figure 8 and Table 3, there are no large
performance differences varying the symbol size between 1 KB and 8 KB, and all these configurations
are adequate regarding throughput. Machine A is a server and shares the CPU between several processes
and users. Consequently, more variance is experienced in the throughput compared to the “stand-alone”
machine D. In general, there is a larger variance using a small symbol size in all our measurements.
This is due to the size of each operation. Context switches and interrupts occurring during a decoding
operation will constitute more of the total time per operation for small symbol sizes, and if they do not

13

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

(A) Machine A - Sun UltraSparc1 167 MHz.

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

(B) Machine D - Dell Inspiron 7000 400 MHz.

All the figures have an x-axis showing the time is seconds (scale 0 - 300) and a y-axis plotting the decoding
throughput in Mbps (scale 4 - 11). We have used a symbol size of 1 KB, 2 KB, 4 KB, and 8 KB from left to right,
respectively.

Figure 8: Decoding throughput.

Symbol Machine

size A B C D E F

1 KB 6.02 9.99 8.16 10.03 8.96 3.18

2 KB 6.51 10.71 7.43 9.27 9.22 3.31

4 KB 6.36 10.55 6.51 9.48 9.05 3.38

8 KB 6.20 10.49 6.47 9.59 8.89 3.25

Table 3: Measured average decoding throughput in Mbps.

occur, correspondingly less amount of time is used per operation. Thus, smaller symbol sizes give a
greater variation than larger symbols.

Table 4 shows the experienced startup delays in our experiment. Due to the decoding cost, the client
might experience an increased startup delay ranging from about 0.2 seconds to about 4.5 seconds (if
a maximum amount of errors occurs) depending on the processor speed and the block size used. The
delay increases with the size of the symbol, and since there are no large differences in throughput of the
evaluated schemes, a symbol size of 1 KB or 2 KB is appropriate.

Symbol Machine

size A B C D E F

1 KB 0.30 0.18 0.14 0.18 0.20 0.58

2 KB 0.56 0.33 0.49 0.40 0.39 1.11

4 KB 1.16 0.69 1.11 0.82 0.85 2.16

8 KB 2.45 1.47 2.25 1.54 1.63 4.50

Table 4: Measured average startup delay in seconds.

Finally, as there usually is some variance in the accessibility of the processor (unless some kind of
reservation-based scheduling is provided), and thus in the decoding throughput, some client-side buffer-

14

ing should be provided. Nevertheless, despite all the overhead introduced on the client side, the recovery
can be made in time assuming client hardware similar to the machines we used in our experiments.
Thus, using our integrated error management mechanism, the server workload is greatly reduced, and
the clients experience a smoother data playout, because no latency is introduced due to retransmissions.

6 Discussion and Conclusions

The INSTANCE server architecture is based on three orthogonal techniques: zero-copy-one-copy mem-
ory architecture, network level framing, and integrated error management. In this paper, we presented our
design, implementation, and evaluation of the integrated error management. In particular, we described
how error management mechanisms in storage and communication system can be integrated and which
basic requirements have to be fulfilled in such a solution. Furthermore, we evaluated different design
alternatives, described our prototype implementation, and evaluated the integrated error management in
our prototype.

Our results show that the server workload is significantly reduced by the INSTANCE integrated error
management. Compared to the two basic traditional approaches: (1) ARQ based error management that
causes high delay variations due to retransmissions and does not scale for large multicast groups, and (2)
FEC based error management that encodes data at transmission time at the server side; the INSTANCE
scheme requires less crucial resources, i.e., memory and CPU at the server, scales well for large multicast
groups, and does not introduce delay variations, i.e., makes a smooth presentation at the client easier. In
other words, more concurrent users can be supported by a single INSTANCE server with the same or
better quality than in traditional server implementations.

It is worthwhile to note that our prototype is based on FEC schemes that are available as public
domain software. There exist several faster correcting codes, e.g., the Tornado code [12, 19], that are
commercially distributed and were not available for evaluation in our prototype. Obviously, these codes
promise even higher performance improvements for the integrated error management in INSTANCE.

The design of the other two INSTANCE techniques, i.e., zero-copy-one-copy memory architecture
and network level framing, is finished; and our ongoing work in INSTANCE is concerned with the
implementation of these two techniques in our prototype.

7 Acknowledgments

We would like to thank Minna Kaisa Juonolainen for her initial study on integrated error management is-
sues. We are also grateful for the valuable comments and suggestions to this paper from Denise Ecklund,
Ketil Lund, and Chuanbao Wang.

References

[1] 3com: “Ethernet Packet Loss Reference”, http://www.support.3com.com/infodeli/tools/netmgt/-
temwin/temnt97/091293ts/ploss3.htm, September 1998

[2] Allman, M., Glover, D., Sanchez, L.: “Enhancing TCP Over Satellite Channels using Standard
Mechanisms”, RFC2488, January 1999

[3] Almulhem, A., El-Guibaly, F., Gulliver, T. A.: “Adaptive Error Correction for ATM Communica-
tions using Reed-Solomon Codes”, Proceedings of the 1996 IEEE SoutheastCon, Tampa, FL, USA,
April 1996, pp. 227-230

[4] Biersack, E. W.: “Performance Evaluation of Forward Error Correction in an ATM Environment”,
IEEE Journal on Selected Areas in Communications, Vol. 11, No. 4, May 1993, pp. 631-640

15

[5] Blaum, M., Brady, J., Bruck, J., Menon, J.: “EVENODD: An optimal Scheme for Tolerating Double
Disk Failures in RAID Architectures”, Proceedings of the 21st Annual International Symposium on
Computer Architecture (ISCA’94), Chicago, IL, USA, April 1994, pp. 245-254

[6] Blömer, J., Kalfane M., Karp, R., Karpinski, M., Luby , M., Zuckerman, D.: “An XOR-Based
Erasure-Resilient Coding Scheme”, Technical Report TR-95-048, International Computer Science
Institute (ICSI), The University of California at Berkeley, CA, USA, August 1995

[7] Bolot, J.-C., Fosse-Parisis, S., Towsley, D.: “Adaptive FEC-based Error Control for Internet Tele-
phony”, Proceedings of the 18th IEEE Conference on Computer Communications (INFOCOM’99),
New York, NY, USA, March 1999

[8] Bolot, J.-C., Turletti, T.: “Adaptive Error Control for Packet Video in the Internet”, Proceedings of
the 1996 IEEE International Conference on Image Processing (ICIP ’96), Lausanne, Switzerland,
September 1996

[9] Bolot, J.-C., Vega-Garcia, A.: “The Case for FEC-based Error Control for Packet Audio in the
Internet”, To appear in ACM/Springer Multimedia Systems, 1999

[10] Boyce, J. M., Gaglianello, R. D.: “Packet Loss Effects on MPEG Video Sent Over the Public Inter-
net”, Proceedings of the 6th ACM International Multimedia Conference (ACM MM’98), Bristol,
UK, Septeber 1998, pp. 181-190

[11] Braden, R., Borman, D., Partridge, C.: “Computing the Internet Checksum”, RFC 1071 (Updated
by RFC 1141 and 1624), September 1988

[12] Byers, J. W., Luby, M., Mitzenmacher, M., Rege, A.: “A Digital Fountain Approach to Reliable
Distribution of Bulk Data”, Proceedings of the ACM conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM’98), Vancouver, Canada,
August/September 1998, pp. 56-67

[13] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., Patterson, D. A.: “RAID: High-Performance,
Reliable Secondary Storage”, ACM Computing Surveys, Vol. 26., No. 2, June 1994, pp. 145-185

[14] Dresler, S., Hofmann, M.: “Adaptive Error Correction to Support Heterogeneous Multicast
Groups”, Proceedings of 6th Open Workshop on High Speed Networks, Stuttgart, Germany, Octo-
ber 1997, pp. 169-174

[15] Ginier-Gillet, P., Di Minico, C. T.: “1000BASE-T: Gigabit Ethernet Over Category 5 Copper
Cabling”, 3com, http://www.3com.com/technology/tech_net/white_papers/503047.html, Decem-
ber 1999

[16] Halsall, F: “Data Communications, Computer Networks and Open Systems”, Fourth edition,
Addison-Wesley, 1995

[17] Halvorsen, P., Plagemann, T., Goebel, V.: “The INSTANCE Project: Operating System Enhance-
ments to Support Multimedia Servers” (poster), WWW-site for the 17th ACM Symposium on Op-
erating Systems Principles (SOSP’99), Kiawah Island, SC, USA, December 1999

[18] Hellerstein, L., Gibson, G. A., Karp, R. M., Katz, H. M., Patterson, D. A.: “Coding Techniques for
Handling Failures in Large Disk Arrays”, Algorithmica, Vol. 12, No. 2/3, August/September 1994,
pp. 182-208

[19] Luby, M., Mitzenmacher, M., Shokrollahi, M. A., Spielman, D. A., Stemann, V.: “Practical Loss-
Resilient Codes”, Proceedings of the 29th annual ACM Symposium on Theory of Computing
(STOC’97), El Paso, TX, USA, May 1997, pp. 150-159.

16

[20] McAuley, A. J.: “Reliable Broadband Communication Using a Burst Erasure Correcting Code”,
Proceedings of the ACM Symposium on Communications, Architectures and Protocols (SIG-
COMM’90), Philadelphia, PA, USA, September 1990, pp. 297-306

[21] MPEG.org: “DVD Technical Notes - Bitstream breakdown”, http://mpeg.org/MPEG/DVD, March
2000

[22] Nahrstedt, K., Steinmetz, R.: “Resource Management in Networked Multimedia Systems”, IEEE
Computer, Vol. 28, No. 5, May 1995, pp. 52-63

[23] Nonnenmacher, J., Biersack, E. W.: “Reliable Multicast: Where to use FEC”, Proceedings of IFIP
5th International Workshop on Protocols for High Speed Networks (PfHSN’96), Sophia Antipolis,
France, October 1996, pp. 134-148

[24] Ousterhout, J. K.: “Why Aren’t Oparating Systems Getting Faster As Fast As Hardware?”, Pro-
ceedings of the 1990 USENIX Summer Conference, Anaheim, CA, USA, June 1990, pp. 247-256

[25] Patterson, D. A., Gibson, G., Katz, R. H.: “A Case for Redundant Arrays of Inexpensive Disks
(RAID)”, Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data, Chicago, IL, USA, June 1988, pp. 109-116

[26] Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley, M., Bolot, J.-C., Vega-Garcia, A.,
Fosse-Parisis, S.: “RTP Payload for Redundant Audio Data”, RFC 2198, September 1997

[27] Perkins, C., Hodson, O., Hardman, V.: “A Survey of Packet Loss Recovery Techniques for Streaming
Audio”, IEEE Network, Vol. 12, No. 5, September/October 1998, pp. 40-48

[28] Plagemann, T., Goebel, V.: “INSTANCE: The Intermediate Storage Node Concept”, Proceedings
of the 3rd Asian Computing Science Conference (ASIAN’97), Kathmandu, Nepal, December 1997,
pp. 151-165

[29] Plagemann, T., Goebel, V., Halvorsen, P., Anshus, O.: “Operating System Support for Multimedia
Systems”, The Computer Communications Journal, Elsevier, Vol. 23, No. 3, February 2000, pp.
267-289

[30] Plank, J. S.: “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems”,
Software - Practice and Experience, Vol. 27, No. 9, September 1997, pp. 995-1012

[31] Paxson, V.: “End-to-End Routing Behavior in the Internet”, Proceedings of the ACM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM’96), Palo Alto, CA, USA, August 1996, pp. 25-38

[32] Paxson, V.: “End-to-End Internet Packet Dynamics”, Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM’97), Cannes, France, September 1997, 139-152

[33] Rizzo, L.: “Effective Erasure Codes for Reliable Computer Communication Protocols”, ACM
Computer Communication Review, Vol. 27, No. 2, April 1997, pp. 24-36

[34] Rorabaugh, C. B.: “Error Coding Cookbook - Practical C/C++ Routines and Recipes for Error
detection and Correction”, McGraw-Hill, 1996

[35] Seagate, Disk Products, http://www.seagate.com/cda/products/discsales/guide/, February 2000

[36] Srinivasan, V., Ghanwani, A., Gelenbe, E.: “Block Loss Reduction in ATM Networks”, Elsevier
Computer Communications, Vol. 19, No. 13, November 1996, pp. 1077-1091

17

[37] Tanenbaum, A. S.: “Computer Networks”, Third edition, Prentice Hall, 1996

[38] Wright, G. R., Stevens, W. R.: “TCP/IP Illustrated, Volume 2 - The Implementation”, Addison-
Wesley, 1995

[39] Yajnik, M., Kurose, J., Towsley.: “Packet Loss Correlation in the MBone Multicast Network”,
Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM’96), London, UK,
November 1996, pp. 94-99

18

