
UNIVERSITY OF OSLO
Department of Informatics

Storage Systems
Support for
Multimedia
Applications

Research Report No. 307,
ISBN 82-7368-259-5,
ISSN 0806-3036

Pål Halvorsen, Carsten Griwodz,
Ketil Lund, Vera Goebel,
Thomas Plagemann





Storage Systems Support for Multimedia Applications

Pål Halvorsen†, Carsten Griwodz†, Ketil Lund‡, Vera Goebel†, Thomas Plagemann†
†IFI, University of Oslo, Norway
‡UniK, University of Oslo, Norway

Email: {paalh, griff, goebel, plageman}@ifi.uio.no, ketillu@unik.no

Abstract

Lately, on-demand streaming multimedia applications have become very popular. Contemporary personal
computers can handle the load imposed by such multimedia applications on the client side, but the potentially
high number of concurrent users accessing a server represents a generic problem. The multimedia storage system
is responsible for storage and retrieval of multimedia data from storage devices, and plays a vital role for the
performance and scalability of multimedia servers. It deals with issues related to data placement, scheduling, file
management, continuous data delivery, buffer management, prefetching, etc., and with the particular demands
of multimedia applications, such as real-time characteristics, large file sizes, high data rates, and several data
sources. Performing these tasks and supporting these requirements appropriately are burdened by an increasing
speed mismatch between processors and the most prolific and affordable storage devices, – magnetic disks –, and
by the introduction of new requirements in new multimedia scenarios.

In this article, we give a survey of storage system support for continuous media applications and discuss issues
related to integration of different mechanisms for the future multimedia storage systems.

1 Introduction
In the last years, there has been a tremendous growth in the use of Internet services. In particular, the world-wide
web and applications like News- and Video-on-Demand have become very popular where the estimated fraction
digital multimedia data of the total available data stored will increase to about 50% in 2005 [38]. Thus, the
number of users, as well as the amount of data each user downloads or streams from servers in the Internet, is
rapidly increasing. Today, contemporary mid-price personal computers are capable of handling the load that such
multimedia applications impose on the client system. However, the potentially (very) high number of concurrent
users that download data from Media-on-Demand (MoD) servers represents a generic problem for this kind of
client-server applications.

When designing and implementing a storage system for such a system, several questions must be asked, e.g.,
what kind of storage device to use, how to order the requests, where to put data, how to manage memory, how to
deal with overload situations, what kind of meta-data (index) structures to use, etc. The decisions made for each
subcomponent are often dependent on the expected access patterns, but also on the choices made for the other
components, i.e., some design alternatives might be contradicting. The multimedia storage system is responsible
for storage and retrieval of multimedia data from storage devices. Thus, it deals with issues for example related
to data placement, scheduling, file management, continuous data delivery, memory buffering, prefetching, etc.
However, the storage system has for a long time been viewed upon as one of the main bottlenecks in high data
rate multimedia systems. This is because compared to the increased performance of processors and networks,
storage devices have become only marginally faster1. The effect of this increasing speed mismatch is the search
for new storage structures, and storage and retrieval mechanisms with respect to the file system. Additionally, in a

1From year 1990 to 2000, the high performance disks have improved for example capacity from about 1 GB to 35 GB, spindle speed from
about 5400 RPM to about 15.000 RPM, seek time from about 5.5 ms to 2 ms, and transfer rate from about 28 Mbps to 392 Mbps [26, 42, 88].
However, the Intel processors, for example, have improved from 486 (about 25-50 MHz) to pentiumIV (about 1.4-1.5 GHz) in the same period
where the data buss width is also increased from 32 to 64 bits [21, 41]. Thus, disks have had large improvements in capacity and data density,
but the disk bandwidth improvements are an order of magnitude smaller than the CPU improvements.

Research Report No. 307, Department of Informatics, University of Oslo, Norway (ISBN 82-7368-259-5, ISSN 0806-3036)

1



2 Research Report No. 307

multimedia scenario, new requirements are introduced as continuous media data are different from discrete data,
e.g., they may have real-time characteristics, large file sizes, high data rates, and several data sources.

Early work on storage system issues addressed different solutions for mechanisms providing like fairness
between tasks, increased total system performance, etc. However, as one can see, multimedia system support
raises several additional requirements compared to systems handling discrete data only. There are different ways
to achieve continuous media support. Multimedia applications are often characterized as (soft) real-time applica-
tions, because they require timely behavior. Thus, each task require periodic operations giving a certain amount
of data each time interval. However, variable bit rate (VBR) coding schemes like MPEG complicates the periodic
behavior. Video frames are (usually) generated in a fixed frequency, but the size of each frame and even the frame
patterns in the group of picture (GOP) varies [29]. Within an MPEG GOP, we have I-, B-, and P-frames all having
different dependencies and sizes, and the size of each coded frame is dependent of the amount of scene changes
between each frame, e.g., an action scene might give larger frames compared to a constant landscape view scene.
Moreover, user interactions also makes it hard to predict future resource requirements, and this trend will prob-
ably continue as multimedia data is more frequently used to represent information in a user-friendly way. Thus, a
multimedia storage system must take into account the storage capacity as well as bandwidth capacity for optimal
utilization of the devices.

In [38], several existing techniques (e.g., scheduling, prefetching, and caching) and strategic research directions
(e.g., exploiting data access pattern) are pointed out for storage systems where it is believed that the fraction of
storage systems dealing with digital multimedia data will increase heavily in the future. In this article, we address
several of these techniques and give an overview over recent developments in storage system support for multi-
media applications, i.e., both means for increasing the performance and supporting the necessary time sensitive
operations of multimedia servers. Several issues of real-time retrieval from disks for multimedia streaming have
been explained in [34], and many research groups have looked into real-time and continuous media storage systems
mechanisms. It is therefore not possible to address all proposed solutions in detail in a single paper. Instead, this
survey is meant to serve as an “entry-point” for further studies where we give some examples and pointers (ref-
erences) to more literature. Additionally, we try to (theoretically) integrate the different mechanisms for a future
multimedia storage system by discussing the different properties of the mechanisms proposed in literature and see
how they fit together.

The rest of this paper is structured as follows: Section 2 summarizes multimedia application requirements, and
Section 3 presents various disk scheduling algorithms. In Section 4, we address several aspects of placing data
on storage devices. Section 5 describes different buffer management mechanisms, and extensions to traditional
file meta-data structures are presented in 6. Issues for designing an system integrating several of the proposed
mechanisms are addressed in Section 7. Finally, we summarize and give an outline for further research in Section 8.

2 Requirements

In this section, we briefly discuss the requirements that multimedia applications impose. Typically, data is written
once and read many times sequentially, i.e., at least in the class of on-Demand applications. Furthermore, the
classification and evolution of multimedia applications often can be done via two parameters or axes:

• The data structure going from linear data like traditional movies to branched, non-linear data where the
user may choose different paths through the presentation.

• Coming applications have an increasing amount of interaction going from unidirectional applications to
bidirectional applications.

The common direction is that we are going from analog distribution of linear data (TV broadcasts) through di-
gital, personalized retrieval of linear data (true VoD, etc.), retrieval of branched data (interactive VoD), towards
interaction with variable data (games, virtual words, etc.). As one can see, there exist several types of applica-
tions with slightly different requirements, but in general, a multimedia application additionally has the following
characteristics/requirements compared to traditional applications:

1. Real time characteristics: The retrieval, computation, and presentation of continuous media is time-
dependent. The data must be presented (read) before a well-defined deadline with small jitter only. Thus,
algorithms for the storage and retrieval of such data must consider time constraints, and additional buffers to
smooth the data stream must be provided.



Research Report No. 307 3

2. Large file sizes and high data rates: Compared to text and graphics, video and audio have very large
storage space and playout rate requirements. Since the file system has to store information ranging from
small, unstructured units like text files to large, highly structured data units like video and associated audio,
it must manage the data on disk in a way that efficiently uses the limited storage device capacity. For
example, uncompressed CD-quality stereo audio requires storage and delivery of 44100 16-bit samples per
second per stereo channel (about 1.4 Mbps) [102]. Low but acceptable quality compressed video requires at
least about 1 Mbps for example using MPEG-1, and an MPEG-2 DVD quality video stream requires about
3.5 Mbps in average [67].

3. Multiple data streams: A multimedia system must support different media simultaneously. Not only must
it ensure that all of them get a sufficient share of the resources, it also must consider tight relations between
different streams arriving from different sources or files. The retrieval of a movie, for example, requires the
processing and synchronization of both audio and video.

Thus, in addition to traditional requirements like efficiency (high performance) and fairness, a multimedia system
introduces several new requirements [68, 87]. For the first class of applications, playing back a linear data object
sequentially, requirements like high throughput and no synchronization skew are important (a user can normally
tolerate a short startup delay), but as we go to more interactive applications requirements like low latency becomes
increasingly more important. It is therefore important to tune the multimedia storage system for high performance
to support an optimal (maximum) number of clients, to give required data rates in order to support continuous
playout of time-dependent data, and to support interactive applications by having high responsiveness. In the rest
of this survey, we address some of the approaches and mechanisms proposed for disk-based storage systems to
approach the demanding multimedia application requirements.

3 Disk Scheduling
The disk is an exclusive, non-preemptable device, i.e., it serves one request at a time. Thus, requests must be sorted
and multiplexed in the temporal domain according to system characteristics to achieve maximum performance.
Originally, disk scheduling was employed to reduce latency, or increase throughput or efficiency [33], but with
the advent of real-time and multimedia applications, additional requirements emerged, which the existing disk
scheduling algorithms were unable to meet [79]. For instance, playing back continuous multimedia like audio
and video from disk requires periodic retrieval of data, and each requested piece of data must be delivered within
a certain deadline to ensure continuous presentation. In a multi-user system, distributing the bandwidth of the
storage subsystem also becomes important. With the introduction of interactive, mixed-media applications, such
as Learning-on-Demand (LoD) applications [112], the requirements on the disk scheduler become even more
complex. In other words, disk scheduling algorithms for multimedia applications must optimize special multimedia
data criteria in addition to the traditional criteria, i.e., QoS has become a central issue in disk scheduling [33,
101]. Nevertheless, the performance goals are still of importance, since continuous multimedia data often impose
considerable requirements with respect to disk throughput. Thus, the disk scheduler now has to help ensuring high
throughput, QoS support, and low latency in a multi-user environment characterized by non-homogeneous and
varying workloads. In addition, these requirements are partly contradicting, meaning that trade-offs must be made.
For instance, the need for low latency is generally in contradiction to the need for efficient disk reads. The reason
for this is that while higher throughput is achieved by minimizing disk head movement through ordering of the
requests, low latency is achieved by serving requests immediately and often out of order, i.e., without taking the
placement of the data into consideration. Thus, long seek operations, and thereby reduced throughput, may be the
result.

In our study of disk scheduling, we have chosen to classify the existing algorithms according to the purpose
for which they are designed, and we four main classes:

• Performance-oriented algorithms which only focus on optimizing performance, i.e., increasing throughput
and reducing latency. Some well known examples are first come first served (FCFS) [104], shortest seek
time first (SSTF) [104], SCAN (elevator) [27], LOOK [65], VSCAN [31], and shortest access time first
(SATF) [49].

• Real-time algorithms which are intended for use in real-time environments, i.e., servicing disk requests
within given deadlines. Examples here include earliest deadline first (EDF) [58], SCAN-EDF [78], and
priority SCAN (PSCAN) [16].



4 Research Report No. 307

• Stream-oriented algorithms handling retrieval of continuous data streams. Several proposed algorithms
exist, e.g., the scheduler in the continuous media file system (CMFS) [3, 69], grouped sweep scheduling
(GSS) [119], BubbleUp [19], T-scan [22], batched SCAN (BSCAN) [53], buffer-inventory-based dynamic
scheduling (BIDS) [72], and greedy-but-safe earliest-deadline-first (GS_EDF) [108].

• Mixed-media algorithms which recognize that different disk requests may have different requirements with
respect to service level. Cello [95, 96], massively-parallel and real-time storage (MARS) [13], fair mixed-
media scheduling (FAMISH) [80], deadline sensitive SCAN [39], the disk scheduler in Fellini [62], delta
L [11], and adaptive disk scheduler for mixed-media workloads (APEX) [60] are some examples.

In addition, some priority-based disk scheduling algorithms exist. Support for priorities is, however, orthogonal
to the classification above, and we will therefore present those algorithms within the existing four classes. As the
two last classes of algorithms are primarily designed for applications supporting multimedia data (and the first two
may have several shortcomings), we look a bit closer into these.

With the introduction of continuous media like audio and video, new requirements for data delivery arose, i.e.,
pure performance-oriented and pure deadline-driven algorithms will fail during high workloads. Therefore, several
stream-oriented disk scheduling algorithms have been proposed, i.e., schedulers that are primarily optimized for
handling retrieval of continuous data streams. Compared to the real-time scheduling algorithms, these algorithms
often focus less on deadlines, and instead rely on periodicity of the requests (the requests are typically served
in fixed-length rounds) and fair allocation of disk bandwidth. These stream-oriented algorithms normally try to
consider efficiency, and to a certain extent work-conservation. Furthermore, they typically offer a statistical real-
time or throughput only guarantee, based on periodic requests, but with no support for request dropping, priorities,
or deadlines. However, given that these algorithms are targeted at delay-sensitive data, the lack of support for
deadlines is compensated by careful load control usually through admission control and by the fact that the load is
uniform, e.g., all requests are for video data.

During the last years applications presenting both discrete and continuous media, and thus providing differ-
ent service classes, have emerged. Disk scheduling for mixed-media workloads has therefore become an active
research area. Common in most of these algorithms is that they have a hierarchical (typically two-level) design,
where one level ensures efficient usage of the disks, while another level handles QoS and differentiation of service
classes. Some of these algorithms rely on the proportional share allocation paradigm, while still offering QoS
guarantees. This is possible since they use a fixed set of service classes (i.e., queues), and the weight of each queue
is carefully controlled. Thereby, the relative share of the bandwidth for a queue becomes equal to the absolute
share, and QoS guarantees can be given. The number of service classes increased from best effort only to two
(discrete and continuous) and even to an arbitrary number of service classes supporting different services to be
more flexible. Furthermore, some of these schedulers are priority-based, device idle time is often minimized by
using work-conservation, and to avoid overload situations some include admission control.

As shown in the previous subsections, there are a lot of different disk scheduling algorithms suitable for differ-
ent purposes and workload scenarios. The two last classes of algorithms, i.e., stream-oriented and mixed-media,
are most appropriate for managing multimedia data. Stream-oriented algorithms are primarily targeted for peri-
odic access for a continuous playout of an audio or video stream, whereas mixed-media aim for both discrete and
continuous multimedia data requests at the same time. The stream-oriented algorithms mainly address playout
of continuous media, i.e., requirements like high guaranteed throughput of a stream. However, as the requests
often are served in rounds, low latency support is neglected. In some mixed media algorithms, separate high-level
queues can be applied to support low latency interactions by inserting these requests into the head of the low-level
scheduling queue.

There exists schedulers aimed for most purposes. However, new disk devices have a lot of “intelligence” [116],
and one does not necessarily know exactly where a block is stored. The devices therefore often have a build-in
hardware version of SCAN to optimize performance, and future disk scheduling research could maybe exploit
these new capabilities.

4 Data Placement

Data placement policies aim to improve the efficiency of the storage system by proper placement of data elements
on the storage device(s). In this section, we describe placement policies for both single and multiple devices. e.g.,
single device block allocation, striping, replication, and load balancing.



Research Report No. 307 5

4.1 Block Allocation
As mentioned above, the seek overhead is usually the dominant factors in disk access time. Optimizing block
placement according to disk mechanics and retrieval patterns to minimize average data retrieval time has been an
active research area for a long time, e.g., [40], and several placement policies have been proposed:

• Scattered (random): data elements were initially placed on arbitrary disk blocks regardless of disk charac-
teristics and access patterns, but this policy is often regarded as inappropriate due to possibly large numbers
of intra-file seeks in multimedia streaming scenarios having I/O requests spanning several blocks. However,
random placement policies are used for a mixed media, heterogeneous disk scenario [8, 54, 83]. It is shown
that using random placement of replicas on random disk gives performance equally to conventional striping
schemes (at the cost of replicating data) [84]. Additionally, under highly multiplexed workloads, the disk
head will typically read only a single (large) disk block for the particular file. Thus, one approach to achieve
disk efficiency is to use large blocks and make no particular effort to store them contiguously, but rather rely
on replication and wide striping to handle bottlenecks due to highly multiplexed nodes [46].

• Contiguous: this policy tries to store all blocks of a file contiguously on disk, i.e., no intra-file seeks is
necessary when reading the data sequentially. When reading a single multimedia file, contiguity of the data
blocks is therefore considered advantageous. Thus, the contiguous placement policy is a nice solution for
read-only (updates may require a rewrite of the whole file) and exclusive (accesses to different files give
large seeks) device accesses. However, a multimedia server often must replace data due to popularity, and
it usually has multiple concurrent clients. A pure contiguous block placement strategy may therefore not be
desirable. Nevertheless, some variations of this exist. For example, blocks can be tried stored contiguously
in the case of multimedia files whereas with other types of files no attempt is done to optimize the placement,
i.e., the blocks are mixed without any overhead [76, 77]. An additional abstraction can be added to assist
multimedia applications, as in the case of the data type dependent modules of Symphony [91]. Small, page-
sized blocks that are stored contiguously allow an efficient mapping and unmapping of disk space into main
memory, and allows finely granular decisions for buffering [37, 62].

• Extent-based: this is an adaption of the contiguous policy where an extent is a physically linear series of
blocks and can therefore be read without repositioning the head [43]. The files are partitioned into multiple
extents (giving better support for interleaved operations), and each field in the meta data structure (inode)
usually points to a series of blocks (start offset and number of adjacent blocks) reducing number of inode
lookups when reading. Several of file systems use this allocation policy, e.g., the XFS [98, 118], JFS [99,
103], and Minorca [113] file systems.

• Cylinder-based: the disk is organized in cylinder groups, and blocks are allocated close to each other to
avoid long intra-file seeks (similar to extents) if possible, i.e., a global policy then decides which cylinder
group to place a file in, and a local policy tries to put all data blocks in the same cylinder group and if
possible at rotational optimal positions. To avoid fragmentation and different loaded cylinder groups, the
data block allocation is shifted to a different cylinder group every few MB. This is for example used in the
Fast File System (FFS) [64].

• Log-structured: a sequential, append-only log as is used as the only on-disk structure, i.e., all file system
data is stored in a single, contiguous log. The idea relies on newer, larger buffer caches that will usually
hold the required data blocks in memory when requested and assumes that allocation of new blocks is a
bottleneck. Thus, to optimize writes, the next available block is allocated giving a minimum seek time when
writing. This is for example used in the log-structured file system (LFS) [18, 63, 81, 89].

• Zoned: disk characteristics and average position of the disk arm is used to find a suitable block. For example,
the organ-pipe placement policy tries to put the most frequently accessed blocks, regardless of which file it
belongs to, close to the center of the disk. This would for example mean placing and periodically rearranging
popular video clips into the center cylinders of the disk as proposed in several schemes [1, 32, 82, 111].
To compensate for the zoned disks, skewed organ-pipe policy, moves the most frequently accessed blocks
slightly outward on the disk platter according to the capacity differences between the zones. This policy is
used in [105]. Other zoned placement policy examples include the near constant transfer time (NCTT) [51]
and track-pairing [7].

• Constrained: these policies tries to take advantage of sequential access patterns and thereby reduce seek
overhead by restricting the average distance between consecutive blocks in number of cylinders [3]. For



6 Research Report No. 307

example, REBECA [36] partitions the disk in regions and place consecutive multimedia objects in the next
adjacent region to minimize seek time at the cost of start-up latency. The strand-based model [76,77] derives
the storage granularity and scattering parameters by using device characteristics and playback rate, and data
retrieved in an operation is stored contiguously (as a strand), and each strand is placed on disk according to
a maximum calculated seek time between consecutive strands, i.e., a maximum scatter value, to guarantee
continuous retrieval and data playout.

Block allocation mainly address disk efficiency and not latency, i.e., many data placement strategies have been
proposed to reduce seek time and achieve a high disk bandwidth. Which one is best depends on access pattern,
but there are some important general observations. In a server, multiple streams will be concurrently played out,
and the order of the I/O operation, both with respect to current playout position and media object, is very hard to
predict. Thus, schemes using strict assumptions about access patterns may be optimized for a certain sequence
of I/O operations, but may fail if there are only small differences according to the assumptions. Additionally, the
probability of reading a whole file continuously (as one long I/O operation) is very small, i.e., a pure continuous
block allocation will give large seeks over whole files for each access t to a different file. What’s important is to
have as small seeks as possible per operation, i.e., data retrieved as one operation should be stored continuously or
at least close. This favors techniques like extent-based (or cylinder based) placement2, e.g., one extent per typical
I/O operation. How large each extent should be and where each extent is placed on disk is another issue. For
example, in a variable bit rate (VBR) scenario, conventional fixed-sized clusters correspond to varying amounts
of time, depending on the achieved compression [5]. Alternatively, the system can store data in clusters that
correspond to a fixed amount of time, with a variable cluster size, to better support round based retrieval. Constant
retrieval time of each constant time, variable sized segment can for example be achieved using the different zones
on a disk, e.g., like NCTT [51]. Additionally, compressed data might not correspond to an even number of disk
sectors, which introduces the problem of packing data [34].

4.2 Journaling
Journaling provides fast crash recovery by maintaining a journal of write operations [18, 43, 100, 103]. All write
operations are logged in such journals in the order in which they were performed. In case of a system reboot after
a crash, all write operations that are reported in the journal are validated, the ones that are missing are invalidated,
which leaves the file system in a consistent state. The amount of logging data for one write operation is independent
of the number of blocks written in the operation, so the overhead for writing large amounts of data at once is much
lower than that for frequent small writes. Usually, logging information is kept in memory until a block-size amount
has been collected, and then flushed to disk. Thus, because writing of the journal and writing the actual data is
interleaved, and keeping the journal on the same disk increases the seek time. Writing the journal to a separate
disk maintains the write performance of an equivalent unjournalized file system. Although this variation increases
the failure probability of the entire system by adding a dependency on another disk, a regular file system check is
still possible in this case. Due to the faster file system checking after crashes and the low overhead for large files,
journaling is a feature that is also found in multimedia file systems.

Journaling applies to a general requirement of service availability as it reduces restart times. Which type of
journals that is best suited depends how it places the journal information as it should preferably not affect the
performance of the application I/O operations.

4.3 Multiple Disks Issues
The bandwidth capacity of a single disk would also strongly limit the number of concurrent users in a multimedia
scenario. One approach approach to overcome the bandwidth bottleneck is to scatter different segments of a file
across multiple disks using some kind of data striping or data interleaving [30, 33]. Another approach is to use
replication to distribute several copies of a file to different disks.

4.3.1 Striping and Interleaving

For many years, striping [59, 74] (also called wide or full striping) has been the primary technique when reading
multimedia data from disks where data blocks are spread over all devices in the storage system and all devices
are accessed in parallel during an I/O operation increasing the effective transfer rate. The redundant arrays of

2Or in some cases, even a random placement with a large block size might be sufficient.



Research Report No. 307 7

inexpensive disks (RAID) technology [20,74] has addressed both performance and reliability issues. The streaming
RAID [109] uses a grouping approach where where stripes are grouped in consecutive segments to achieve good
performance. Furthermore, in the case of multimedia server environments, block-interleaved schemes like RAID-5
are more cost effective compared to bit-interleaved schemes like RAID-3 [71].

However, disk performance has improved considerably, and new compression algorithms for multimedia data
have to some extent reduced bandwidth requirements3. Therefore, several refinements to the simple striping
scheme have been proposed, which serve a request without necessarily involving all disks in the array. Data
interleaving [33] (also called compound striping [25]) is a technique where the media files are stored across a set
of disks, and the simplest form store each successive block is on successive disks in a round-robin manner. Other
approaches to interleaving are staggered striping [6], where data is striped over possible overlapping disk groups,
and scalable stream pumping [117], where all data blocks are stored on successive disks and successive zones.

Two important parameters when implementing a disk array for a multimedia storage server are the stripe
unit size and the degree of striping for optimal resource utilization. In [110], experiments using a fixed- and
variable-sized block placement policy are performed to determine optimal stripe unit size. To achieve maximum
utilization, [94] proposes a scheme where the array is partitioned and data is striped across single-disk partitions.
Results presented in [35] suggest similar policies, because one-disk stripe groups have better performance with
respect to throughput and wasted bandwidth. Thus, using small stripes (as long as playout rate can be serviced)
is more efficient with respect to total storage system I/O bandwidth, because only one or a few disks have to pay
the overhead of moving the disk head for a particular request and concurrent requests can therefore be served in
parallel.

4.3.2 Replication

A performance increase of the servers themselves beyond single file retrieval optimization can be achieved by
replication, i.e., to guarantee availability and to overcome limits in the number of concurrent accesses to individual
titles. Several schemes are proposed:

• Static: Content files are duplicated explicitly, by storing the file on multiple machines and providing the
user with a choice of access points. This is frequently done in the Internet today. Automatic replication of
the relatively small and frequently accessed read-only system files for load balancing among file servers has
been proposed in [85], and a static placement policy that uses estimated load information for the placement of
video objects is proposed in [25]. This static placement policy is complementary to the proposed replication,
as it reduces, but cannot eliminate, dynamic imbalances.

• Dynamic segment: Read-only, equally-sized segment of a movie can be dynamically replicated according
to the number prespecified threshold for the number of concurrent read requests [23].

• Threshold-based dynamic: Whole continuous media files are replicated, and all disks of the system and
the probability of new requests is taken into account to determine whether a movie should be replicated or
a replica should be deleted [57]. A number of variations is proposed, e.g., injected sequential, piggybacked
sequential, injected parallel, piggybacked parallel and piggybacked and injected parallel replication.

• Partial: This is based on the observation that if there were a number of consecutive requests for the same
video, and if the blocks read in by the first request were copied to another disk, it would be possible to
switch the following requests to the partial replica just created [25]. This technique was introduced for load
balancing in multimedia systems.

• Random: Replicas are created and deleted randomly, and in its basic application, differences in access
frequency to the different files is not taken into account. This policy has for a long time been viewed upon
as inappropriate, but as user behavior is hard to predict several studies have tried random placement and
replication, e.g., [8, 54, 83].

Replication address requirements like availability and latency, and can be an important means to increase perform-
ance if used appropriately. As more copies of a data element exists on several devices, the systems is more reliable
to failures, and long waiting times for an overloaded device can be avoided by accessing another replica. Which
mechanism to chose might depend on several factors like frequency of popularity shift, size of files or objects,
etc. Thus, the applied replication mechanism should take these parameters into account, because it is expensive to
replicate and copy multimedia data elements.

3At least compared to older video steams with the same quality. Though, the number of streams have increased making the total bandwidth
requirement higher.



8 Research Report No. 307

4.3.3 Load Balancing

Using data interleaving where only a few disks are accessed for each I/O operation may cause load imbalance as
all concurrent requests may come to the same group of disks where others are left unused. Replication (described
above) is one way to deal with load imbalance resulting in low overall performance and high latencies, but several
other approaches are proposed. For example, the problem assigning media streams to disks to achieve a balanced
disk array load is addressed in [25, 94, 114]. To determine imbalance across partitions, [94] presents a model to
determine which partition sizes that best utilize the resources. The DASD dancing load balancing policy [114,115]
determines if the most frequently accessed files can be played out from memory, how to best assign and replicate
them to striped disk groups, and to shift existing streams to another replica stored on another disk group if a disk
group becomes overloaded. The generalized staggered distributed data layout (G-SDCL) data layout policy [14]
tries to avoid hot spots in the disk array (or in the pool of storage nodes) supporting arbitrary playout modes in
various speeds. Data is interleaved using round-robin, but for each round, the cyclic layout is staggered, i.e.,
the first data segment in each round is not stored on the same disk. The prime round-robin (PRR) placement
scheme [56] is similar to G-SDCL, and both these schemes try to avoid load imbalance by introducing a rounding
distance based on a (prime) number to distribute disk accesses evenly at any retrieval speed.

5 Buffer Management
In multimedia applications, due to the high data consumption rate data is often replaced before it might be re-
used [12]. Thus, using a complex, computational expensive caching or page replacement algorithm might be
wasted, and a traditional algorithm as described in [28, 104] might be applied. Nevertheless, in some multimedia
applications where data often might be reused, proper replacement algorithms may increase performance, i.e., in-
creasing system throughput and latency of new requests, and in multimedia scenarios, we classify the algorithms
into two classes:

• Block-based: block-based caching and replacement algorithms is usually implemented in todays systems
using a variant of least recently used (LRU), where each block is evaluated independently when a block is
to be replaced. In the context of multimedia systems, algorithms like least/most relevant for presentation
(L/MRP) [66] are proposed where parameters like presentation mode and presentation point are considered.
Other variations of L/MRP include Q-L/MRP [44] and MPEG-L/MRP [9].

• Stream-based: this policy tries to minimize disk accesses based on the observation that if there were a num-
ber of consecutive requests for the same video they would issue the same requests in a short period of time.
Caching is then performed by keeping data for a stream which follows temporarily close to another stream
of the same object in memory. Some examples are the (generalized) interval caching [24, 25], distance [70]
and SHR [50].

Even though data might be replaced before it can be reused due to high data rates, one should try to gain benefit
from caching in order to reduce disk operations. On the server side, a complex, block-based algorithm will often
be too CPU intensive [44], but stream-oriented algorithms making cache decisions based on the distance between
clients might be appropriate. Additionally, as the number of heterogeneous devices with different capabilities
increases, support for strided access as a generalization of the stream-oriented approach can be an interesting
research direction. This is for example useful in systems having multi-protocol support and scalable content, e.g.,
layer dropping in Priority Progress Streaming [55], .

Another aspect of buffer management is when data is retrieved form the storage devices. Usually, demand
paging will be inappropriate in high data rate, low latency applications like multimedia streaming systems. There-
fore, prefetching data from disk to memory is better suited to support continuous play-back of time-dependent
data types. Prefetching is a mechanism to preload data from slow, high-latency storage devices such as disks to
fast, low-latency storage like main memory. This reduces the response time of a data read request dramatically
and increases the disk I/O bandwidth as more data is usually retrieved in one operation. Obviously, knowledge
(or estimations) about application behavior might be used for both replacement and prefetching, and many of the
existing file systems optimize disk accesses by using a read-ahead mechanism if sequential reads are performed.
In the case of multimedia presentations, a prefetching mechanism can very often take advantage of the sequential
access pattern and several mechanisms are proposed. For example, L/MRP [66] calculates the relevance values
to maximum (one) for a given interval in front of the current playout position, and all data units which have a
relevance value of one are prefetched into memory. A similar read-ahead mechanism is presented in [2] retrieving



Research Report No. 307 9

data before it is requested if the system determines that the accesses are sequential. In [106], assuming a linear
playout of the continuous data stream, the data needed in the next period (determined by a trade-off between the
maximum concurrent streams and the initial delay) is prefetched into a shared buffer. Additionally, models for
preloading data according to the loading and consuming rate and the available amount of buffers are described
in [77,120]. How to prefetch data in a multimedia scenario, is of course again dependent of access patterns. Thus,
a simple read-ahead-like mechanism can often be sufficient in a pure playout application like NoD, VoD, or LoD.
The amount of data data to prefetch should be a trade-off between data rate, retrieval rate and available buffers.

6 File System Meta-Data Structures
File systems use a data structure to hold meta-data, like file name, size, owner, permissions, etc., and data pointers
to storage blocks for a file. Traditionally, UNIX-like systems have used i-nodes (having direct, indirect, double
indirect, and triple indirect block pointers) and Windows systems used FAT (having an uni-directional linked
list) [104]. However, these systems need many meta-data structure lookups when reading a file, i.e., one per block.
Systems supporting extent-based allocation have also modified the metadata structure. Instead of having a pointer
to each block, the meta-data structure points to the extent, e.g., having a pointer to the first block and a counter
holding the length of the extent [43] like in XFS [118] and Minorca [113]. In Windows NTFS [100], the master
file table has a record for each file where block runs are defined in the same way as extents, i.e., a start address
and the number of adjacent blocks. These meta-data structures reduce the number of lookups, the chains of data
structures to track allocated blocks, and reduce the size of the file system meta-data. In other words, the request
latency and the required number of disk operations reading meta-data are reduced.

Additionally, a many file systems provide space for meta-data for file specific tasks. The following three
approaches to an implementation and use of this meta-data can be found:

• Application meta data: application-relevant-only information which comprises typically information about
the type of format, data rates, extended access rights, or information relevant for copyright questions. While
multimedia file systems have implemented this for themselves, some standard file systems support this as
well [4, 100].

• Operational meta data: meta-data to change the way in which API calls, and standard API calls in partic-
ular, are processed. It is similar to application meta data, but kernel modules interpret the meta-data as well
and behave in a desired fashion. In Symphony [91], data type information is used to select an appropriate
module, which among other things change the interpretation of block sizes. Tiger Shark [46] retrieves the
default data rate of a file from its meta data and uses this information for data prefetching.

• Integral meta data: information integrated into the structures of the file system itself, i.e., the equivalent of
the Unix VFS inode and block structures. Since timeliness of data access is the main concern of multimedia
file systems, using these structures to provide application with a straight-forward access to temporal units
according to its understanding is typical for this approach [76, 91]. Furthermore, the Video File Server [76]
stores information for the synchronization of sub-streams in integral structures.

7 Putting It All Together
As one can see from the above section, a lot of work exists in the area of multimedia storage systems, and differ-
ent solutions have been proposed for various workloads and applications. Many of the techniques presented have
been developed independently, but the overall performance of a storage system can only be evaluated when the
appropriate set of techniques is integrated into a complete storage system. We consider the integration of these
techniques, to increase performance and flexibility for a mixed interactive workload, the main future research chal-
lenge. Storage systems that integrate several subcomponents have been developed in the past. The term chosen for
such integrated systems has been inconsistent (e.g., file system, file server, storage server), but applications access
all of these systems through file system abstractions. The file systems that are used for multimedia applications
can be divided into three groups:

• General file systems such as FAT [100], NTFS [100], Ext2 [15, 97], and FFS [64] are not designed for a
specific application area, but are meant to support all applications. Since this generality comprises multime-
dia applications, the performance of general file systems provides a benchmark for specific multimedia file
systems.



10 Research Report No. 307

• Multimedia file systems try to address the requirements described in Section 2. Examples for such file sys-
tems are the Video File Server [76], Shark [45], Everest [37], CMFS [61], Fellini [62], Symphony [91], Tiger
Shark [46], Minorca [113], ERTFS [48], PMFS [73], and MiPFS [17]. The main distinguishing factor of
multimedia applications is thus that they have soft real-time constraints. In the design of many file systems,
this demand has been addressed by focusing on scheduling. Systems have been designed exclusively for
streaming [37,45,46,48,61,76], for a combination with a second non real-time class to accommodate mixed
workloads [17, 62], and for serving several application classes [60, 91].

• High performance file systems such as GPFS [86], CXFS [98], Frangipani [107], GFS [75], PPFS [47],
Exemplar [10], and ELFS [52] are primarily designed for applications that require reading and writing of
large amounts of data in a very short time. Typical examples are experiments in physics and large scale sim-
ulations. In contrast to multimedia file systems, timeliness needs not be guaranteed, but overall performance
must be maximized. Newly developed high performance file systems concentrate on this task, while high
performance file systems that are derived from multimedia file systems [86,98] have gained scalability while
continuing to support resource reservation. However, because of their high performance for large amounts
of data, even those newly developed file systems can be used for multimedia applications and compete with
multimedia file systems.

As multimedia applications become more interactive and include write operations, we should consider high per-
formance file system features. For example, matrix operations is a feature that is not frequently required in mul-
timedia applications. However, it will be useful there and important in I/O intensive access pattern found in high
performance applications. It leads to strided reading and writing or other non-contiguous reading and writing that
follows well-known patterns. Many high performance file systems support this ability by providing a separate
API [52], or also by detection of patterns [10, 86, 98].

A comprehensive approach to modernize multimedia file systems is also supported by Shenoy’s analysis of
new requirements, which include the need for integrated file systems that support a variety of applications [90].
Furthermore, he considers server-independent, self-healing, self-managing networked file systems a new goal, and
predicts that more functions will be off-loaded to processors on the disk. Although storage area network (SAN)
and network attached storage (NAS) products are already claiming such abilities, Haskin has pointed to limitations
in current systems that led to the integrated approach followed by GPFS [86].

Some previous work focuses on one single part of the storage system only, and one large challenge is therefore
to integrate suitable subcomponents into one “optimal” system for a particular workload. Typically, the newer of
these storage systems address a larger breadth of workloads and take more subcomponents into account, whereas
the older ones are more restricted. The integration of different mechanisms is, however, not a trivial task, because,
as mentioned earlier, the decisions made for each subcomponent are often dependent on the expected access pat-
terns, but one must also consider the properties of the mechanisms chosen for the other components. Thus, one
must also make all the appropriate choices for each component or mechanism work well together. For example,
the data placement on disk and disk scheduling are tightly coupled as the disk arm movement is dependent on
where each data block is located on the platter. As many scheduling algorithms give shortest access time to data
blocks near the center of the disk, e.g., (skewed) organ pipe placement, the most popular data could be placed ac-
cording to this property of the scheduling algorithms. On the other hand, if one also applies a buffer management
algorithm that tries to keep the most frequently accessed data in memory, e.g., generalized interval caching [25],
L/MRP [66] etc., such a data placement strategy will in many cases be wasted, as the requested data probably
resides in memory, and the disk is not accessed. Furthermore, such block reorganizations according to popularity
is expensive and should be minimized in many cases. However, dynamic block reorganizations can still be useful.
For example, scalability can be increased by dynamic reorganization at block granularity spanning several disks
combined with replication. Overload of a single disk by frequent access to individual blocks can be prevented, and
in future interactive applications that include write operations, the problem of partial file locking can be reduced.

Even though some mechanisms have contradicting properties, several mechanisms can be combined in sev-
eral ways to give good storage system performance. One interesting example in our context would be to use a
hierarchical mixed media scheduler where different service classes can be supported, work-conservation removes
device idle time, and disk efficiency is improved sorting all the requests in a round according to the placement on
the platters. As video or audio streams can benefit greatly from sequential prefetching (read-ahead), some kind
of adjacent block placement should be used to minimize intra-request seeks. A pure continuous placement results
in large “file-sized” seeks as several files are retrieved in parallel, i.e., a type of extent-based placement could be
appropriate where the extent size should be large enough to avoid intra-request seeks, but small enough to allow
efficient inter-file seeks.



Research Report No. 307 11

If possible, one should additionally try to gain benefit from caching. However, the data rates in multimedia
scenarios are high, and the benefits might be small as data might be replaced before it can be reused. A complex,
block-based, CPU intensive algorithm like L/MRP should therefore not be used in a server, but stream-oriented
algorithms making cache decisions based on the distance between clients might be appropriate.

With respect to index structures, the number of accesses to find the address of the requested data blocks can
be reduced using some kind of “extent info” holding pointers to several continuous blocks in one entry in the
structure, e.g., location of first block in the extent and a length of the extent [103, 113]. Very application-specific
index structures [76], on the other hand, are hard to adapt to new application requirements and should be avoided
for future integrated file systems.

To specify multimedia specific information to the file system, applications access the storage system through
the system call interface to the operating system. This can be solved either by using an entirely proprietary API [45,
61, 62, 73, 76] or by extending the operating system’s standard file system API [46, 86, 91, 98, 103, 113]. However,
experience shows that multimedia file systems can be most easily commoditized when they use (extended) standard
APIs as most applications is implemented on commodity operating systems, and thus simplify the extension of
existing applications.

In the case of a multimedia server, multiple disks usually have to be used to store all data, increase reliability
and fault tolerance, and increase performance. The disks today have each sufficient data rates to support a number
of streams, i.e., striping units should be made as small as possible (as long as playout rates are achieved) due to
overall disk bandwidth utilization. Thus, full striping is no longer needed to achieve high enough bandwidths, but
can be used like staggered striping (together with replication) to distribute the workload on several devices.

8 Summary and Research Directions
Time-dependent multimedia data types, like audio and video, will be a natural part of future applications and in-
tegrated together with time-independent data types, like text, graphics, and images. Commodity operating systems
were originally designed for best-effort applications, and their storage systems do not presently support all the
requirements of multimedia systems. This paper gives a short overview over multimedia related storage system
research. Proposed approaches to increase multimedia support include work in:

• Disk scheduling algorithms sorting requests by considering overall performance (efficiency), time depend-
ent data (deadlines) and several service classes.

• Data placement policies using proper placement of data elements on the storage devices to improved per-
formance. Issues here include block allocation, various striping techniques, replication and load balancing.

• Buffer management trying to use the characteristic access patterns to perform efficient replacement, cach-
ing and prefetching.

• Meta data management where additional multimedia specific information is added, and the data block index
structure is changed to reduce the number of index structure look-ups when reading the file.

• File systems often integrating some of the mechanisms above, but also extending the API for multimedia
specific operations.

It is not clear how future systems will support multimedia applications in a better way, but an emerging trend
is to have systems supporting multiple application classes with heterogeneous performance requirements rather
than pure multimedia systems. One might add such support in a middleware layer at the cost of some run-time
overhead and reduced application isolation [93]. Experiments in [92] also show that an integrated server in most
cases performs better compared to using an integration layer on a partitioned server. In such a file system, the
implementation process will be more complex, but such an integrated system will be easier to administrate and
ease the integration of new service classes.

As the number of application classes increase, we believe that a storage system must be able to manage various
different loads and heterogeneous requirements. To be able to fully support different service classes, all compon-
ents must have appropriate designs and implementations. Thus, research in the area of storage systems should
focus on systems that can automatically and without user intervention adapt to particular workloads by adapting
the data layout, the scheduling strategy and buffer management approaches. Finally, a large amount of existing
work propose different mechanisms and policies, and work remain to be performed in the integration of suitable
mechanisms and see closer how they perform together.



12 Research Report No. 307

References
[1] S. Akyurek and K. Salem. Adaptive block rearrangement. ACM Transactions on Computer Systems (TOCS),

13(2):89–121, May 1995.

[2] D.C. Anderson, J.S. Chase, S. Gadde, A.J. Gallatin, K.G. Yocum, and M.J. Feeley. Cheating the i/o bottle-
neck: Network storage with trapeze/myrinet. In USENIX Annual Technical Conference, New Orleans, LA,
USA, June 1998.

[3] R. Anderson, Y. Osawa, and R. Govindan. A file system for continuous media. ACM Transactions on
Computer Systems, 10(4):311–337, 1992.

[4] Apple Computer Inc. HFS Plus Volume Format, February 2000. Technical Note TN1150.

[5] T.C. Bell, A. Moffat, I.H. Witten, and J. Zobel. The mg retrieval system: Compressing for space and speed.
Communications of the ACM, 38(4):41–42, April 1995.

[6] Steven Berson, Shahram Ghandeharizadeh, Richard R. Muntz, and Xiangyu Ju. Staggered striping in mul-
timedia information systems. In ACM Int. Conf. on Management of Data (SIGMOD’94), pages 70–90,
Minneapolis, MN, USA, May 1994.

[7] Yitzhak Birk. Track-pairing: A novel data layout for vod servers with multi-zone-recording disks. In
Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS), pages 248–
255, Washington, D.C., USA, May 1995.

[8] Yitzhak Birk. Random raids with selective exploitation of redundancy for high performance video servers.
In Proceedings of the International Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV), pages 13–23, St. Louis, MO, USA, May 1997.

[9] Susanne Boll, Christian Heinlein, Wolfgang Klas, and Jochen Wandel. Mpeg-l/mrp: Adaptive streaming of
mpeg videos for interactive internet. In Proceedings of the International Workshop on Multimedia Inform-
ation Systems (MIS), pages 104–113, Chicago, IL, USA, October 2000.

[10] Rajesh Bordawekar, Steven Landherr, Don Capps, and Mark Davis. Experimental evaluation of the hewlett-
packard exemplar file system. ACM Performance Evaluation Review, 25(3):21–28, December 1997.

[11] P. Bosch and S.J. Mullender. Real-time disk scheduling in a mixed-media file system. In 6th IEEE Real
Time Technology and Applications Symposium (RTAS 2000), pages 23–33, Washington D.C., USA, May
2000.

[12] Milind M. Buddhikot. Project MARS: Scalable, High Performance, Web Based Multimedia-on-Demand
(MOD) Services and Servers. PhD thesis, Department of Computer Science, Washington University, St.
Louis, MO, USA, August 1998.

[13] Milind M. Buddhikot, Xin Jane Chen, Dakang Wu, and Guru M. Parulkar. Enhancements to 4.4bsd unix
for efficient networked multimedia in project mars. In Proceedings of the International Conference on
Multimedia Computing and Systems (ICMCS), pages 326–337, Austin, TX, USA, June 1998.

[14] Milind M. Buddhikot and Gurudatta M. Parulkar. Efficient data layout, scheduling amd playout control in
MARS. ACM/Springer Multimedia Systems, 5(3):199–212, 1997.

[15] R. Card, T. Ts’o, and S. Tweedie. Design and implementation of the second extended filesystem. In 1st
Dutch Int. Symp. on Linux, 1994.

[16] M.J. Carey, R. Jauhari, and M. Livny. Priority in dbms resource scheduling. In Proceedings of the In-
ternetional Conference on Very Large Databases (VLDB), pages 397–410, Amsterdam, The Netherlands,
1989.

[17] Jesus Carretero, Weiyu Zhu, Xiaohui Shen, and Alok Choudhary. MiPFS: Multimedia integrated parallel
file system. Technical Report CPDC-TR-9810-021, Center for Parallel and Distributed Computing, North-
western University, 1998.



Research Report No. 307 13

[18] Albert Chang, Mark F. Mergen, Robert K. Rader, Jeffrey A. Roberts, and Scott L. Porter. Evolution of
storage facilities in AIX version 3 for RISC system/6000 processors. IBM Journal of Research and Devel-
opment, 34(1):105–110, 1990.

[19] E. Chang and H. Garcia-Molina. Bubbleup: Low latency fast-scan for media servers. In Proceedings of the
ACM International Multimedia Conference (ACM MM), Seattle, WA, USA, November 1997.

[20] P.M. Chen, E.K. Lee, G.A. Gibson, Randy H. Katz, and «««< all.bib D.A. Patterson. Raid: High-
performance, reliable secondary storage. ACM Computing Surveys, 26(2):145–185, June 1994.

[21] Intel Corporation. Microprocessor quick reference guide. http://www.intel.com/pressroom/kits/-
quickrefyr.htm.

[22] S.J. Daigle and J.K. Strosnider. Disk scheduling for multimedia data streams. In Conf. on High-Speed
Networking and Multimedia Computing, pages 212–223, San Jose, CA, USA, February 1994.

[23] Asit Dan, Martin Kienzle, and Dinkar Sitaram. A dynamic policy of segment replication for load-balancing
in video-on-demand servers. ACM/Springer Multimedia Systems, 3(3):93–103, 1995.

[24] Asit Dan and Dinkar Sitaram. A generalized interval caching policy for mixed interactive and long video
workloads. Technical Report RC 20206 (89404), IBM Research Division, September 1995.

[25] Asit Dan and Dinkar Sitaram. An online video placement policy based on the bandwidth to space ratio (bsr).
In ACM SIGMOD Int. Conf. on Management of Data, pages 376–385, San Jose, CA, USA, May 1995.

[26] Ali E. Dashti, Seon Ho Kim, Cyrus Shahabi, and Roger Zimmermann. Streaming Media Server Design.
Prentice Hall, 2003. ISBN 013067038-3.

[27] P.J. Denning. Effects of scheduling on file memory operations. In AFIPS Spring Joint Computer Conference,
pages 9–21, April 1967.

[28] Wolfgang Effelsberg and T. Härder. Principles of database buffer management. ACM Transactions on
Database Systems, 9(4):560–595, December 1984.

[29] Wu-Chi Feng, Jin Choi, Wu chang Feng, and Jonathan Walpole. Under the plastic: A quantitative look at
dvd video encoding and its impact on video modeling.

[30] A. Garcia-Martinez, J. Fernadez-Conde, and Á. Viña. Efficient memory management in vod servers. Com-
puter Communications Journal, 23(3):253–266, February 2000.

[31] R. Geist and S. Daniel. A continuum of disk scheduling algorithms. ACM Transactions on Computer
Systems, 5(1):77–92, 1987.

[32] R. Geist, D. Suggs, R. Reynolds, S. Divatia, F. Harris, E. Foster, and P. Kolte. Disk performance enhance-
ment through markov-based cylinder remapping. In 30th ACM Annual Southeast Regional Conf., pages
23–28, Raleigh, NC, USA, 1992.

[33] D. James Gemmell, Harrick M. Vin, Dilip D. Kandlur, P. Venkat Rangan, and Larry A. Rowe. Multimedia
storage servers: A tutorial. IEEE Computer, 28(5):40–49, 1995.

[34] J. Gemmell and Stavros Christodoulakis. Principles of delay-sensitive multimedia data storage retrieval.
ACM Transactions on Information Systems, 10(1):51–90, January 1992.

[35] Shahram Ghandeharizadeh and Seon Ho Kim. Striping in multi-disk video servers. In SPIE High-Density
Data Recording and Retrieval Technologies Conference. October 1995.

[36] Shahram Ghandeharizadeh, Seon Ho Kim, and Cyrus Shahabi. On configuring a single disk continuous
media server. In Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), pages 37–46, Ottawa, Ontario, Canada, 1995.

[37] Shahram Ghandeharizadeh, Roger Zimmermann, Weifeng Shi, Reza Rejaie, Doug Ierardi, and Ta-Wei Li.
Mitra: A scalable continuous media server. Kluwer Multimedia Tools and Applications, 5(1):79–108, 1997.



14 Research Report No. 307

[38] G.A. Gibson, J.S. Vitter, and John Wilkes. Strategic directions in storage i/o issues in large-scale computing.
ACM Computing Surveys (CSUR), 28(4):779–793, December 1996.

[39] K. Gopalan. Real-time disk scheduling using deadline sensitive scan. Technical Report TR-92, Experimental
Computer Systems Labs, Dept. of Computer Science, State University of New York, Stony Brook, 2001.

[40] D.D. Grossman and Silverman H.F. Placement of records on a secondary storage device to minimize access
time. Journal of the ACM (JACM), 20(3):429–438, July 1973.

[41] The PC Technology Guide. Components - processors. http://www.pctechguide.com/02procs.htm.

[42] The PC Technology Guide. Storage - hard disks. http://www.pctechguide.com/04disks.htm.

[43] W.v. Hagen. Linux Filesystems. Sams publishing, 2002.

[44] Pål Halvorsen, Vera Goebel, and Thomas Plagemann. Q-l/mrp: A buffer management mechanism for qos
support in a multimedia dbms. In Proceedings of the IEEE International Workshop on Multimedia Database
Management Systems (IW-MMDBMS), pages 162–171, Dayton, OH, USA, August 1998.

[45] Roger Haskin. The shark continuous media file server. In Proceedings of the Computer Society International
Conference (COMPCON), pages 12–17, San Francisco, CA, USA, February 1993. IEEE Press.

[46] Roger Haskin. Tiger Shark — A scalable file system for multimedia. IBM Journal of Research and Devel-
opment, 42(2):185–197, 1998.

[47] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S. Blumenthal. PPFS: A
high performance portable paralle file system. In Proceedings of the ACM Conference on Supercomputing,
pages 385–394, Barcelona, Spain, July 1995.

[48] EBSnet Inc. ERTFS Pro 4.4: File system software for embedded applications. http://www.etcbin.com/-
ertfs.htm, May 2003.

[49] D.M. Jacobson and John Wilkes. Disk scheduling algorithms based on rotational position. Technical Report
HPL-CSP-91-7, Hewlett Packard Labs, CA, USA, February 1991.

[50] M. Kamath, K. Ramamritham, and Don Towsley. Continuous media sharing in multimedia database sys-
tems. In 4th Int. Conf. on Database Systems for Advanced Applications (DASFAA’95), pages 79–86, Singa-
pore, April 1995.

[51] J. Kang and H.Y. Yeom. Placement of vbr video data on mzr disks. In Proceedings of the International
Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV), Baskin
Ridge, NJ, USA, June 1999.

[52] John F. Karpovich, Andrew S. Grimshaw, and James C. French. Extensible file systems (ELFS): An object-
oriented approach to high performance I/O. In Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages and Applications, pages 191–204, Portland, OR, USA, October 1994.

[53] Deepak R. Kenchammana-Hosekote and Jaideep Srivastava. I/o scheduling for digital continuous media.
ACM/Springer Multimedia Systems, 5(4):213–237, 1997.

[54] Jan Korst. Random duplicated assignment: an alternative to striping in video servers. In Proceedings of the
ACM International Multimedia Conference (ACM MM), pages 219–226, Seattle, WA, USA, 1997.

[55] Buck Krasic and Jonathan Walpole. Priority-progress streaming for quality-adaptive multimedia. In Pro-
ceedings of the ACM Multimedia Doctoral Symposium, Ottawa, Canada, October 2001.

[56] Taeck-Geun Kwon, Yanghee Choi, and Sukho Lee. Disk placement for arbitrary-rate playback in an inter-
active video server. ACM/Springer Multimedia Systems, 5(4):271–281, 1997.

[57] P.W.K. Lie, J.C.S. Lui, and L. Golubchik. Threshold-based dynamic replication in large-scale video-on-
demand systems. In Int. Workshop on Research Issues in Data Engineering (RIDE), pages 52–59, Orlando,
FL, USA, February 1998.



Research Report No. 307 15

[58] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in hard-real-time environment.
Journal of the ACM, 20(1):47–61, 1973.

[59] M. Livny, S. Khoshafian, and H. Boran. Multi-disk management algorithms. In Proceedings of the ACM
International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pages 69–
77, Banff, Alberta, Canada, May 1997.

[60] Ketil Lund. Adaptive Disk Scheduling for Multimedia Database Systems. PhD thesis, University of Oslo,
Norway, February 2003. (ongoing).

[61] Dwight J. Makaroff, Gerald W. Neufeld, and Norman C. Hutchinson. Design and implementation of a VBR
continuous media file server. Software Engineering, 27(1):13–28, 2001.

[62] Cliff Martin, P.S. Narayanan, Banu Özden, Rajeev Rastogi, and Avi Silberschatz. Multimedia Informa-
tion Storage and Management, S.M. Chung (Ed.), chapter The Fellini Multimedia Storage Server. Kluwer
Academic Publishers, 1996.

[63] Marshall K. McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman. The Design and Imple-
mentation of the 4.4 BSD Operating System. Addison Wesley, 1996.

[64] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A fast file system for unix.
Computer Systems, 2(3):181–197, 1984.

[65] A.G. Merten. Some quantitative techniques for file organization. Technical Report 15, University of Wis-
consin Computing Center, Wisconsin, USA, 1970.

[66] Frank Moser, Achim Kraiss, and Wolfgang Klas. L/mrp: A buffer management strategy for interactive
continuous data flows in a multimedia dbms. In Proceedings of the Internetional Conference on Very Large
Databases (VLDB), pages 275–286, Zurich, Switzerland, 1995.

[67] MPEG.org. Dvd technical notes - bitstream breakdown. http://mpeg.org/MPEG/DVD, March 2003.

[68] Klara Nahrstedt and Ralf Steinmetz. Resource management in multimedia networked systems. IEEE Com-
puter, 28(5):52–63, 1995.

[69] Gerald W. Neufeld, Dwight Makaroff, and Norman C. Hutchinson. Design of a variable bit rate continuous
media file server for an atm network. In Proceedings of IS&T/SPIE Conference on Multimedia Computing
and Networking (MMCN), pages 370–380, San Jose, CA, USA, January 1996.

[70] Banu Özden, Rajeev Rastogi, and Avi Silberschatz. Buffer replacement algorithms for multimedia storage
systems. In Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS),
pages 172–180, Hiroshima, Japan, June 1996.

[71] Banu Özden, Rajeev Rastogi, and Avi Silberschatz. Disk striping in video server environments. In Pro-
ceedings of the International Conference on Multimedia Computing and Systems (ICMCS), pages 580–589,
Hiroshima, Japan, June 1996.

[72] Huanxu Pan, Lek Heng Ngoh, and Aurel A. Lazar. A buffer-inventory-based dynamic scheduling algorithm
for multimedia-on-demand servers. ACM/Springer Multimedia Systems, 6(2):125–136, 1998.

[73] Seung-Ho Park, Si-Yong Park, Gwang Moon Kim, and Ki Dong Chung. Design and implementation of the
parallel multimedia file system based on message distribution. In Proceedings of the ACM International
Multimedia Conference (ACM MM), pages 422–425, Marina del Rey, CA, USA, 2000.

[74] D.A. Patterson, G. Gibson, and Randy H. Katz. A case for redundant arrays of inexpensive disks (raid). In
ACM Conf. on Management of Data (SIGMOD), pages 109–116, Chicago, IL, USA, June 1998.

[75] Kenneth W. Preslan, Andrew P. Barry, Jonathan Brassow, Russell Cattelan, Adam Manthei, Erling Nygaard,
Seth Van Oort, David Teigland, Mike Tilstra, Matthew O’Keefe, Grant Erickson, and Manish Agarwal.
Implementing journaling in a linux shared disk file system. In IEEE/NASA Symposium on Mass Storage
Systems, pages 351–378, March 2000.



16 Research Report No. 307

[76] P. Venkat Rangan and Harrick M. Vin. Designing file systems for digital video and audio. In Proceedings
of the ACM Symposium of Operating Systems Principles (SOSP), pages 81–94, Pacific Grove, CA, USA,
1991.

[77] P. Venkat Rangan and Harrick M. Vin. Efficient storage techniques for digital continuous multimedia. IEEE
Transactions on Knowledge and Data Engineering, 5(4):564–573, August 1993.

[78] A.L. Narasimha Reddy and James C. Wyllie. Disk scheduling in a multimedia i/o system. In Proceedings
of the ACM International Multimedia Conference (ACM MM), pages 225–233, Anaheim, CA, USA, August
1993.

[79] A.L. Narasimha Reddy and James C. Wyllie. I/o issues in a multimedia system. IEEE Computer, 27(3):69–
74, 1994.

[80] Y. Rompogiannakis, Guido Nerjes, Peter Muth, Michael Paterakis, Peter Triantafillou, and Gerhard Weikum.
Disk scheduling for mixed-media workloads in a multimedia server. In Proceedings of the ACM Interna-
tional Multimedia Conference (ACM MM), pages 297–302, Bristol, UK, September 1998.

[81] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file system.
ACM Transactions on Computer Systems, 10(1):26–52, 1992.

[82] C. Ruemmler and John Wilkes. Disk shuffling. Technical Report HPL-91-156, HP Labs, October 1991.

[83] Jose Renato Santos and Richard R. Muntz. Performance analysis of the rio multimedia storage system with
heterogeneous disk configurations. In Proceedings of the ACM International Multimedia Conference (ACM
MM), pages 303–308, Bristol, UK, September 1998.

[84] Jose Renato Santos, Richard R. Muntz, and A. Ribeiro-Neto Berthier. Comparing random data allocation
and data striping in multimedia servers. In Proceedings of the ACM International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS), pages 44–55, Santa Clara, CA, USA, 2000.

[85] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siegel, and David C.
Steere. CODA: A highly available file system for a distributed workstation environment. IEEE Transactions
on Computers, 39(4):441–459, April 1990.

[86] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk file system for large computing clusters. In
Proceedings of the First Conference on File and Storage Technologies (FAST), January 2002.

[87] Henning Schulzrinne. Operating system issues for continuous media. ACM/Springer Multimedia Systems,
4(5):269–280, 1996.

[88] Seagate.com. Product listing - disc drives - mainstream servers. http://www.seagate.com/cda/products/-
discsales/servermain/.

[89] Margo Seltzer, Keith Bostic, Marshall K. McKusick, and Carl Staelin. An implementation of a log-
structured file system for unix. In USENIX Technical Conf., pages 307–326, San Diego, CA, USA, January
1993.

[90] Prashant J. Shenoy. The case for reexamining integrated file system design. In Proceedings of the Interna-
tional Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV), pages
51–54, Chapel Hill, NC, USA, June 2000.

[91] Prashant J. Shenoy, Pawan Goyal, Sriram S. Rao, and Harrick M. Vin. Symphony: An integrated multimedia
file system. In Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking (MMCN),
pages 124–138, San Jose, CA, USA, January 1998.

[92] Prashant J. Shenoy, Pawan Goyal, and Harrick M. Vin. Architectural considerations for next generation file
systems. In Proceedings of the ACM International Multimedia Conference (ACM MM), pages 457–467,
Orlando, FL, USA, October 1999.



Research Report No. 307 17

[93] Prashant J. Shenoy, Saif Hasan, Purushottam Kulkarni, and Krithi Ramamritham. Middleware versus native
os support: Architectural considerations for supporting multimedia applications. In Proceedings of the IEEE
Real-time Technology and Applications Symposium (RTAS), pages 23–34, San Jose, CA, USA, September
2002.

[94] Prashant J. Shenoy and Harrick M. Vin. Efficient striping techniques for multimedia file servers. In Pro-
ceedings of the International Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV), pages 25–36, St. Louis, MO, USA, May 1997.

[95] Prashant J. Shenoy and Harrick M. Vin. Cello: A disk scheduling framework for next-generation operating
systems. In Proceedings of the ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), June 1998.

[96] Prashant J. Shenoy and Harrick M. Vin. Cello: A disk scheduling framework for next generation operating
systems. Real-Time Systems Journal: Special Issue on Flexible Scheduling of Real-Time Systems, 22(1):9–
47, 2002.

[97] Avi Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts. John Wiley & Sons, 6 edition,
2003.

[98] Silicon Graphics, Inc., 1600 Amphitheatre Pkwy., Mountain View, CA 94043. SGI CXS Clustered File
System, DataSheet.

[99] IBM Open Source JFS Project Web Site. Journaled file system technology for linux. http://www-
124.ibm.com/developerworks/opensource/jfs, March 2003.

[100] David A. Solomon and Mark E. Russinovich. Inside Microsoft Windows 2000. Microsoft Press, 3rd edition,
2000. ISBN 0-7356-1021-5.

[101] Ralf Steinmetz. Analyzing the multimedia operating system. IEEE Multimedia, 2(1):68–84, 1995.

[102] Ralf Steinmetz and Klara Nahrstedt. Multimedia: Computing, Communications & Applications. Prentice
Hall, 1995.

[103] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck. Scalability
in the XFS file system. In Proceedings of the USENIX Technical Conference, pages 1–14, San Diego, CA,
USA, 1996.

[104] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2001.

[105] Renu Tewari, Richard P. King, Dilip D. Kandlur, and John Wilkes. Placement of multimedia blocks on zoned
disks. In Proceedings of IS&T/SPIE Conference on Multimedia Computing and Networking (MMCN), San
Jose, CA, USA, January 1996.

[106] H. Tezuka and T. Nakajima. Simple continuous media storage server on real-time mach. In USENIX Annual
Technical Conf., San Diego, CA, USA, January 1996.

[107] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A scalable distributed file
system. In Proceedings of the Symposium on Operating Systems Principles, pages 224–237, 1997.

[108] Tsun-Ping J. To and Babak Hamidzadeh. Dynamic real-time scheduling strategies for interactive continuous
media servers. ACM/Springer Multimedia Systems, 7(2):91–106, 1999.

[109] Fourad A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID: A disk array management system for
video files. In Proceedings of the ACM International Multimedia Conference (ACM MM), pages 393–400,
Anaheim, CA, USA, 1993.

[110] Harrick M. Vin, Sriram S. Rao, and Pawan Goyal. Optimizing the placement of multimedia objects on disk
arrays. In Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS),
pages 158–165, Washington, D.C., USA, May 1995.

[111] P. Vongsathorn and S.D. Carson. A system for adaptive disk rearrangement. Software—Practice and Exper-
ience, 20(3):225–242, March 1990.



18 Research Report No. 307

[112] Chuanbao Wang, Denise J. Ecklund, Earl F. Ecklund, Vera Goebel, and Thomas Plagemann. Design and
implementation of a lod system for multimedia supported learning for medical students. In World Con-
ference on Educational Multimedia, Hypermedia & Telecommunications (ED-MEDIA), Tampere, Finland,
June 2001.

[113] Chuanbao Wang, Vera Goebel, and Thomas Plagemann. Techniques to increase disk access locality in the
minorca multimedia file system. In Proceedings of the ACM International Multimedia Conference (ACM
MM), Orlando, FL, USA, October 1999.

[114] Joel L. Wolf, Philip S. Yu, and Hadas Shachnai. DASD dancing: a disk load balancing optimization scheme
for video-on-demand computer systems. In Proceedings of the ACM International Conference on Meas-
urement and Modeling of Computer Systems (SIGMETRICS), pages 157–166, Ottawa, Ontario, Canada,
1995.

[115] Joel L. Wolf, Philip S. Yu, and Hadas Shachnai. Disk load balancing for video-on-demand systems.
ACM/Springer Multimedia Systems, 5(6):358–370, 1997.

[116] B.L. Worthington, G.R. Ganger, and Y.N. Patt. Scheduling algorithms for modern disk drives. In Proceed-
ings of the ACM International Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS), pages 241–251, Nashville, TN, USA, May 1994.

[117] Chiung-Shien Wu, Gin-Kou Ma, and Mei-Chian Liu. A scalable storage supporting multistream real-time
data retrieval. ACM/Springer Multimedia Systems, 7(6):458–466, 1999.

[118] SGI Developer Central Open Source Linux XFS. XFS: A high-performance journaling filesystem.
http://oss.sgi.com/projects/xfs/, March 2003.

[119] Philip S. Yu, Ming-Syan Chen, and Dilip D. Kandlur. Design and analysis of a grouped sweeping scheme for
multimedia storage management. In Proceedings of the International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), pages 44–55, La Jolla, CA, USA, November 1992.

[120] A. Zhang and S. Gollapudi. Qos management in educational digital library environments. Technical Report
CS-TR-95-53, State University of New York at Buffalo, New York, NY, USA, 1995.


