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Abstract

The holy grail in endoscopy examinations has
for a long time been assisted diagnosis using
Artificial Intelligence (AI). Recent develop-
ments in computer hardware are now enabling
technology to equip clinicians with promising
tools for computer-assisted diagnosis (CAD)
systems. However, creating viable models or
architectures, training them, and assessing
their ability to diagnose at a human level, are
complicated tasks. This is currently an active
area of research, and many promising methods
have been proposed. In this chapter, we give an
overview of the topic. This includes a descrip-
tion of current medical challenges followed by
a description of the most commonly used
methods in the field. We also present example
results from research targeting some of these
challenges, and a discussion on open issues
and ongoing work is provided. Hopefully, this
will inspire and enable readers to future
develop CAD systems for gastroenterology.

Keywords

Gastrointestinal endoscopy · Artificial
Intelligence · Neural Networks · Hand-crafted
features · Anomaly detection · Semantic
segmentation · Performance

1 Introduction

Numerous abnormal mucosal findings, ranging
from minor annoyances to highly lethal diseases,
can be found in the human Gastrointestinal
(GI) tract. For example, according to the Interna-
tional Agency for Research on Cancer, about 3.5
million luminal GI (esophageal, stomach, colorec-
tal) cancers are detected yearly in the world
[41]. These cancers represent a substantial health

challenge for society, with a mortality rate of
about 63–65%, resulting in around 2.2 million
deaths per year [19, 41]. Overall, Colorectal can-
cer (CRC) is the third most common cause of
cancer mortality for women and men combined
[104], and the other most frequently occurring GI
cancers are stomach, liver, pancreatic, and esoph-
ageal cancers [18].

For diagnosis and treatment of GI diseases, GI
endoscopy is the gold-standard procedure used to
examine the tract for anomalies, and to a certain
extent, the GI diseases may be prevented by
improved endoscopic performance and high qual-
ity systematic screening in high incidence areas
[19]. However, despite the substantial technical
improvement of endoscopes over the last two
decades, a major limitation of the endoscopic
examinations is the endoscope operator variation,
depending on the procedural skill, perceptual fac-
tors, personality characteristics, experience,
knowledge, and attitude deficits [34]. This trans-
lates to a substantial inter-observer variation in the
detection and assessment of mucosal lesions
[64, 108]. This causes, for example, an average
20% polyp miss-rate during colonoscopies
[52]. All these factors could potentially, to some
extent, be alleviated by substantial educational
efforts, but not eliminated [88].

In this context, assisted diagnosis using com-
puters has for a long time been a holy grail.
Developments in computer hardware have
enabled computationally demanding yet promis-
ing technologies like AI, more specifically its
sub-field Machine Learning (ML), to provide the
clinicians with potentially highly accurate and
efficient Computer aided diagnosis (CAD) sys-
tems, giving healthcare professionals the tools
needed to provide quality care at a large scale
[86, 102]. At its core, machine learning involves
using algorithms to parse data, learn from it, and
then make predictions, in the medical domain this
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means detect, segment, assess or classify a dis-
ease. However, there exist several issues which
need to be addressed, both for creating and
improving automated diagnosis algorithms.
Developing and assessing a computer’s ability to
diagnose at a human level are complicated tasks,
and a potential success depends on various factors
which goes beyond simply determining the accu-
racy of an algorithm. These challenges have been
an active area of research for about a decade, and a
large number of promising results have been
published.

In this chapter, we describe current challenges
on the way towards effective computer-based dig-
ital assistant systems. In particular, we focus on GI
endoscopy. We provide examples of proposed
methods and tools employing various techniques,
identify current challenges, and give hints for
future development and assessment of CAD
systems.

2 GI Endoscopy

To examine the esophagus, stomach, duodenum
(upper GI), and the large bowel and rectum (lower
GI), a long, flexible tube is inserted into the mouth
and rectum, respectively. A tiny video camera at
the tip of the tube allows the doctor to view inside
of the GI tract in real-time, where findings, as
depicted in Fig. 1a and b can be found.

The small bowel is, due to its anatomical loca-
tion, less accessible for inspection by such flexible
endoscopes. To easier access these areas of the GI
tract, Video Capsule Endoscopy (VCE) [22] has
been introduced as an alternative examination
method [25]. A VCE consists of a small capsule
containing one or more wide-angle cameras. The
capsule is swallowed by the patient, and it cap-
tures a video as it moves through the GI tract. The
video is extracted, and a medical expert assesses it
in a potentially tedious and time-consuming pro-
cess after the procedure, searching for findings
like the ones shown in Fig. 1c.

Even though these examination procedures
allow clinicians to detect GI anomalies, there is

still ample scope for improvements. Looking at
the possible findings depicted in Fig. 1, it is obvi-
ous that it can be hard to detect and classify the
various anomalies potentially found in the various
parts of the GI tract, either live during a gastros-
copy or colonoscopy, or in a post-analysis of the
VCE video. Moreover, there are large operator
variations and anomaly miss-rates reported for
both regular endoscopies [34, 52, 64, 108] and
capsule endoscopies [20, 88].

Hence, the hope is that automated analysis can
assistmedical experts in real-time anomaly detec-
tion, removing variations and increasing detection
rates. Moreover, analyzing hours of VCE video,
there is also a large potential in saving medical
expert time, by analyzing the 4–12 h long videos
in a few minutes by a fast computer, compared to
the usual 45–60 min error-prone, fast-forward
analysis performed by medical personnel today.
From an analysis point of view, there are two
important requirements for such CAD systems:

1. High detection or segmentation performance
in the analysis is important in order to address
the large human miss-rates and variabilities. It
is often measured in terms of metrics like pre-
cision, sensitivity (recall), specificity, accu-
racy, F1 score, Matthews correlation
coefficient (MCC) or similar [98]. This
requirement aims at finding all anomalies cor-
rectly, i.e., detecting all findings without false
positives or negatives. A more detailed discus-
sion on metrics is given in Sect. 5.3.

2. An often neglected requirement is fast pro-
cessing in order to give real-time feedback
during the endoscopy examination, or in the
case of VCE, higher scale of the analysis and a
faster feedback on the same amount of pro-
cessing resources.

Furthermore, in order to be deployable in a
clinical environment, all components need to be
integrated in a pipeline capturing videos or frames
from the endoscopy equipment, via an automatic
analysis, to give the clinicians a visual feedback
(and potentially also assisting in generating an
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examination report according to medical stan-
dards). The system must also be easily integrated
into and usable with the current examination pro-
cedures, and of course, the various components
must meet the medical privacy and security
regulations.

3 Existing Methods

As mentioned above, a large number of algo-
rithms and models for automated analysis of GI
video and images have already been proposed. In
this respect, when we discuss CAD systems for
the GI tract today, people often interchangeably

Fig. 1 Examples of various findings in the GI tract including anatomical landmarks, pathological findings, normal
mucosa, therapeutic interventions and medical instruments [14, 96]
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talk about detection, localization and segmenta-
tion. Here, we therefore first try to distinguish
between the terms as follows:

• Detection is the operation of detecting whether
an image belongs to a certain classification or
not. This can be a binary “yes or no” for ques-
tions whether the image or video frame con-
tains a polyp or not. It also includes systems
that classifies the input into multiple classes.

• Localization is to point into the image where
the object is located, e.g., using some type of
point markers or making a bounding box
around the object of interest.

• Segmentation is yet another step further where
one determines pixel-wise whether the pixel
belongs to a finding or not, e.g., generating an
exact segmentation mask of the finding.

Figure 2 shows an example of detection, local-
ization and detection. As localization is often
mixed into both detection and segmentation, we
here focus on detection and segmentation.

3.1 Hand-Crafted-Feature-Based
Approaches

Automatic detection of GI anomalies has been a
topic of research long before the success of AI and
deep neural networks, using what is nowadays
often called traditional computer vision and ML
methods, as found in libraries such as OpenCV
[16] and LIRE [69]. Already in 1998, Krishnan
et al. [59] proposed detecting polyps using shape-

features in a curvature analysis. In the subsequent
decade, various approaches using a mix of shape,
edge, texture, and color features appeared. For
example, Alexandre et al. [2] detected polyps
using a support vector machine (SVM) on color
patterns. Further, using SVMs, Ameling et al. [5]
combined texture and colors, and Park et al. [75]
used shape and texture features in a conditional
random field classifier.

Two more recent approaches using hand-
crafted techniques are Polyp-Alert [111] and EIR
[85], where the authors also measured analysis
time, with the goal of being able to give real-
time feedback during the examination. The
Polyp-Alert [111] system combines edge and tex-
ture features. The polyp edge detection algorithm
mainly relies on edge features obtained from the
part-based multi-derivative edge cross-section
profile [110]. The EIR [85] system combines a
content-based similarity search with statistical
classifiers from the training data. A large number
of image features are tested [87], ending up with a
combination of the joint composite descriptor fea-
ture and the Tamura features, due to a good trade-
off between the precision and sensitivity (recall),
and the speed of the algorithm. A search-based
classifier is then used to determine if an image
contains a finding of a certain class.

A detailed overview containing earlier exam-
ple approaches canbe found in [85, 111].However,
lately, deep learning approaches have
outperformed these hand-crafted approaches and
replaced them entirely.

Fig. 2 Various ways of indicating a finding (left: detection “just” showing the image; center: full segmentation mask
showing in white all pixels part of the finding; and right: bounding box making a rectangle around the finding)
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3.2 Deep Learning-Based
Approaches

Already in 2001, Karkanis et al. [53] aimed for the
detection of lesions in endoscopic video using
textural descriptors on the wavelet domain
supported by artificial neural network architec-
tures, albeit not using deep architectures. Such
early approaches were tested on tiny data sets, in
this case 8 images [53]. More recent approaches
are usually based on deep learning architectures
where Convolutional Neural Networks (CNNs)
are clearly the most popular ones.

Where hand-crafted features rely on extracting
predefined properties of an image, such as color,
texture, or shape, CNNs are neural network archi-
tectures using convolutions and pooling opera-
tions to automatically learn which features are
most relevant. CNNs perform well on many dif-
ferent tasks like image classification, object detec-
tion in images, and image generation
[56]. Although they are mostly used for image
analysis, they have also proven useful in
timeseries research and video analysis. In medi-
cine, architectures like U-Net [89] have shown
promising results in areas like cardiology, colo-
noscopy, and radiology [74, 119, 122]. This also
includes gastroenterology, where CNNs are cur-
rently state-of-the-art for analyzing colonoscopy
videos. The most common application is the
detection and segmentation of polyps, where
many CNN-based approaches have shown excel-
lent results [17, 50, 114]. These approaches have
expanded to other findings as well, like detecting
and segmenting ulcers [31]. Furthermore, due to
limited access to medical image and video data,
most approaches use transfer learning. In transfer
learning, pre-trained models are used as a starting
point, and refined for the given data set by
retraining with some layers trainable and some
frozen [82].

An automated CAD system for the GI endo-
scopic image segmentation is a step further than
providing “just” detection of anomalies. A pre-
dicted segmentation mask (see Fig. 2) can help
point out the area of interest in the images
(frames) that need to be further examined. How-
ever, making such perpixel predictions is also a

more complex task. In this respect, there has been
a considerable amount of work done so far, espe-
cially targeting polyps [32, 45, 47, 48, 50, 71, 81,
100, 109], artifacts [3], and endoscopic instru-
ments [90]. In general, CNN-based approaches
perform well with the larger polyps. However,
still the major challenges issues in the field are
related to adenomatous polyps or small and flat
polyps. Recent studies are targeting smaller
polyps [50, 63]; however, it is yet an open-
challenge to solve.

3.3 Unsupervised
and Semi-supervised
Approaches

The above presented approaches fall into the cat-
egory of supervised learning, meaning that we
train the models on a data set with an existing
ground truth. In this section, we give a glance at
newly emerging unsupervised and semi-
supervised methods.

Generative Adversarial Networks (GANs),
which were introduced by Good-fellow et al.
[30] in 2014, are becoming increasingly popular
in the medical domain for generating synthetic
data. Different advancements to the original
GAN architecture, such as conditional GAN
[72], pix2pix [43], CycleGAN [123], Style-
GANs [54, 55], to mention a few, present different
methods, ranging from domain transformation to
high definition image generation. ML researchers
in the medical domain can use GAN models to
generate synthetic data to tackle challenges
related to privacy, data deficiency, and data anno-
tation. For example, Younghak et al. [93] use a
conditional GAN architecture to generate syn-
thetic polyp images to improve the performance
of a deep learning system detecting polyps in the
colon. This methodology is still in its early stages,
and it has yet to be shown to which extent gener-
ated data can replace real data and help to improve
performance and shareability.

Another emerging method in the field of med-
ical image analysis, is semi-supervised learning.
Here, the goal is to learn from a small set of
labelled data combined with a larger amount of
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unlabeled data. Examples include [7, 67, 70,
116]. These models produce promising results,
and could also help overcome the challenge of
insufficient labelled data faced by many data-
hungry methods. However, these approaches still
struggle with challenges such as low accuracy and
high entropy during early stages of the training
process. The models are also regularized towards
high entropy predictions, making it hard to
achieve a high accuracy [117, 120]. It will be
interesting to see whether these challenges can
be overcome, and how useful the results will
prove to be in the medical domain.

4 Example Results

High detection or segmentation rates are impor-
tant in order to be clinically relevant, and the
typical way the performance is compared. How-
ever, due to factors like different data sets and
different equipment, the pure numbers cannot be
directly compared. Still, to give some indications
of the state-of-the-art performance, we give a set
of, by far from complete, examples using standard
metrics like precision, sensitivity (recall), speci-
ficity, accuracy, F1 score and MCC for detection;
and Dice similarity coefficient (DSC),

Intersection over Union (IoU), precision and sen-
sitivity for segmentation. A substantial overview
of existing approaches can be found in [61],
containing 138 different studies. An explanation
of the different metrics is given in Table 1 and
further discussed in Sect. 5.3. Another source for
exploring and comparing different approaches are
the popular GI detection, classification and seg-
mentation challenges discussed in Sect. 5.6.

A selection of performance examples are given
in Table 2. Looking at the numbers, we see that in
the specific tested cases, the computer should be at
the level of the best experts with scores above
90%, i.e., potentially being a helpful digital assis-
tant during a GI endoscopy examination. Like-
wise, example results for lesion segmentation are
provided in Table 3, and the numbers are again
encouraging in terms of proving that the used
models could be of use in a medical setting. How-
ever, while the results achieved are promising,
there are still several open challenges, including
generalizability, overfitting, cross data set testing
and explainability of the results. Moreover, as
indicated in the Tables, hardly any existing
research report the speed of the system, meaning
that it is hard to assess the system’s capability to
provide a live analysis in the clinic.

Table 1 List of commonly used metrics. To define each metric, TP, FP, TN, and FN represent true positives, false
positives, true negatives, and false negatives, respectively

Formula Description

accuracy ¼ TPþTN
TPþFPþTNþFthickmathspaceN

Rate of correct classification. Ratio between correctly
classified samples and all samples.

precision ¼ TP
TPþFthickmathspaceP

Proportion of retrieved samples which are relevant. Ratio
between correctly classified positive samples and all samples
classified as positive.

sensitivity also known as recallð Þ ¼ T P
T NþFP

Proportion of relevant samples which are retrieved. Ratio
between correctly classified positive samples and all positive
samples.

specificity ¼ T N
T NþFP

Negative class sensitivity. Ratio between correctly classified
negative samples and all negative samples.

F1 ¼ 2�T P
2�T PþFPþFN

Harmonic mean of the precision and sensitivity (recall).

MCC ¼ T P�T N�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T PþFPð Þ T PþFNð Þ T NþFPð Þ T NþFNð Þd T PþFPþFNð Þ
p Pearson’s correlation coefficient [23] for binary

classification.

IoU also known as Jaccardð Þ ¼ T P
T PþFPþFN

Similarity between sets from the size of the intersection
divided by the size of the union.

DSC ¼ 2T P
2T PþFPþFN

Quotient of similarity of two sets. Semi-metric as it doesn’t
satisfy the triangle inequality. Related to the IoU via S

2�S.

Artificial Intelligence in Gastroenterology 7



5 Open Issues and Ongoing
Research

Despite impressive results presented in many of
the published papers, even exceeding what are
reported as average detection rates from clini-
cians, there are still challenges and open issues.
First, for example, Thambawita et al. [98] pre-
sented the issue of overfitting to specific data
sets and a lack of generalizability. This means
that a model that performs well on one data set
may not perform at all on another. Furthermore,
like other deep neural networks, CNNs are black

boxes, and it is not easy to understand why one
input gives a particular result. There is also a lack
of large open data sets that contain annotations for
uncommon abnormalities and rarely documented
findings to support data-hungry algorithms like
CNNs. Here, we elaborate on a few of these
open issues.

5.1 Limited Data Availability

Available medical data is scarce. However, mod-
ern deep learning approaches usually require a lot

Table 2 Examples of detection performance from different approaches. The results show promising performance with
numbers above 90%. Unfortunately, speed is not commonly reported

Paper/
system Data set used

Sensitivity
(recall) Specificity Accuracy Precision F1 MCC

Speed
(fps)

Boughorbel
[17]

MICCAI-
challenge data sets

86.3 – – 73.6 – – –

Kundu [60] 30 Own data set 95.2 98.3 97.9 88.4 – – –

Cho [21] Seoul National
University
Hospital

>87 – >93 – – –

Ghosh [29] VCE videos data
set

99.4 99.2 97.9 95.8 – –

Bell [8] CTC generating
4000 images per
patients

89.8 75.5 – – – –

Pogorelov
[76]

Kvasir 83.9 98.5 97.2 84.1 85.6 82.8 46

Billah [13] Colonoscopy &
Endoscopy vision
data set

98.7 98.2 98.3 –

Thambawita
[99]

Kvasir 95.8 99.7 95.8 95.9 95.8 95.3 29

Table 3 Some examples of different segmentation
approaches applied to different data sets. We can clearly
see that the performance overall is quite promising (with all

metrics in the range of 70 to 95). Speed is unfortunately not
commonly reported

Pape/system Data set used DSC IoU (Jaccard) Sensitivity (recall) Precision Speed (fps)

U-Net [89] MICCAI-PhC-
U373

– 92.0 – – –

PraNet [26] CVC-ClinicDB 89.9 84.0 – – –

PolypSegNet [71] CVC-ClinicDB 91.5 86.2 91.1 96.2 –

ResUNet++ [50] CVC-ClinicDB 79.6 79.6 70.2 87.9 –

PraNet [26] Kvasir-SEG 89.8 84.0 – – –

PolypSegNet [71] Kvasir-SEG 88.7 82.5 84.5 91.7 –

ResUNet++ [50] Kvasir-SEG 81.3 79.3 70.6 87.7 –

Double-UNet [45] CVC-ClinicDB 92.4 86.1 84.6 96.0 –

8 I. Strümke et al.



of data to perform well, and often, the more var-
iations in the data, the better the model gets,
especially for supervised learning models.
Table 4 shows the data sets available in the field
of GI endoscopy. Evidently, the number of images
used for training and testing is small when com-
pared to the data set from the natural images. This
is because it is difficult to obtain data from the
medical domain. The data is often protected and
unavailable due to legal restrictions and lack of
medical personnel for the tedious process of man-
ually extracting and labeling training data. This
calls either for better data sharing processes and
culture, or methods more capable of handling
small amounts of data.

This gives rise to several basic challenges: The
amount of data is too small to train a robust model,
and the presented results might appear deceiv-
ingly good due to overfitting. Moreover, it is
hard to compare results if all experiments are
performed on different data, and practically
impossible to reproduce them. Thus, it is almost
impossible to conclude whether one model is bet-
ter than another. We must therefore aim for more
and open data sets. Table 4 contains an overview
of know available data sets at the time of writing,
making a good starting point for future experi-
ments. Still, more data is needed, especially data
containing pathological outcomes.

5.2 Generalizability

One of the open issues in the field is the GI
endoscopy is the generalizability of ML models,
i.e., their ability to perform well on previously
unseen data regardless of source, equipment, etc.
Such data can be from either the same distribution
as the model was trained on, or from a different
distribution. Which of the two a new data sample
represents, is not always clear
[101, 103]. Although some recent studies address
generalizability of ML models for polyp classifi-
cation [45, 112], this must be addressed for any
model or system to be deployed into clinical
practice.

Evaluating whether a model is reliable for real
world use also requires cross data set testing, to

avoid accepting a model which coincidentally
works well on one specific set of data. The
model developers should in general not have
access to the final test data, to avoid bias during
testing and development. This process, known as
data blinding, is an important tool in many fields
of research, including medicine [80]. Ideally, the
model should be tested for robustness on data
collected separately from the data used during
model development and testing.

Furthermore, distinction should be made
between data annotated by medical experts,
referred to as soft ground truth, and data labelled
based on a medical test, referred to as hard ground
truth, e.g., pathological examination of a polyp.
The quality of soft ground truth data is limited by
how well the medical annotator is trained, and
such data is most useful for training models
intended to automate processes. On the other
hand, data with hard ground truth labels can also
be used for automating processes, with the added
benefit of avoiding annotator error or bias into the
model, but it can furthermore be used for
obtaining new knowledge. Note that while, as
mentioned above, annotating each image is time
consuming, collecting hard ground truth data is
even more demanding, resulting in a scarcity of
such data sets.

In current endoscopy practices, different hos-
pitals use different endoscope system for diagno-
sis and therapy. The most common globally
available endoscope systems are Olympus
(Japan), Pentax 90i series (Japan), Fujinon
(Japan), and Karl Storz (Germany) [57]. More-
over, different medical institutes have different
protocols. Therefore, designing generalizable
CAD systems is essential for performing well on
a variety of institutes. Such systems should
always be tested on several data sets. Discussions
regarding challenges and advantages associated
with cross-dataset testing can be found in [98].

5.3 Metrics and Evaluation

Evaluating performance is an important step when
creating models for clinical use, and depends
strongly on the choice of metric. As shown in

Artificial Intelligence in Gastroenterology 9
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Table 1, commonly used metrics are precision,
sensitivity (recall), specificity, accuracy and F1
score. Some papers also report AUROC (area
under the receiver operating characteristics).
There are several reasons for going beyond the
aforementioned metrics [98]. One challenge fre-
quently encountered in association with medical
data sets, is their tendency to be imbalanced
between classes, often having far more normal
images than images with lesions. Because of
this, certain metrics can provide an overly opti-
mistic impression of the actual performance. For
instance, a binary classifier can achieve a high
accuracy on a data set containing few negative
instances, by assigning all instances to the posi-
tive class. The AUROC is also known to be
deceptive for imbalanced classification [91]. In
such cases, the correlation coefficient between
the true and predicted classes can be more infor-
mative [15], although no single metric is univer-
sally informative or suited for any imbalanced
data problem. Moreover, for detection purposes,
it is also a question whether one report per-frame
performance, i.e., giving a decision for every
frame in the video, or per-lesion, i.e., giving a
correct prediction for at least one of the frames
in the video sequence. Looking at the results from
a technical point of view, a per-frame analysis of
often desired, but from the medical point of view,
a per-lesion analysis is often sufficient to notify
the clinician of the finding once.

For segmentation performance, commonly
used metrics are DSC and the IoU, also known
as the Jaccard index. In clinical use, medical
experts are usually interested in pixel-wise detail
information about the potential lesion. DSC and
IoU can be used to compare the pixel-wise simi-
larity between the predicted segmentation maps
and the ground truth. In addition, precision and
sensitivity are used to evaluate under-
segmentation or over-segmentation, where
under-segmentation implies that the model pre-
dicts less relevant content in some portion of the
image compared to the ground truth, and over-
segmentation that the predicted image covers
more pixels than the ground truth.

As observed in Tables 2 and 3, little research
has until now focused on the required real-time

capabilities in order to provide live feedback to
clinicians during the endoscopy examinations.
However, there seems to be reported systems
that analyze data faster than the frame-rate thresh-
old, and it has also been given attention in some of
the arranged competitions (see Sect. 5.6). None-
theless, it is often a trade-off between speed
(model complexity) and detection performance,
indicating that this is still an important issue in
future research and development of CAD systems.

5.4 Automatic Report Generation

After the endoscopist finishes an endoscopy, a
high-quality report should be generated. This
often a time-consuming process, where research
shows that approximately one-sixth of
U.S. physicians working time is spent on admin-
istrative tasks, taking time away from direct-
patient care and lessening job satisfaction
[115]. Moreover, there are large variations in
endoscopists’ interpretations of findings as well
as reporting styles. This can, and often does, lead
to inconsistencies in the final decision
[37]. Hence, automated report generation could
both save clinical time and help standardize
endoscopy reports, and recent development in
natural language processing is expected to open
up new possibilities in automatic report
generation [86].

A method proposed by Jing et al. [51] uses
neural image captioning to create reports from
x-ray images. In [121], images are analyzed by a
neural network, and example images of findings
similar to the one at hand and attention maps are
combined to reports. Most approaches focus on
image analysis as a basis, and combine this with
additional information [24, 33, 118]. This of
course depends on access to a database containing
correct information which can be used in combi-
nation with the images. A significant challenge is
different reporting standards between countries or
even hospitals, making it practically impossible to
create a widely adoptable software.

However, for medical experts, automatic text
creation might not even be the most crucial feature
of such a software: A more important aspect is
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their ability to understand the reasoning and deci-
sion of the underlying model, enabling them to
include it in their assessment. This is discussed in
the next section.

5.5 Explainability

A well-known challenge associated with deep
learning based CAD systems, is limited
explainability due to their inherent complexity
[4]. This property has caused their notoriety as
black boxes whose decision-making processes
are unknown, especially to end-users [35]. The
need for understanding and explaining how the
systems work and which roles the different data
features play in the decisions, addresses different
needs in the different stages of the system’s devel-
opment and use. The developer of the system
needs to understand how data and methods are
working together, as understanding and interpret-
ability of the output helps to determine errors in
the data as well as enabling targeted failure anal-
ysis. Particularly, in the context of this AIM, the
medical experts require an explanation of the sys-
tem’s decision to assure that it concurs with the
relevant medical knowledge.

Deep learning based systems, such as CNNs,
have no inherent ways of providing explanations,
meaning that they must either be extended to
contain explanation generators, or explanations
must be obtained post hoc [1, 38, 39]. A brief
overview of approaches to model explanations is
shown in Table 5. Models can be designed to
provide justifications for their decisions as an

additional task, e.g., via a text justification gener-
ator as part of the model architecture [62]. Given a
model without such a design, different approaches
are available: Those which explain the properties
of the decision making system itself, and those
which treat the system like a black box and pro-
vide explanations based on its emergent behavior,
referred to as model dependent and model agnos-
tic approaches, respectively. One example of the
former is displaying the values of the Deep Neural
Network (DNN)’s internal parameters as a heat
map superimposed on the classification instance
[35]. Interpreted correctly, this can provide an
understanding of the system’s internal decision
making process. Such an approach can also be
extended to include information regarding the
system induced decision uncertainty (meaning
the part of the uncertainty not associated with
the data collection and selection process),
see [113].

Among the model-agnostic methods, the
explanation concept LIME (Locally Interpretable
Model-agnostic Explanations) approximates the
black-box model using an interpretable model,
such as a linear model, decision tree, or falling
rule list [84]. This is done in the neighborhood of
the instance to explain, making the resulting
explanation a local one, given that it applies to a
single outcome and is based on the particular
instance’s characteristics, as is also the case for
the aforementioned model-dependent
explanations.

In contrast, global explanations capture and
explain the model at large, such as feature impor-
tance ranking. One class of methods capable of

Table 5 The different model explanation approaches
regarding when they are applied: During the model devel-
opment (in-model) or after the model is finished (post-

model). Explanation methods provide insight into model
behavior either locally (around a particular prediction) or
globally

Category Description Ex.

In-model Justification text generator as part of model architecture [62]

Post-
model

Model
dependent

GradCam: Display DNN activations on image [35]

Model agnostic LIME: Yields a locally interpretable model approximating the full model [84]

SHAP: Shapley decomposition of a conditional expectation function of the
full model

[68]

Model
independent

Global non-parametric Shapley decomposition [28]

12 I. Strümke et al.



producing global explanations, are those based on
the game-theoretic concept of Shapley values
[92], which are currently enjoying a surge of
interest in the statistics and machine learning lit-
erature [27, 40, 44, 66]. Shapley values are
obtained by evaluating the model using all possi-
ble combinations of the data features. Hence, the
computational complexity increases with the
number of features |f | as 2|f|, and the calculation
involves re-training the model for each subset of
features. The latter is problematic as re-training
would result in different model parameters,
highlighting that Shapley values are merely
model agnostic, not independent. The widely
used SHAP (SHapley Additive exPlanations)
package [68] circumvents these challenges in dif-
ferent ways for various model architectures, by
calculating approximate values using background
samples from the data, and for deep architectures
using a similar approach as the per node attribu-
tion rules from DeepLIFT [94]. The Shapley
decomposition can be computed both globally
and locally, and can be formulated [68] as a spe-
cial case of LIME. Shapley values can also be
used to obtain model-independent
explanations [28].

5.6 Competitions and Challenges

There have been a series of different challenges
related to automatic analysis of endoscopy data
[9, 36, 79], where CNN-based approaches have
been the top performing methods for the last few
years. The various tasks given have been to

benchmark and develop automated systems to
accurately detect, localize, and segment the abnor-
malities inside the GI tract. These challenges
targeted different tasks from detection, localiza-
tion, and segmentation of GI anomalies, colorec-
tal polyps to artifacts presence in the GI tract (see
Table 6). These regular competitions can help the
research community in the field to find to find
common standards for evaluating models,
benchmarking state-of-the-art methods and tools,
and finding new directions to bring the field for-
ward together.

5.7 Clinical Verification
and Emerging Commercial
Systems

Many research groups have presented promising
research results and good performance indicators,
and several AI-based commercial systems have
emerged, some of which are listed in Table 7.
The status of these are mostly unknown, but, for
example, the GI Genius system is CE marked, but
still lacks US Food and Drug Administration
(FDA) approval, and EndoBRAIN-EYE is
approved only in Japan. For CAD systems to be
deployed for real-time examinations in clinical
examination rooms, or to be used for VCE data
post analysis, clinical verification is strictly nec-
essary. Still, at the time of writing, such studies are
very limited. In August 2020, Repici et al. [83]
presented a randomized multi-center trial, con-
cluding that the AI-based CAD increases the ade-
noma detection rate (ADR), i.e., the percentage of

Table 6 List of GI detection, classification and segmentation challenge examples

Challenge name URL

MICCAI 2015 Endoscopic Vision https://polyp.grand-challenge.org/databases/

Medico 2017 http://www.multimediaeval.org/mediaeval2017/medico/

Medico 2018 http://www.multimediaeval.org/mediaeval2018/medico/

GIANA 2018 https://giana.grand-challenge.org/Home/

EAD 2019 https://ead2019.grand-challenge.org/

Biomedia 2019 https://github.com/kelkalot/biomedia-2019

Medico 2020 https://multimediaeval.github.io/editions/2020/tasks/medico/

EndoTect 2020 https://github.com/simula/icpr-endotect-2020

EDD Challenge 2020 https://edd2020.grand-challenge.org/

EndoCV 2020 https://endocv.grand-challenge.org
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patients with at least one histologically proven
adenoma or carcinoma, demonstrating the poten-
tial of such systems. They examined 685 patients:
341 patients using the CAD system and
344 patients using only the traditional manual
examination. The system achieved an ADR of
54.8%, and the control group 40.4%. This dem-
onstrates that AI-based systems can help detect
adenomas, but that further improvements are
required to increase detection rates, and to detect
a larger number of sessile serrated lesions (at all).
Considering the limitations of the study as well as
the presented performance, it is clear that there are
still improvements to made, and more clinical
studies are in order.

Despite significant interest from the industry,
proper standards regarding evaluation methods
and reproducibility are widely lacking. In addi-
tion, industry applications seem not to have
focused on model explainability or model output
interpretability. These are all crucial ingredients of
trustworthy applications, and industry develop-
ment will hopefully follow current research trends
and focus more on these in the future.

Finally, when a high-performing (research)
prototype has been built and tested, meeting the
requirements above, it must be approved for med-
ical use. Robust evaluation of AI based software
before implementation is needed to reduce patient
and health system risk, establish trust to facilitate
wide-spread adoption. The common term used for
such products is AI based software as a medical
device (SaMD). Regulators of the SaMD

applications, including the FDA in the United
States, have been guided by the Global Harmoni-
zation Task Force and International Medical
Device Regulators Forum (IMDRF). The
IMDRF has proposed four different risk catego-
ries for SaMD each with a different set of require-
ments for assessing scientific and clinical validity
of the technology [42]. Within gastroenterology,
CADe and CADx technologies have not yet been
classified. The current FDA process for SaMD is
derived from its approval process for medical
devices and will be categorized into three risk
categories: Classes I, II, and III (highest risk)
[105]. After risk classification, premarket submis-
sion as a 510(k) pathway or de novo pathway
might be relevant to GI-based AI technologies
similar to Osteoidetect [107]. Moreover, given
that the AI algorithms are rapidly iterative and
continuously learning, it can pose a challenge to
the current regulatory process. The FDA proposed
a new system of regulation for AI technologies in
its Digital Health Innovation Action Plan, focused
on AI technologies that rely on continuous learn-
ing and adaptation [106]. Regulators around the
world have also recognized the challenges
involved with AI algorithms when applied to
medicine and most countries have initiated efforts
to develop policies tailored for SaMD. Many of
them share the core principles of designation of
risk, review clinical evidence to demonstrate effi-
cacy and safety, practices to incorporate evolving
AI systems.

Table 7 Emerging commercial products

Product Vendor Year URL

GI Genius AI Medtronic/Cosmo
Pharma

2019 https://www.cosmopharma.com/products/gi-genius

EndoBRAIN-
EYE

Cybernet 2020 https://www.cybernet.jp/english/documents/pdf/news/press/2020/
20200129.pdf

CAD-Eye Fujifilm 2020 https://www.fujifilm.eu/eu/cadeye

Ai4Gi Ai4Gi 2016 https://ai4gi.com

UltiVision DocBot 2018 https://www.docbot.co/gastroenterology-and-health

DISCOVERY Pentax 2020 https://www.pentaxmedical.com/pentax/en/95/2/DISCOVERY-new

ENDO-AID Olympus 2020 https://www.olympus.no/medical/en/Products-and-Solutions/
Products/Product/ENDO-AID.html

SOMA Augere Medical 2018 https://augere.md
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6 Summary and Conclusions

In this work, we have introduced the application
of automated data analysis for GI endoscopy, and
presented an overview on detection and segmen-
tation based approaches to tackle challenges like
large lesion miss-rates and interobserver variabil-
ity. Recent studies have shown that deep computer
vision-based approaches seem to have the poten-
tial of improving the accuracy and overall perfor-
mance in GI endoscopy by providing fully
automated CAD systems acting as an additional
digital eye. Nevertheless, there are still several
open issues and challenges which need to be
addressed before automatic analyses can be use-
fully integrated into clinical practice. These
should be regarded as issues requiring research
attention in the field.
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