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Abstract

In the last years, there has been a tremendous growth in the use of Internet services. In particular, the
world-wide web and applications like News- and Video-on-Demand have become very popular. Thus,
the number of users, as well as the amount of data each user downloads from servers in the Internet, is
rapidly increasing. The usage of multimedia data to represent information in a user-friendly way is one
important reason for these two developments. Today, contemporary mid-price personal computers are
capable of handling the load that such multimedia applications impose on the client system. However, the
potentially (very) high number of concurrent users that download data from Media-on-Demand (MoD)
servers represents a generic problem for this kind of client-server applications.

In MoD servers, the data retrieval operations represent a severe bottleneck, because the clients con-
currently retrieve data with high data rates. We have developed a new architecture for MoD servers
that maximizes the number of concurrent clients that a single server can support. Traditional bottle-
necks, like copy operations, multiple copies of the same data element in main memory, and checksum
calculation in communication protocols are avoided by applying three orthogonal techniques: (1) the
zero-copy-one-copy memory architecture removes all in-memory copy operations and shares a single
data element between all concurrent clients; (2) the network level framing mechanism precalculates the
transport level checksum and thereby removes most of the communication protocol execution overhead;
and (3) the integrated error management scheme removes the redundant error management functionality,
i.e., eliminating the parity data encoding costs in a forward error correction scenario.

Our performance measurements show that a lot of resources within the server are freed for other
tasks, i.e., enabling more concurrent clients, when using our proposed improvements for streamed mul-
timedia data. The broadcasting scheme eliminates identical data elements in memory while keeping the
start-up delay at a minimum, i.e., an unlimited number of users may retrieve data from the number of
streams broadcasted from our server. Furthermore, we achieve throughputs of 1 Gbps (limited by the
network card) using our zero-copy data path. The amount of CPU time is reduced by approximately 35
%. The communication protocol processing overhead is almost eliminated with network level framing
which reduces the checksum procedure by at least 95 % and gives a total server speed-up of a factor of
two. Finally, our integrated error management performs the parity data encoding operation off-line, and
the parity information is retrieved together with the application data from the storage system at transmis-
sion time. This means that the potential encoding bottleneck is eliminated. If this operation would be
performed at transmission time, our measurements show a maximum throughput of 25 Mbps in a gigabit
environment. Thus, our server supports a high number of broadcasted streams to an unlimited number
of clients, and the number of concurrent streams is increased by reducing the resource usage for each
stream.
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Chapter 1

Introduction

Distributed multimedia systems and applications presenting audio and video data are still in their infancy,
but they already play an important role and will be one of the cornerstones of the future information
society. A Media-on-Demand (MoD) server stores multimedia data like video and audio and offers
playback services to remote clients. Thus, the data retrieval operations represent a severe bottleneck,
because multiple clients concurrently retrieve data with high data rates. In this thesis, we aim to optimize
the input/output (I/O) data path of multimedia servers and thereby improve their I/O performance.

1.1 Motivation and Background

In the last decade, there has been large growth in interest in the Internet and the World Wide Web
(WWW). The number of users is increasing rapidly, and the same trend will probably continue in the
future. At the same time, the availability of high performance personal computers and high-speed net-
work services has increased the use of distributed multimedia applications like News-on-Demand (NoD),
Video-on-Demand (VoD), internet protocol (IP) telephony, video conferencing, distributed games, digital
libraries, and asynchronous interactive distance education. These kinds of applications have become very
popular and will be an important part of the future, network-connected information society.

Seen from the users’ point of view, these applications can support two types of communications:
synchronous and asynchronous. Synchronous communication is often called real-time communication,
because information is exchanged between users in real-time, i.e., all users using the distributed applic-
ation can be geographically separated, but must use the application at the same time. Asynchronous
communication allows indirect information exchange, i.e., users can be separated in time and space. The
information is thus often stored on a server, and the information is then retrieved asynchronously by a
client or information consumer.

However, despite the rapid advances in hardware technology, operating systems and software in
general are not improving at the same speed [109]. Due to this speed mismatch, traditional operating
systems provide inadequate support for large scale MoD server applications. Providing services like
playback of video and audio to a potentially large number of concurrent users for a rapidly growing
class of I/O-intensive applications requires careful management of system resources. One of the main
problems is transferring data from disk to network through the server’s I/O data path, i.e., from disk
to the buffer cache in the file system, from the buffer cache to the server application memory area,
from the application to the communication system memory where network packets are generated, and
from the communication system to the network card. In this data path, there are several factors that
strongly limit the overall system throughput, e.g., disk I/O, bus speed, memory bandwidth, and network
capacity. Each subsystem uses its own buffering mechanism, and applications often manage their own
private I/O buffers. This leads to repeated cross domain transfers, which are expensive and cause high
central processing unit (CPU) overhead. Furthermore, multiple buffering wastes physical memory, i.e.,
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the amount of available memory is decreased reducing the memory hit rate and increasing the number of
disk accesses.

1.2 The INSTANCE Project

The work presented in this thesis is performed in the context of the Intermediate Storage Node Concept
(INSTANCE) project1 [70, 128]. In this project, we focus on an MoD application scenario as shown
in Figure 1.1 where data is asynchronously transmitted between information provider and information
consumer. This means that we put an MoD server with a persistent storage device somewhere between
the data capture devices and the client systems that will request the data asynchronously. Our MoD server
should be applicable for small and medium scale companies like city-wide cable companies or pay-per-
view companies. Whether our approach is beneficial for large scale, world-wide systems is subject to
future research.

. . .

. . .

. . .

. . .

. . .

. . .

Network

Multimedia Storage Server

Network

Media-on-Demand server:
Applicable in applications like News- and
Video-on-Demand provided by city-wide
cable and pay-per-view companies

-  Communication protocol processing
-  Error management
-  Memory management

Data retrieval is the bottleneck!
Some important performance factors:

-  reduce resource requirements both per-client
and per-data element, and thereby maximize
the number of concurrent clients

Goals:
Optimize performance within a single server, i.e.:

Figure 1.1: Application scenario.

The operation of fetching data from disk and sending it out through the communication system to the
network is the main bottleneck for the MoD server in a multi-user scenario. The objective of our project
is to minimize the overhead in the common case operation of storage nodes, i.e., the data retrieval. We
identify and eliminate the possible bottlenecks of the existing operating systems by improving the design
of traditional server-based systems. However, the potentially (very) high number of concurrent users that
download data from the MoD servers represents a generic problem for this kind of client-server applic-
ations. It is a well known fact, that operating systems are not getting faster as fast as hardware [109],
and that commodity operating systems represent the major performance bottleneck in MoD servers. The
crucial issues that contribute to this situation include copy operations, context switches, multiple copies
of the same data element in main memory, and checksum calculation in communication protocols [129].
There are basically three orthogonal approaches for this problem:

1. Develop an architecture for a single server that makes optimal use of a given set of resources, i.e.,
maximize the number of concurrent clients a single server can support.

1This research is funded by the Norwegian Research Council, the Distributed IT Systems program under contract number
119403/431.
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2. Combine multiple single servers, e.g., in a server farm or cluster, to increase the amount of re-
sources and thereby scale up the number of concurrent users.

3. Make use of multiple single storage nodes in the distribution infrastructure as proxies.

We concentrate on the first approach developing a new server where we make optimal use of a given
set of resources. We especially look at the bottlenecks pointed out above, and thereby try to minimize
resource requirements both per-client and per-data-element. By reducing the resource requirements, we
hope to increase the number of clients supported concurrently by our MoD server. Thus, the task of
reading data from disk and transmitting it through the network to remote clients with minimal overhead
is our challenge and aim. In the next section, we therefore look at some of the limitations of traditional
I/O systems.

1.3 Limitations of Traditional I/O Systems

Retrieving data from disk in a server, transmitting it through the server operating system, and onto the
network for reception at a remote client is a costly operation, especially in a multi-user scenario where
each client requests a high data rate stream. Thus, moving data between different protection domains
along the I/O-pipeline and processing them through the different subsystems and communication proto-
cols is very time consuming. Some of the bottlenecks are:

• Data is retrieved from disk and copied several times between different memory address-spaces.
This copying is not a hardware constraint, but it is imposed by the system’s software structure and
its interfaces.

• Different parts of the end-system, i.e., the server and client machines, may add processing costs.
These overheads include data touching operations, like checksum calculations and encryption, and
non-data touching operations, such as network buffer manipulation, protocol specific processing,
operating system functions, and error checking.

• There is redundancy in the functionality of different subsystems. Buffer management is performed
by both the file system and the communication system, and error management is performed by
both a disk array controller and the communication system.

• A lot of concurrent users might request the same data, i.e, one single data element is processed by
the same subsystem several times.

Thus, the traditional I/O system is an end-system bottleneck for supporting high bandwidth, networked
multimedia applications. Next, we state some claims based on system analysis and literature work, and
we give a short overview of our contributions, before we end the chapter with the thesis outline.

1.4 Claims

This thesis focuses on mechanisms to increase the I/O performance of an MoD server running on a
personal computer (PC) or a workstation. To do so, we have looked at the system functionality and
how it works to find potential bottlenecks. Based on this analysis and some literature work, we state the
following claims for a server system with concurrent users in the context of an MoD application:

Claim 1: Error management is a potential, but removable, bottleneck.
Error management should be applied to deliver a correct set of data to the clients in order to
have a reliable service. Existing retransmission-based schemes usually require a large amount of
buffer space to hold unacknowledged data in memory in case of retransmissions, and in the case
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of multi-user scenarios, the processing of large amounts of feedback information is very resource
consuming. On the other hand, forward error correction (FEC) based schemes require costly parity
encoding operations for each transmitted stream on the server side. Thus, both schemes impose
large overheads on the server.

Claim 2: Memory copy operations are a potential, but removable, bottleneck.
Different buffering mechanisms and separate address spaces for different subsystems are used by
the operating system, for instance, to support different functionality and to achieve protection and
security. Regardless of the various benefits, moving data from the kernel memory region to the
application buffer in user space, and vice versa, are expensive operations for various reasons. For
example, the bandwidth of main memory is limited, and every copy operation is effected by this.
Additionally, a lot of CPU cycles are consumed for every copy operation, and data copy operations
affect the CPU cache(s).

Claim 3: Concurrent clients represent a potential, but removable, bottleneck.
Traditionally, each concurrent client requires its own set of the system resources, and when provid-
ing popular services accessed by a (very) large number of users, there might be shortage in the
server capacity to provide services to all clients. On an overloaded machine, we can experience
client reneging due to long startup delays waiting for available resources or service refusal by the
server.

Claim 4: Transport level checksum operations are a potential, but removable, bottleneck.
The transport level communication protocol ensures end-to-end data delivery. However, each time
a client retrieves data from a server, the data is processed through the communication system pro-
tocols executing the same operations on the same data element several times, i.e., for each client.
Data touching operations making data flow through the CPU constitute most of the processing
time sending data from disk to network in a server machine.

Claim 5: By removing the mentioned bottlenecks, the operating system is no longer a critical component.
Traditional memory management, communication protocol processing, and error management rep-
resent some of the most time consuming and resource exhausting elements within the server side
operating system. Removing these operations, the operating system will be able to process data
faster through the system than today’s standard off-the-shelf hardware devices can handle, e.g.,
faster than a disk can deliver data to the operating system and faster than the network card can
receive and forward to the network.

1.5 Contributions

The key idea of this thesis is to satisfy and prove the claims above by avoiding the mentioned bottle-
necks. Thereby we improve the server performance and reduce the resource requirement both per-data-
element and per-client. This is achieved by combining the following three orthogonal techniques in a
new architecture:

• Integrated error management scheme: When transferring data from disk in a server through the
network to remote clients, the correctness of the information is checked multiple times, i.e., the
error management functionality is redundant. In INSTANCE, we integrate the error management
in a disk array and a FEC scheme in the communication system. Opposed to the traditional data
read from a redundant array of inexpensive disks (RAID) system where the parity information is
only read when a disk error occurs, we retrieve also the redundant error recovery data. All data
is passed over to the communication system, where the parity information from the RAID system
is reused as FEC information for the original data. Thus, by using the same parity information in
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both subsystems, the FEC encoder can be removed from the server communication system, and
both memory and CPU resources are made available for other tasks.

• Zero-copy-one-copy memory architecture: Memory copy operations have been identified as a bot-
tleneck in high data rate systems. Several zero-copy architectures [129] removing physical data
copying have been designed to optimize resource usage and performance using shared memory,
page remapping, or a combination of both. These approaches reduce resource consumption of in-
dividual clients, but concurrent clients requesting the same data require their own set of resources.
Traditional broadcast or multicast is an easy way of dealing with per client resource allocation, but
start-up delay might be a problem. To minimize the start-up delay, a couple of broadcast partition-
ing schemes are proposed [129]. Still, zero-copy and delay-minimized broadcasting only reduce
the per-data or per-client resource usage, respectively. To optimize both, we integrate both mech-
anisms to have no physical in-memory copy operations and to have only one shared copy of a data
element in memory.

• Network level framing (NLF) mechanism: To reduce communication protocol processing work-
load, we regard the server as an intermediate node in the network where only the lower layers of
the protocol stack are processed. When new data is sent to the server to be stored on disk, our
idea is to only process the packet through the lowest three protocol layers and store the resulting
transport protocol packet on disk. When data is requested by remote clients, the transport level
packet is retrieved from disk, the destination port number and IP address are filled in, and the
checksum is updated (only the new part for the checksum, i.e., the new addresses, is calculated).
Thus, the end-to-end protocols which perform the most costly operations in the communication
system, especially the transport level checksum, are almost completely eliminated in our MoD
server.

As one can see, our solutions do not consist of only new mechanisms. Some are already well known in
the field of computer science. However, there are no existing designs integrating the mechanisms as we
propose today, and we have combined and tested them in one integrated system which, to the best of our
knowledge, is unique.

To see the performance gain of our mechanisms, we have implemented a prototype in NetBSD2. The
integrated error management frees the storage node from all resource intensive error management tasks
by using precomputed parity data. Furthermore, the FEC decoding time at the client is relative to the
number of network errors, and a worst-case simulation shows that the code is capable of decoding a 3.5
Mbps video in Digital Versatile Disk (DVD) quality on several machines and architectures. The removal
of copy operations reduces the amount of needed memory and CPU resources, and minimizes the time to
transmit data. We show that the zero-copy data path increases the number of concurrent clients that can
be supported, and the NLF mechanism further reduces the resource requirement per-stream. Combined
with our in-kernel data path, the kernel time, i.e., the amount of time spent on the CPU by the operating
system kernel itself, is reduced by 66.18 - 75.95 % depending on the transport level packet size.

In summary, we show that the INSTANCE approach can improve the I/O performance of a single
storage node at least by factor of two. Our architecture, which combines these three techniques, appears
to be a unique and leading solution to the I/O performance problem in MoD scenarios.

1.6 Outline

The rest of this thesis describes the design, implementation, and evaluation of our proposed mechanisms
to improve performance of an MoD server, and is organized as follows:

2NetBSD is a derivative of 4.4 Berkeley Software Distribution (BSD) operating system and is chosen because the source
code is freely available, the kernel is continuously under development, there are a high number of users, and the BSD source
code tree is well documented (for example in [100]).
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• Chapter 2 gives a brief overview of multimedia applications and some essential background on
multimedia systems.

• In Chapter 3, we provide some background information and a short state-of-the-art summary of
existing mechanisms dealing with the bottlenecks addressed in our project, i.e., error management,
memory management, and communication protocol processing.

• The design of our mechanisms is presented in Chapter 4 where we use some of the previous
designs as a starting point. We also address implementation issues and show how we have realized
the concept in NetBSD.

• Chapter 5 describes the performance measurements carried out on our implemented mechanisms.
We first look at each mechanism by itself, before we analyze the total server speed-up using a
combination of the proposed system enhancements.

• In Chapter 6, we summarize and conclude our results and outline directions for future research.

• For the interested readers, we include two appendixes. They contain details about the testbed
and the implementation details of the measurement probe, and we present the results from some
initial performance measurements used to verify bottlenecks and to estimate performance gained
by removing the bottleneck. Thus, the appendixes are a supplement and should be used for further
information.

• Finally, there is an appendix defining prefixes and abbreviations used in this thesis.

In Chapters 3, 4, and 5, we have chosen to structure the content in accordance to the three mechanisms,
i.e., one section for each mechanism, and at the end of each chapter, we look at how different parts of the
system can be integrated.
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Chapter 2

Multimedia Systems

The explosive growth and popularity of the WWW has greatly enlarged the number of users, and it has
also provided a glimpse of the computer systems and dominate applications of the future. Image-based
content has become an integral part of the user interface, but the use of multimedia data like audio and
video is still in its infancy [146]. In the future, multimedia applications will be an important part of
the information society spanning from e-commerce via interactive games and on-Demand services to
distance learning. This revolution in multimedia applications will, however, not become a reality unless
the supporting technology develops at the same speed.

In this chapter, we give a short outline of typical multimedia application requirements and how to
support such services. Next, we look at different types of multimedia applications, and then we describe
the requirements a multimedia stream imposes on a system in Section 2.2. Section 2.3 describes typical
access patterns. In Section 2.4, we look at the multimedia environment in particular. Section 2.5 points
at some research issues, and we summarize the chapter in Section 2.6.

2.1 Multimedia Applications

Multimedia applications exhibit a wide variety of characteristics, and can be classified based on several
different criteria. For instance, such applications can be either synchronous, such as videoconferencing,
or asynchronous, like NoD or VoD. The asynchronous applications can be further classified according
to the degree of possible user interaction, leading to a range of different application classes [28, 146].
At the one end, we have the non-interactive applications like broadcast video in a pay-per-view service.
This application is used by broadcasting companies, as a substitute for the ordinary video player, and for
the end-users no interaction is possible. All playout control is performed by the server. MoD applica-
tions are a slightly more complex application type where a potentially large number of viewers retrieve a
video over a large geographically dispersed area. Near-VoD applications allow the users to start watch-
ing at specific times by batching requests to minimize the number of concurrent streams transmitted
from the server. A more advanced application is true-VoD that allows the users to start watching at any
time and to perform arbitrary video cassette recorder (VCR) interactions, i.e., the server will perform
separate retrieval and transmissions for each of these requests. The most advanced multimedia applic-
ations, with respect to user interaction, are the applications presenting complex multimedia objects, for
example stored in a multimedia database system. Such applications include applications like Learning-
on-Demand (LoD), distributed games, and virtual reality, and they are characterized by a high degree of
user interaction. In games and virtual reality, the user interactions may vary between all users, i.e., the
viewing of images is not sequential, and any adjacent picture may be viewed next [146]. LoD interac-
tions include VCR-type operations and navigating between different (parts of) presentations and through
complex composite multimedia documents composed of several different data streams [98].

In this thesis, we have primarily looked at MoD-like applications transmitting video and/or audio
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on demand as shown in Figure 1.1. Data is uploaded to a multimedia storage server and later requested
and retrieved by several concurrent clients. Today, there exists several such applications. For example,
broadcasting companies like NRK [199], TV2 [205], BBC [178], and CNN [180] offer NoD services
with audio and video on-line, but they are best effort services, and data is presented at a poor quality. It is
these kind of applications we aim to improve. Hence, in the following subsections, we will concentrate
on the requirements these applications impose an a multimedia server and briefly describe how to support
such services.

2.2 Multimedia Requirements

Due to real-time delivery requirements, multimedia applications are fundamentally different from tradi-
tional text-based applications. The multimedia objects have a high data rate and require much storage
space. Some examples of these requirements are [151]:

• Audio in pulse code modulation coded compact disk quality uses 16 bit samples at 44.1 KHz with
two stereo channels. This gives a bandwidth requirement of 1.35 Mbps and a storage requirement
of 607.50 MB for one hour of audio.

• Video in the European phase alternating line standard uses 24 bits per pixel and 25 frames per
second. Assuming no compression and a resolution of 640 × 480 pixels, this gives a bandwidth
requirement of 175.78 Mbps and a storage requirement of 77.25 GB for one hour of video. Using
high-definition television this requirement must be increased by a factor 5.33. However, most
playback applications use a compression codec like moving picture expert group (MPEG). MPEG-
1 strives for a data rate of about 1.2 Mbps whereas MPEG-2 is targeted for bit streams up to 40
Mbps. The current DVD standard uses MPEG-2 and has an average video bit rate of 3.5 Mbps
and a maximum bit rate of 9.8 Mbps. After system overhead, the maximum rate of combined
elementary streams (audio + video + sub-picture) is 10.08 Mbps [184, 194]. A one hour video in
DVD format gives a storage requirement of about 1.54 GB assuming average bit rate.

To see the total impact of these requirements for a typical MoD application, consider for example an NoD
server presenting the latest news from CNN or BBC. Assume data is presented in DVD quality with an
average bandwidth requirement of 3.5 Mbps for video [184, 194] and that the most popular clip is about
3 minutes long, i.e., 78 MB video data. Suppose 1000 concurrent clients continuously retrieve data from
this news clip until the clip is replaced with more up-to-date information. Imagine that the server reads
and transmits 64 KB of data each time which means that this process is repeated seven times each second
for every clients. If all data is held in memory for each client, 192 KB (64 KB in each subsystem, i.e.,
file system, application, and communication system) of memory is needed per client, which is 187.5 MB
totally for all concurrent clients. Some of the data in memory may be shared in the file system buffer
cache, but on the other hand, data may be queued in the communication system disabling buffer reuse
making our assumptions valid. In addition to the memory requirement itself, each process of reading
and sending data requires two kernel accesses (system calls), one buffer cache lookup (and a possible
disk access), two copy operations, processing data through the communication protocols, and queuing
each packet in the limited-sized output queue for the network card. Thus, there are several possible
bottlenecks running a multi-user MoD server. When adding more clients and additional video-clips, the
server workload will increase even more. Later in this thesis, we will go back to this example and see
how performance and resource requirements can be optimized in this application scenario.

As we can see, storing multimedia data requires large storage space. Furthermore, data must be de-
livered to the user’s display at its playback rate without glitches. To provide such services to a potentially
large number of concurrent users for a growing class of I/O-intensive applications, Quality-of-Service
(QoS) support is necessary. In this context, “QoS is a quantitative and qualitative specification of an
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application’s requirement, which a multimedia system should satisfy in order to achieve desired applic-
ation quality”1 [95]. Based on this definition there are two aspects: applications or users specify QoS
requirements, and systems provide QoS guarantees. For example:

• The throughput offered per stream must be at least the data consumption rate of the transmitted data
(unless data is buffered). This is typically 3.5 Mbps for DVD quality video data. This means that
all components in the data path from server to client must support the data rate of the transmitted
data.

• The start-up latency must be small to avoid clients reneging, i.e., all components in the data path
must use a minimum of time to process data through the system.

• To have a hiccup free presentation, there must be no jitter in the data stream. For example, a person
detects a skew in the data delivery of ± 80 ms in lip synchronization, and data arrival differences
between two stereo audio streams above ± 11 µs are detected [151]. Jitter between blocks within
a single stream is detected likewise. Thus, to minimize the time difference in data delivery, access
to resources along the data path must be guaranteed.

• The failure of a system component to deliver the requested data may lead to loss of client good-
will. Thus, reliability and availability must be ensured by replication of data in the distributed
environment using a back-up system and by error correcting schemes to reconstruct any damaged
data during transmission.

Even though we concentrate on improving performance, the QoS requirements are still important in
our research, because they describe the requirements in terms of needed resources. However, providing
resource reservations and access guarantees are beyond the scope of our work.

2.3 MoD Data Access Patterns

In most MoD applications, the access frequency of the multimedia files follows the Zipf distribution
[146]. This means that a small set of the available data files are viewed by a large number of the concur-
rent users, i.e., some multimedia objects have a very high access frequency whereas others are less often
accessed. The degradation in access frequency is often dependent on the age of the object, e.g., the top
ten video rentals (in a VCR rental store or a VoD scenario) are often the newest movies, or dependent
on the time of day, e.g., children’s programs. Nevertheless, there are usually some data objects that are
more popular than others which means that the access patterns can be used for optimization, because the
same operations will be performed on the same data for all concurrent clients retrieving the same data.

Furthermore, in contrast to complex applications, like LoD where several data streams might be
retrieved and synchronized per client, each client accesses one data file at a time in VoD or NoD systems.
Additionally, the playout is usually from start to end without major requirements for seek, rewind, and
forward operations. Although VCR operations may occur, they are few, and more importantly, they
are read-only [66]. This simplifies the mechanisms needed to enhance system performance, because
data is never updated (by remote clients), and we therefore restrict our investigations to non-interactive,
read-only access patterns.

2.4 The Distributed Multimedia Environment

In spite of the complexity of multimedia applications, the multimedia server environment can be built
from only three main components [146], i.e., the client, the network, and the server. Each component

1There is no generally accepted definition of QoS at the moment, and a lot of other definitions exists, e.g., [80], [165]. The
important property of the term is that QoS defines characteristics that influence the user’s perceived quality of an application.
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consists of different subcomponents and subsystems. Figure 1.1 shows a scenario with one single server
transmitting many concurrent streams from the server to different, geographically separated users. Thus,
all the components along the data path must support the requested service.

The client represents the physical devices at which users playout the multimedia data, and most
contemporary mid-price personal computers are capable of handling the load a multimedia application
imposes on the system. The network connects the end-systems and is responsible for reliable and efficient
transportation of data and control signals. The network support for high data rate multimedia streams is
still not sufficient, at least not in the Internet, if the data is to be transmitted over large distances. However,
the networks are improving and broadband services offering bit rates up to 10 Mbps are available to
some end-users in Norway today [179]. Finally, the multimedia server itself is responsible for storing
and retrieving data from the storage system and sending it to the remote clients via the network.

At the server side, there are a lot of issues to be dealt with, because, as opposed to the client system
handling only one stream (or very few streams), the server deals with a large number of clients at the
same time. Each client requires a high data rate, real-time service, and a challenge is therefore to support
multiple users on a given set of hardware.

To increase the capacity of a single multimedia server, there are basically three approaches as de-
scribed in Section 1.2: (1) optimize performance within one machine, (2) combine multiple machines
into a server farm, and (3) use proxies. The two first approaches may give a server model which has

Network

Origin Server

Network

Proxy Server

Network

Proxy Server

Network

Network

Figure 2.1: Distributed server environment.
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a single point of failure. The single machine may crash, or the network connection to the server farm
may break. Therefore, proxies are often used to increase the reliability and the scalability of MoD sys-
tems, i.e., use multiple machines in the distribution infrastructure (see Figure 2.1). Data is replicated and
cached somewhere in the distribution chain between information provider and information consumer,
i.e., the proxy offloads the origin servers by serving clients directly from the proxy with the cached data.
This reduces the problem of startup latency, jitter, and data corruption caused by many hops during data
transmissions over long geographical distances and increases reliability and accessibility.

2.5 Research Issues

Designing, implementing, and running a multimedia server supporting video and audio presentations is
a challenging task, because of the high resource requirement and the timing constraints. Hence, there are
a lot of challenges and bottlenecks to be solved before such a system can be supported in a wide-area or
global context. For example, the whole system including network and end-systems must support reser-
vations and access guarantees, and appropriate mechanisms to ensure the reservations are not violated
and the timing requirements are fulfilled must be provided. The network capacity must be increased to
allow multiple concurrent users to retrieve and playout a high-data rate video from a remote server, and
the routers must deal with congestion with respect to real-time and non-real-time traffic. Furthermore,
proxies save time and resources when transmitting data over longer distances, but there are several issues
determining where to put a proxy and which data elements to cache. Should the caches cooperate or be
independent of each other, and how is data uploaded to a proxy? Which request should be routed to a
particular machine depending on the current (and future expected) load? In the case of overloading the
network and the intermediate nodes, appropriate adaptation mechanisms should be applied, and we have
to address the issue of transport control protocol (TCP) friendliness, i.e., a TCP-friendly stream is sup-
posed to back off in a similar way as TCP in case of congestion. Finally, within the end-systems (server
and client machines), the challenges are many. Assured services are required and the server capacity
should be increased with respect to the number of concurrent users. All the different subsystems like
file system, server application, and communication system process data differently resulting in memory
copy operations and replication of data in each subsystem and per-client. Device scheduling algorithms
are different depending on hardware characteristics. For instance, a disk must take into consideration the
seek time to move the head, rotational latency to position the head, and transmission time to read/write
the data. These operations depend on the data placement on disk when determining the order of the disk
operations to optimize efficiency. Additionally, the request deadlines are also important to avoid jitter
and thereby poor playouts. As each stream requires a large set of resources, the number of concurrent
clients that simultaneously can be serviced by one single machine is strongly limited by the given set of
hardware and the way the resources are used by the system. Thus, all resources in a multi-user system
can be scarce, especially in a multimedia system, and attempts should be made to try to minimize the
amount of resources a single stream needs. At present, most of the work in this area has focused on small
parts of the system itself. However, there are still unsolved questions and a large challenge is to integrate
appropriate mechanisms for all subsystems into one integrated multimedia system.

The research area of MoD application support is huge, and in addition to the above mentioned areas,
general topics like pricing, security, content search, etc. are important. However, in this thesis, we
focus on the server and strive to optimize the common case operation, i.e., the task of reading data from
the storage system and transmitting it through the network to remote clients with minimal overhead.
Consequently, we use the data access characteristics to analyze and improve the whole data path through
the server end-system. However, even though our focus is on the server machine, we will in later chapters
also briefly discuss topics that relate to the network and the client, because all these components are
closely coupled. The mechanisms used to support efficient and reliable services are therefore influenced
by the characteristics of all devices along the data path.
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2.6 Summary

In this chapter, we have provided background information describing various issues in the design of an
MoD server. In particular, we described the requirements of presenting multimedia data in an MoD
scenario, what this imposes on a system, and possible solutions to deal with high resource requirements
and scalability problems. As mentioned above, we concentrate on developing a new architecture for
single server machines to increase the I/O performance. However, proxies are confronted with the same
scalability problem as MoD servers: a successful caching strategy can lead to the situation that a high
number of concurrent clients has to be served by a single proxy. Servers and proxies do not only share
the scalability problem, they also use exactly the same operating system mechanisms to retrieve stored
multimedia data and transmit it to receivers. Our mechanisms, originally designed for the origin server,
are therefore also suitable in the proxy operating system, because the same hardware and software is
used [146].

Much research has been done in the area of resource reservations, access guarantees, and optimiza-
tion of resource usage and performance. The next chapter gives a brief overview of existing work in the
areas of reducing resource requirements and minimizing the processing overhead of transmitting data
from disk to network in a multimedia server. To provide resource reservations and access guarantees by
appropriate scheduling algorithms is beyond the scope of our work and is therefore not presented in this
thesis.
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Chapter 3

State-of-the-Art and Related Work

The objective of this thesis is to support asynchronous communication between information provider and
information consumer in server-based systems supporting MoD-like services. We identify and eliminate
possible bottlenecks in traditional systems that consist of off-the-shelf components with special focus on
the three following factors: (1) memory management, (2) communication protocol processing, and (3)
redundant functionality, i.e., buffer and error management.

To understand how the system works, to find the possible bottlenecks, and to see possible, existing
solutions dealing with the three identified bottlenecks pointed out above, we provide some background
information and a short state-of-the-art summary of existing mechanisms in this chapter. Section 3.1
describes error management mechanisms and background related to this area. Section 3.2 gives an over-
view of traditional memory management in (UNIX-like) operating systems and optimization solutions
reducing copy operations and memory usage. In Section 3.3, we describe designs that improve the
communication protocol processing overhead like packet generation and checksum operations, and we
discuss and conclude the chapter in Section 3.4.

3.1 Error Management

When transferring data from a remote server in a distributed environment, several components along the
data path may fail and introduce errors. To offer an “error-free” service, error detection and correcting
schemes are used in several subsystems, i.e., in the storage system and the communication system. Dif-
ferent components cause errors due to different reasons, and the number of errors vary depending on
the reliability of the component and the transmission media. Thus, the correctness of the information is
checked multiple times, and the functionality is redundant.

An error free system cannot be guaranteed, i.e., we can only improve the chances of correct trans-
mission. If too many bits within the block are corrupted, the receiver might receive a legal, but incorrect,
data block and not be aware of the fact that an error has occurred [65, 137]. Nevertheless, to ensure that
the information received at the client has a high probability of being the same as that transmitted, there
must be some way for the receiver to deduce at a high probability if the received information contains
errors. In this section, we describe different error models and error-handling schemes in both the storage
system and the communication system, and we look at the possibility of integrating the redundant error
recovery functionality of the different subsystems.

3.1.1 Error Models

When deciding which error management scheme to use in a system, we have to look at the kind of errors
occurring in the environment where data is transmitted. In the next subsections, we have gathered some
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device characteristics and have looked at some works describing loss and data corruption measurements
to get an overview of typical error rates.

3.1.1.1 Error Patterns in Storage Systems

The primary medium for long-term on-line storage of data is the magnetic disk [77, 145], because it
survives power failures and system crashes when data already is correctly written to disk, and because
it is faster than other persistent storage devices like tape devices. Although disk failures are much less
frequent than other system errors, the disk devices themselves may sometimes fail, and thus, data is lost.
For example, the top-end small computer scalable interface (SCSI) disk drives of Seagate (Barracuda
and Cheetah disks) [202] and Western-Digital Enterprise disks [207] have a mean time between failure
of at least 106 hours. Furthermore, the Seagate disks have a seek error for every 107 − 108 bits read and
a recoverable error rate of 1 in 1010− 1011 bits accessed. The Seagate and Western Digital disks have an
unrecoverable error rate1 of 1 in 1014 − 1015 bits accessed and 1013 − 1014 bits accessed, respectively.

However, when retrieving multimedia data for several different streams each requiring a high band-
width, and as the gap between processor and I/O performance increases in general, the magnetic disk
does not provide the required data rate [77]. Therefore, disks combined in an array increasing perform-
ance and improving reliability by striping data among several disks, are often used to store data for delay
sensitive applications on high performance storage servers. However, each disk in the disk array may
introduce the disk errors described above, and as the number of disks increases, the mean time to disk
failure also increases. If a disk has a probability p of failure, an n-disk disk array system has a probability
n×p of failure using the same disks.

3.1.1.2 Error Patterns in Communication Systems

Transmitting a data element across a network can introduce various kinds of errors. Mainly, there are
two kinds, i.e., bit errors and packet loss, which are both described in the two next sections.

Bit Errors All the various transmission media have their own typical error source [68], and a trans-
mitted bit stream may therefore be damaged and corrupted by different sources inverting the bits. Any
signal carried on a transmission medium is affected by:

• Attenuation reducing the signal. As the signal propagates along the transmission medium, its
amplitude decreases making it harder to decode the received signal (especially if each signal carries
more than one bit).

• Noise changing the transmitted value. For example, errors are generated when unpredictable elec-
trical signals from other electrical equipment interfere with the transmitted electrical signal on
wired electrical transmission lines and disturbances like bad weather scramble the transmission of
wireless channels via satellite, radio, or terrestrial microwave links.

• Bandwidth (or the transmission speed) where the number of bits affected by noise increase with
higher bandwidth.

• Distortion caused by the varying signal receiving delay. Two adjacent signals can interfere giving
wrong values when one signal arrives late or early.

1The exact interpretation of what is meant by an uncorrectable error is somewhat unclear, e.g., does the read operation
actually generate errors or do the errors occur during write operations and become evident when the data is read? Nevertheless,
disk manufacturers generally agree that reading data from a disk is very unlikely to cause permanent and uncorrectable errors.
Most non-recoverable errors are generated because data is incorrectly written or because the magnetic media is gradually
damaged as it ages [35].
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The number of bit errors introduced into the bit stream, depends on several different parameters like
the underlying network technology and the length of the network. Wired networks are today usually
very reliable. For example, the 10BASE-T (Ethernet) allows a bit error rate of 1 in 108, but typical
performance is 1 in 1012 or better [175]. 100BASE-T and 1000BASE-T both perform with less than one
erroneous bit in 1010 [185]. Wireless networks are more prone to noise than wired networks, and bit
errors are therefore more common. Some frequencies are more susceptible to atmospheric disturbances
such as rain attenuation, and mobile receivers may be more vulnerable to distortion and shadowing, e.g.,
blockage by buildings. Typical bit error rates in satellite networks are in the order of 1 error per 107 bits
or less [4].

Packet Loss In addition to the bit errors caused during the transmission, whole packets may be lost,
e.g., due to congestion in the routers, and this is today the overwhelming cause of loss [127]. The queuing
buffer in an intermediate node or at the receiver might be full when receiving a packet, and it is therefore
not able to store more packets resulting in an overflow. Furthermore, a router that has failed causes the
other routers in the current network topology to alter the routing-path mid-stream, i.e., packets might
be lost during the update of the routing tables where the congestion delay usually scales from hundreds
of ms to several seconds and even up to several minutes [123]. In [19], MPEG video is transmitted
over the Internet using the user datagram protocol (UDP) over IP. The average packet loss rates vary
between 3% to 13.5% with greater loss rates during periods of high network activity. Packet loss also
varies with the packet size where larger packets exceeding the maximum transfer unit (MTU) size have
a higher loss rate, because if one fragment is lost the whole IP packet is lost. If no buffering or other
means are taken to re-order out-of-order packets before decoding, further loss can be experienced. On
average, 1.7% to 15.4% of the packets arrive out-of-order. However, a majority of the late arrivals are
delayed by one packet only, i.e., a small buffer might solve out-of-order arrival due to network jitter or
varying delays in different network routes. Moreover, measurements of packet loss transmitting (low
rate, up to 64 Kbps) audio data between southern France and London is presented in [17]. Consecutive
losses up to 30 packets are reported both for unicast and multicast connections, but the vast majority is
a loss of one or two consecutive packets. Furthermore, in a study described in [170], the packet loss
in an MBone multicast network, transmitting small packets of audio data, is measured. On average,
the losses in the backbone links are small compared to the loss seen by a receiver at each site where
there is usually a significant amount of small burst (consecutive) and isolated single losses. Only a few
long bursts, i.e., spanning over 100 packets, of congestion loss were observed. As we can see, some
packets are often discarded transmitting data to a remote client, and the number of packet loss is highly
dependent on several different parameters like the capacity of the networks and the nodes, the number
of hops (intermediate nodes), and time of day. However, there is no well defined model describing how
packets are lost, and although the above described results vary somewhat, the broad conclusion is that
some receivers will experience packet loss [127]. Furthermore, as the Internet grows larger, it will be
harder to measure and characterize its behavior [124], because the network changes quickly, and the
amount of heterogeneity increases.

3.1.2 Error Detection and Correction Mechanisms

As we can see from Section 3.1.1, different subsystems have different error models, and thus, different
error management schemes are applied according to the kind of errors present in the subsystem. Next,
we present some traditional error management codes, and then we look at typical recovery schemes for
the storage system and communication system using either some of the traditional codes or new codes
adapted to special error models.
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3.1.2.1 Traditional Codes

We have seen that errors in a computer system might occur due to different reasons, and to improve the
accuracy of a data transmission, certain types of coding schemes are used. These schemes vary depending
on the kind of errors that appear. In this thesis, we differentiate between erasures where the exact position
of the damaged data is known and errors2 which are corrupted data with unknown position. Since the
position of damaged data is known in erasures, they are easier to correct than errors. Furthermore, in
error management mechanisms, a frame normally consists of some data bits (or groups of bits called
symbols, i.e., a symbol is a fixed size data element used in the coding operations as a single unit) and
some redundant check bits (or symbols). The combined message unit containing both information data
and redundant data is called a codeword.

In general, two basic ways of dealing with corrupted data are developed [159], i.e., error detection
and error correction. The former strategy includes redundant information in the codeword to only allow
the receiver to deduce that an error has occurred, and the latter strategy also includes enough information
to find the location of the error and to correct it. The error detection and error correction properties of
a code depend on its Hamming distance [68, 159], i.e., the number of bit positions in which two code
words differ. In general, the more redundancy there is in the code word, the more errors can be detected
and corrected. In particular, to detect d errors, a code with Hamming distance d + 1 is needed, and to
correct d errors, a Hamming distance of 2d + 1 is needed in the code.

To ensure that the information received at the client has a high probability of being the same as
that transmitted, there must be some way for the receiver to deduce at a high probability if the received
information contains errors. Several error detection and/or correction schemes suitable for different error
models exist and are described in the literature (see for example [35, 65, 68, 137, 145, 159]). Various
important properties of some of these codes are shown in Table 3.1, and below, a short overview is given
for these codes3 .

Systematic† Memoryless‡ Reported use

Block Yes Yes Storage and Communication system

Convolutional No No Communication system

Turbo Yes Yes Communication system

Tornado Yes Yes Communication system

†The encoder produces a codeword that explicitly contains the information block
‡The code operates on a fixed length block of information bits

Table 3.1: Traditional error recovery codes.

A block code [65, 68, 137, 159] is an error detection/correction code that operates on a fixed length
block of information bits. The bit stream is broken up into k-bit blocks, and (n - k) check bits are
added producing an n-bit codeword. An often used type of cyclic block code, i.e., codes where every
cyclic shift of a codeword is also a codeword, is the Reed-Solomon code [130, 137], which works on
the non-binary symbols 0, 1, . . . , pm−1 drawn from the Galois field, GF (pm), which is a finite field.
The code parameters are often given in the form of “(n, k) over GF (2m)”, where m is the code symbol
in bits, n = 2m − 1 is the maximum block size in number of code symbols, and k is the number of
data symbols per block (k < n). The error correcting ability of the code then depends on n - k, i.e., the
number of parity symbols in the block. In pure erasure correcting mode, the decoder can correct up to n
- k symbol erasures per block, and in the pure error correcting mode, the decoder can recover from up
to (n - k)/2 symbol errors. If we have both errors and erasures, the decoder can restore the data block if

2The term error will also be used when we have damaged data in general whether the location is known or not.
3The basic mathematical principles and elements of coding theory are out of the scope of this thesis and are therefore not

described here. For further information, see for example [65, 137].
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(2 × #errors + #erasures) < (n - k). A special class of Reed-Solomon codes are Reed-Solomon Erasure
codes where only erasures, not errors, can be corrected. This speeds up the coding process, and an (n, k)
erasure code guarantees that a successful receipt of any k of n symbols enables a complete reconstruction
of the source data [29, 136].

Block codes are memoryless codes as each output codeword depends only on the current n-bit mes-
sage block being encoded. In contrast, with a convolutional code [182, 68, 137], the continuous bit
stream is operated upon as a sliding window of data bits to produce an encoded, continuous stream of
output bits. Each bit in the output sequence is dependent not only on the previous bit, but also on the
previous sequence of source bits, thus implying some form of memory. A convolutional coder consists of
a k-stage shift register where k is also the constraint length of the coder. Input data bits are shifted into a
shift register one bit at a time, and the convolution operation is performed using one or more exclusive or
(XOR) gates. For each bit shift, the encoder produces v alternating XOR sums as output bits, and a coder
putting out v bits per input bit is called a rate 1/v coder. An example of a rate 1/2 3-stage shift register
encoder is displayed in Figure 3.1 where the bits shifted into the SR1 and SR3 registers are used to
produce output bit c1, and the bits shifted into the SR2 and SR3 registers produce output bit c2. The aim
of the decoder is to determine the most likely output sequence given the transmitted bit stream, which
may have errors. The decoding procedure is equivalent to comparing the received bit sequence with all
possible sequences that may be obtained with the respective encoder and then selecting the sequence
closest to the received sequence. Such a decoding solution works well for short codewords, but as the
length of the codeword increases, the number of possible bit sequences increases exponentially [182].
The most used solution for identifying the correct sequence and at the same time minimizing the number
of comparisons is the Viterbi (maximum-likelihood) decoding algorithm [182, 68, 137].
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Figure 3.1: Example of a rate 1/2 3-bit shift convolutional encoder.
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Figure 3.2: Turbo codes [193].

Convolutional codes are again used in turbo codes [46, 193] (see Figure 3.2). A turbo code uses two
convolutional codes in parallel and data interleaving to increase correction capability and performance
compared to traditional convolutional codes. Turbo codes can also be regarded as a block code, because
it takes an information block and generates two sets of parity data (horizontal and vertical) using con-
volutional codes. Likewise, the Tornado codes [29, 96, 97] are linear-time erasure codes for increasing
performance of erasure correcting block codes like Reed-Solomon Erasure. The code has n message
bits and βn check bits and is defined by arranging these bits in a bipartite graph which has n left nodes
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and βn right nodes corresponding to the message bits and check bits, respectively (see Figure 3.3). This
means that the graph defines the mapping from message bits to parity bits. However, this code is not
able to recover from all losses regardless of their location. This problem is solved by cascading the code
which means more redundant data. However, the encoding and decoding speed of a Tornado code is
reported to be faster than other previous software-based schemes and should be an appropriate solution
for high bandwidth, real-time applications [96].
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Figure 3.3: Tornado coding and decoding [96].

3.1.2.2 Storage Systems Recovery

Even though errors in a disk-based storage system are very infrequent, the disk controller attaches check-
sums to each sector derived from the data that is written to detect errors during read operations retrieving
data from disks. When data is read, the checksum is computed again and compared to the stored value.
If an error occurs, the controller will retry to read data several times until the data block is correctly read,
but if the error continues to appear, the controller will signal a read failure [145]. Thus, transient errors,
e.g., caused by dust on the head, and seek errors can often be corrected by the controller re-reading the
data, but permanent errors, e.g., physically damaged disk blocks, will cause a data loss if no other error
recovery mechanism is used.

As mentioned earlier, one single disk cannot deliver data fast enough for a high data rate server,
and if the single disk gets corrupted, data will get lost. This has lead to I/O systems that increase
performance and reliability through disk parallelism using techniques like data striping. A variety of
disk-organizations have been proposed where the different levels of RAID organizations [35, 119, 145]
are often used to address both the performance and the reliability issues. The obvious solution to restore
data if a disk fails is to introduce redundant data for error recovery. Adding error correcting information
can be done in several ways, and in the case of RAID, the various levels manage errors differently (see
also Table 3.2):

• RAID level 0 is only a general disk array and has no redundancy, i.e., errors will not be corrected,
and we lose data in case of an error.

• RAID level 1 uses the simplest form of error correction. Each disk is duplicated which means that
the storage system has two copies of every data element. Thus, if one disk fails, the data element is
read from the other disk, i.e., no other redundancy is used. This approach is also called mirroring.

• RAID level 2 - 6 make use of error correcting codes to recover from different kinds of errors.
Parity information is computed, often by using an XOR calculation, to detect and correct errors.
The main difference between these RAID levels is whether the information is bit (level 2/3) or
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block (level 4/5/6) interleaved and if all parity information is located on one (or more) predefined
parity disk(s) (level 2/3/4) or distributed (level 5/6) among all the disks. Level 6 adds additional
redundant information to recover from two errors at the same time.

Parity unit Parity location Recovery capability

Level 0 None None None

Level 1 Mirroring Disk duplicating One

Level 2 Bit Predefined disk One

Level 3 Bit Predefined disk One

Level 4 Block Predefined disk One

Level 5 Block Distributed One

Level 6 Block Distributed Two

Table 3.2: RAID levels.

If an error is detected reading a disk block, the disk controller first tries to re-read the disk block
as described above in a single disk scenario, but if the block is not correctly read, the error is corrected
according to the error correction scheme in the used RAID level. Since the controller knows which
disk failed or gave an error, the XOR parity and the remaining data from the other disks can be used to
determine bit values of the lost data.

In today’s RAID solutions, an XOR error correction scheme is usually applied for reliability, but, in
addition to the standard error mechanisms in the RAID levels, some other error management schemes
are proposed for disk arrays in general or as improvements of the RAID mechanisms. For example,
the EVENODD [12] double disk failure scheme uses a two-dimensional XOR parity calculation which
shows good results regarding redundant information overhead and performance, and in [77], the problem
of designing erasure-correcting binary linear codes protecting against disk failures in large arrays is
addressed. Several two-dimensional erasure-correcting solutions are presented capable of correcting
multiple disk failures. However, due to the good reliability of a disk array capable of recovering from
two disk failures, there is no need for x-disk-correcting disk array where x ≥ 3. Reed-Solomon RAID
systems are described in [130] where m disk failures can be recovered by applying m redundant disks.

Work is also performed with the aim of increasing performance of the error correction scheme. For
example, the performance of write operations, where both application and parity data might be read,
updated, and written back to disk, is increased in [103, 154]. Moreover, decreasing the time to recover
from a failure or the ability to recover without taking the system down are issues addressed in [11, 75, 76].
However, in this first step towards an integrated error management scheme, only the coding scheme itself
and its correcting capability are of interest to us. Thus, increased storage performance of an integrated
error scheme will be a future research issue.

3.1.2.3 Communication Systems Recovery

As we can see from Section 3.1.1.2, there are a lot of sources of errors in the communication system, and
loss caused by congestion in the intermediate switches (erasures) and impulse noise (errors) need to be
dealt with differently [99]. This is because noise is of short duration and should have no lasting effect on
error rate, i.e., only the bits affected by the noise may be damaged. Congestion, on the other hand, may
last for a while making the problem even worse. However, irrespective of the kind of errors that occur, a
mechanism is needed to obtain a copy of the (hopefully) correct information, and there are basically two
approaches for achieving this [10, 17, 68]:

• Feedback error control, also called automatic repeat request (ARQ), in which information is added
to enable the receiver to detect an error but not the location. A retransmission control scheme is
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used to request another copy of the required data where each retransmission adds at least one
round-trip time (RTT) of latency.

• Forward error control where additional information is included so the receiver cannot only detect
an error, but also determine where the error is located. The error is then corrected by inverting
the corrupted bits, or the packet is reconstructed entirely in the case of packet loss. FEC trades
bandwidth for latency to improve packet damage/loss rate, i.e., by transmitting more redundant
information.

In communication systems, error control is often performed by error detection followed by a retransmis-
sion, i.e., feedback error control, because it is usually more efficient. We need more redundant data to be
able to correct a corrupted data element rather than only detect the error, and to minimize the amount of
data to transfer to a remote client, only an error detection scheme is usually applied requesting a retrans-
mission if an error is detected. Furthermore, wired networks have improved regarding error rate making
the redundant error correction information even more unnecessary, because fewer retransmissions will
be requested. Due to both bit errors and packet loss, it is on average more efficient to use feedback error
control and then retransmit the package in case of an error compared to transmitting (possibly unneeded)
error correcting data.

The Internet checksum feature was chosen to detect errors in a packet by the Internet community in
the late 70’s after experiments on the ARPANET [155]. The checksum is included in packets so that er-
rors encountered during transmission may be detected [20]. The checksum is computed by treating each
16-bit field as an integer and adding them all together using 1’s-complement arithmetic. The checksum
is then the 1’s-complement (inverse) of the sum. This checksum will catch any burst error of 15 bits or
less, and all 16 bits bursts except those which replace one 1’s-complement zero with another, i.e., 16
adjacent one bits replace 16 zero bits or vice versa.

However, the Internet checksum feature does not detect all errors, and retransmissions are not always
preferred (see Section 4.1.1), e.g., in delay sensitive applications like real-time multimedia applications.
Therefore, the attractiveness of FEC has changed during the past decades, and several different codes
have been used. Convolutional codes with Viterbi decoding have been the de facto standard for over
30 years, and it is a good scheme for correcting randomly occurring errors. It has been a preferred
method for achieving FEC in data communication systems [68], and it is used in many real-world sys-
tems [137], especially in satellites and space communications where it is efficient for short constraint
lengths (k ≤ 7) codes [182]. There exist several hardware implementations of turbo codes [46, 193]
for satellite and wireless links [177, 206]. Furthermore, the Internet Engineering Task Force (IETF) re-
cently standardized a particular scheme [126] for audio data where a low quality copy of the data is sent
as redundant data in subsequent packet(s) [15]. Finally, Reed-Solomon codes are also used for FEC in
communication systems where for example simplified Reed-Solomon codes correcting only erasures are
used in asynchronous transfer mode (ATM) networks [6, 10, 99, 150] to reduce the damage caused due
to congestion loss in broadband wide area networks and real-time environments.

A major difficulty when using FEC is to choose the right amount of redundant data in changing
network condition scenarios, and it is usually not sufficient to only consider the mean packet loss ratio
as for example outlined in Section 3.1.1.2. The nature of the loss process has an impact on the recovery
technique performance where different users in a multi-user environment experience different kinds of
losses. Furthermore, a FEC scheme is only able to correct a certain number of errors, and no FEC
methods can identify all errors. In general, codes like the convolutional code are primarily used to
reduce the error probability of a link to a more acceptable level. A typical reduction with a rate 1/2
convolutional code is between 102 and 103. Hence, assuming an ARQ error control procedure is also
being used, the overall link efficiency is much improved [68]. In scenarios where a higher level of
reliability is required than a single FEC scheme can assure, a hybrid ARQ scheme [32, 67] might be
appropriate combining FEC and ARQ. Type I hybrid ARQ is like a traditional FEC scheme, but if data is
not recoverable, a retransmission is executed. Type II hybrid ARQ is like a traditional ARQ scheme, but
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parity data is first sent when a retransmission is required, and when data is not recoverable, the packet
itself is retransmitted. Both hybrid ARQ types are currently not considered, because they impose higher
CPU time and memory demands onto the server than pure FEC to assure a degree of reliability that is
higher than needed in our current scenario. However, the suitability of these hybrid schemes in large
scale systems, e.g. NoD over the Internet, is subject to future research.

3.2 Memory Management

In a traditional server based system, there are several different subsystems within the operating system
which all are running in their own protected domain (address space). Executing a request from a remote
client, involving data transfers from disk to network adapter, makes the data path through these differ-
ent subsystems critical. Due to different protection mechanisms, data is usually copied or moved at a
high cost from domain to domain to allow the different subsystems to manipulate the data where each
subsystem might add processing costs. This also means that there must be redundancy in the different
subsystems where, for example, mechanisms for buffer management must be performed in both the file
system and the communication system. Finally, the different subsystems are not adapted to each other
to guarantee services and optimize server performance, e.g., the buffer structures used in the file system
cannot be used when processing data through the communication protocols. Thus, in an MoD server
supporting a large number of users, the transport of very large amounts of data through the I/O pipeline
in the end-system will make a lot of cross-domain data transfers, and each subsystem therefore represents
a potential bottleneck [128].

Consequently, designing a high performance MoD server requires additional investigation to address
the above mentioned problems. To achieve an optimal utilization of system resources and to be able
to support a maximum number of clients, support for QoS should be added to all system components.
However, lately, quite a lot of work has been done to optimize the performance of operating systems
in general. Several systems have attempted to reduce data touching overhead when performing I/O
operations. Data touching overheads include those operations that require processing of data within a
given buffer such as checksumming or copying data from one buffer to another [161]. Previous efforts
of improving performance include for example restructuring operating system software to minimize
data movement and copying between different protection domains. Data-touching overhead is most
significant for large I/O transfers [84], and thus, reducing these costs can have considerable benefits for
operations like video and audio transfers over high speed networks.

In this section, we first take a look at the traditional I/O architecture of current UNIX systems, and
then we describe different models of transferring data. Furthermore, we look at some “new” approaches
for reducing memory copying, and we describe some work minimizing either the per-client or per-data-
element resource usage.

3.2.1 Traditional I/O Architecture

A typical layered architecture of the I/O-pipeline of current UNIX operating systems is depicted in
Figure 3.4. The storage I/O-system is responsible for storage and retrieval of digital data, e.g., video
and audio, on/from persistent storage media, and the data (file) management system provides file system
services executing requests from the application retrieving data from the storage I/O-system and manages
buffering. The application management system handles requests from clients and passes data to the
communication protocols. End-to-end communication protocols provide services like error control, flow
control, and other QoS related services, and the host-network interface transfers data between the end-
systems and the network, i.e., in most cases the host-network interface provides services in the data link
layer and the physical layer.
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Figure 3.4: Critical data path in server-based systems.

Common user-level applications access the file and network I/O system services through the read()
and write() system calls for data transfers, respectively. These system calls work on descriptors. For
file I/O, the open() system call produces a descriptor by opening a file, and the socket() system
call performs the same task in the case of network I/O. The close() system call is used to deallocate
any descriptor [92].

3.2.1.1 Buffer Management in the Application

No support is provided in UNIX systems for buffering and caching at the user level. Applications are
expected to provide their own buffering and caching mechanisms, and I/O data is usually copied between
the operating system and the application buffers during read and write operations.

3.2.1.2 Buffer Management in the File System

Storage devices are accessed through the file system interface which in turn consists of several layers.
The top layers, i.e., virtual file system layer of the Network File System [158] and the local file system
layer of the local operating system, provide file system services like data organization and file naming.
The bottom layer, controlling the storage devices, is the device driver. This layer allows accesses in
terms of fixed sized blocks that are an integral multiple of the smallest possible block on the disk (disk
sector).

Within the operating system, there are a lot of I/O operations, and if every data request results in
real disk accesses, the CPU would spend most of its time waiting for I/O to complete. However, in
addition to managing the memory that buffers data being transferred from disk, the buffer cache avoids
expensive disk accesses by acting as a cache of recently used disk blocks. In a typical UNIX system, over
85% of the implied disk operations are served by the buffer cache where the requested blocks already
reside in the buffer cache [92]. Whenever a read request is performed, the buffer cache attempts to find
the requested data in the cache. If it is successful, a disk transfer is avoided and the buffer is returned.
Otherwise, a new buffer is allocated (or if none is available, old buffers are deallocated and freed for
reuse) and passed to the device driver which copies the data into the buffer.

All data transfers between applications and storage devices through the file system interface use
the buffer cache, and both the data and the control path goes through the described layers: data is first
retrieved from disk by the device driver, copied into the buffer cache, and subsequently copied from
the buffer cache into the application buffer. Thus, the traditional UNIX file I/O system is a bottleneck
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for supporting high bandwidth data transfers in networked multimedia applications. It is designed for
traditional text and binary file accesses, and in this case, the buffer cache and the memory buffer (mbuf)
facilities work efficiently. The performance gains due to minimized disk traffic makes the cost of keeping
data in the buffer cache and the extra cost of copying data from cache to application buffer is negligible.
However, multimedia data like audio and video, as used in an MoD scenario, do not benefit from the
caching provided by the file system buffer cache [36]: (1) they need a large amount of memory space,
and (2) the retrieved data is relevant only for a small amount of time. Due to a limited amount of
buffer space, the multimedia data is often replaced before it can be reused. Consequently, only processes
reading the same data in a short time interval are able to use the cached data. Therefore, retrieving
data through the buffer cache usually does not provide any benefits in a high bandwidth, networked
multimedia application. For example, NetBSD usually uses between 5-10 % of the memory for the buffer
cache. On our 256 MB test machine (see Section 5.1 and A.2), 13168 KB memory is originally used
for caching disk data. Streaming one single MPEG-2 video file to two concurrent clients at an average
DVD bit-rate of 3.5 Mbps [184, 194], the cache can only hold about 30 (29.4) seconds of video data,
i.e., if the system is to benefit from caching, there must be no longer that 30 seconds between the starting
points of these two clients. Adding more streams and concurrent clients will make the caching effect
even less. This also means that complex data replacement techniques (paging algorithms) in the buffer
cache for multimedia applications, like for example distance [174], least/most relevant for presentation
(L/MRP) [104], QoS-L/MRP [69], generalized interval caching [49], and SHR [83], will have no effect
on our MoD server, because we will have no caching effect and are actually not using, i.e., bypassing,
the buffer cache in the proposed data path.

The poor performance of demand paging due to disk access speeds and the necessity of prefetching
data from disk to memory to support continuous playback of time-dependent data types is described
several places in literature, e.g., in [69, 104, 107, 160]. Prefetching is a mechanism to preload data
from slow, high-latency storage devices such as disks to fast, low-latency storage like main memory.
This reduces the response time of a data read request dramatically and increase the disk I/O bandwidth.
Applications with a lot of interactions may benefit from mechanisms using access patterns of linked data
structures [141], statistical access trees [93], or automatic hint generation [34]. In the case sequential
operations as in our MoD scenario, some kind of a simple read-ahead mechanism [8, 31, 69, 104, 120,
173] will be efficient.

3.2.1.3 Buffer Management in the Communication System

Data is sent to the network through the communication system. This subsystem consists of three sub-
layers: the socket layer which provides an interface to the application, the protocol layer performing com-
munication protocol specific operations, and the network interface layer managing the network hardware
interface.

The requirements placed on the memory management scheme by interprocess communication (IPC)
and network protocols tend to be very different from those of other parts of the operating system like
the file system [92]. Therefore, a special purpose memory management facility called the memory buffer
(mbuf) is used which is designed for both fixed sized data structures such as sockets and protocol state
blocks as well as for variable sized structures like communication protocol packets. Mbufs are usually
128B long4 with 112B reserved for header and application data storage. For larger messages, data may
be associated with an mbuf by referencing an external page. An offset and a length field in the mbuf
header allows routines to trim (packet header/trailer) data efficiently which provides flexibility to add
data to and delete data from a message in the communication system. Furthermore, the provision for
mapping pages into an mbuf avoids physical memory copy operations between mbufs. Data is moved

4In NetBSD version 1.5 and later, the size of an mbuf is 256 B to allow more data in one single mbuf [196]. This is because
the traditional size of 128 B can make problems in the communication systems using maximum packet header sizes, i.e., both
TCP and IP headers of 64 B results in header data spanning several 128 B mbufs.
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by remapping page table entries associated with the physical pages. In addition, the same page may be
mapped to multiple mbufs to share the same data block avoiding several identical physical copies.

However, even if no physical copying is necessary between mbufs, two copy operations are needed
to transfer data along the data path between application and network interface. Data is first copied from
the user level buffers to the kernel level mbuf facility, and then, the data is further copied into buffers on
the network interface card.

3.2.2 Models of Data Transfer

Data transfers between protection domains usually require moving (or copying) data from one memory
location to another, and the system performance is greatly affected by implementation issues like whether
to use a physical or virtual data transfer:

• A physical transfer involves moving data in physical memory where each byte of data is moved
from the source domain’s physical memory to the destination domain’s physical memory. These
transfers promote flexibility, because the transfer granularity size is a byte. Thus, we can transfer
data from source to destination of any size to any location. However, this flexibility is overshad-
owed by the high overhead in space and time. First, more memory space is needed to store each
copy of the data. Second, a physical transfer is very time consuming. Two memory accesses are
needed to read and write, and each memory-access instruction takes more time than instructions
that do not access memory5. This overhead is insignificant for small data transfers, but when trans-
ferring a large video object through several domains, i.e., several copy operations, this additional
workload degrades the system performance by increasing delay and decreasing throughput.

• A virtual transfer involves moving data in virtual memory. Instead of moving data in physical
memory, only the addresses to the data elements in physical memory are mapped into the destina-
tion domain’s address space (virtual memory). The transfer granularity size is the physical page.
Since entire pages are the actual units of transfer, the data’s destination address must have the same
relative offset from page boundary as the source address. Furthermore, the destination space must
be large enough to store the number of transferred pages which usually needs more space than the
data itself (fragmentation), i.e., unless the data size is exactly a multiple of pages. However, when
large amounts of data are transferred between different protection domains, the reduced memory
space requirement and the performance gain using virtual transfers instead of physical copying
overcome the poor flexibility and the risk of fragmentation.

Using either physical or virtual data transfers, there are three different models for transferring data
between different protection domains as shown in Figure 3.5 [121]. These are the copy model, the
move model, and the share model which are described further below:

domain
Source
domain

Destination

Data data
Copied

domain
Source
domain

Destination
domain

(c) Data transfer by sharing

Shared
data

(b) Data transfer by moving

domain
Source

(a) Data transfer by copying

Destination

data
Moved

Figure 3.5: Different models for data transfer between protection domains.

5This gap is getting even larger as for example the RISC architectures continue to allow CPU speed to scale much faster
than memory speed [121].
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• The copy model (Figure 3.5a) copies all the data from one domain to another, i.e., an exact copy
resides in both the source and the destination domain. Generally, physical transfers apply to the
copy model, but in the case of read-only data6, virtual transfers between domains could also be
used, i.e., a virtual copy maps the transferred pages into the destination address space and do not
affect the mappings in the source address space.

• In the move model (Figure 3.5b), data is removed from the source domain and placed in the destin-
ation domain. This model avoids maintaining several identical copies of the same data in memory
at a time, but in cases when the source later needs to access the data again, e.g., by handling a
retransmission request, data must be fetched back into the source domain. Physical moves do not
make much sense in the move model since erasing data in the source domain introduces additional
costs. A virtual move is used where the transferred pages are mapped into the destination address
space and unmapped from the source.

• The share model (Figure 3.5c) makes the transferred data visible to both the source and the target
domain, i.e., regions in both the source and the destination domains’ address space are mapped
to the same physical pages. They might both access the same data, and modifications made by
a process in one domain will be visible to other processes in other domains. This model has the
advantage of virtual copying, because the source does not lose access to the data. Thus, no data
copying is required which may increase system performance. However, modified transferred data
may cause problems in other domains. Since these modifications are asynchronously seen from
the process point of view, explicit synchronization mechanisms might be necessary. This will in
turn make programming more complex and can propagate errors across domains.

Which mechanism to use depends on the amount of data to transfer, the cost of copying and remap-
ping, and the functionality to be obtained. In large multimedia systems where large amounts of data are
transferred throughout the system, physical copying will take up too much system resources and should
therefore be avoided, i.e., even virtual remapping with copy-on-write (CoW) which performs a physical
transfer if the data is modified is not appropriate. Thus, since data still may be manipulated in several
subsystems, virtual page remapping often has move rather than copy semantics. However, this requires
another data transfer in the case that the sender needs to further access the data. Measurements shown
in [53], indicate that page remapping alone is not fast enough to support the bandwidth of a high-speed
network adapter. Finally, shared virtual memory avoids data transfers and its associated costs altogether,
but its use may compromise protection and security between sharing protection domains. Thus, a com-
bination of shared memory and virtual remapping may give the efficiency of shared memory and the
flexibility and protection of virtual remapping.

3.2.3 Reducing the Number of Memory Copy Operations

Traditionally, there are several different possible data transfers and copy operations within an end-system
as shown in Figure 3.6. These often involve several different components. Using the disk-to-network
data path as an example, a data object is first transferred from disk to main memory (A). The data
object is then managed by the many subsystems within the operating system designed with different
objectives, running in their own domain (either in user or kernel space), and therefore, managing their
buffers differently. Due to different buffer representations and protection mechanisms, data is usually
copied, at a high cost, from domain to domain ((B), (C), or (D)) to allow the different subsystems to
manipulate the data. Finally, the data object is transferred to the network interface (E). In addition to
all these data transfers, the data object is loaded into the cache (F) and CPU registers (G) when the data
object is manipulated or copied.

6If a process modifies the data, a new physical copy must be made. However, such copy-on-write mechanisms are often
complex compared to simple physical copying schemes.
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Figure 3.6: Data transfers and copy operations.

Figure 3.6 clearly identifies the reason for the poor performance of the traditional I/O system. Data
is copied several times between different memory address spaces which also causes several context
switches. Both, copy operations and context switches represent major performance bottlenecks. Further-
more, the different subsystems, e.g., file system and communication system, are not integrated. Thus,
they include redundant functionality like buffer management, and several identical copies of a data ob-
ject might be stored in main memory, which in turn reduces the effective size of the physical memory.
Finally, when concurrent users request the same data, the different subsystems might have to perform the
same operations on the same data several times.

Many designs have been proposed to improve I/O performance in operating systems (see [129] for
a state-of-the-art overview), and the concept of avoiding unnecessary physical data copying is not new.
In this section, we take a closer look at existing designs and implementations for optimizing throughput
and reducing the number of data transfers along the I/O pipeline. We distinguish between three types
of copy operations: memory-CPU, memory-device, and memory-memory. Solutions or mechanisms
improving performance for these types of copy operations have been developed for both general purpose
and application specific systems, and below, we take a closer look at some of these designs.

3.2.3.1 Memory-CPU Transfers

Data manipulations, like encryption, compression, error detection and correction, and presentation con-
version, are time consuming and are often part of different, distinct program modules or communication
protocol layers, which typically access data independently of each other. Consequently, each data ma-
nipulation may require access to uncached data resulting in loading the data from memory to a CPU
register, manipulating it, and possibly storing it back to memory. Thus, these repeated memory-CPU
data transfers, denoted (F) and (G) in Figure 3.6, can have large impacts on the achieved I/O band-
width. To decrease the number of memory-CPU data transfers, integrated layer processing (ILP) [2, 39]
performs all data manipulation steps, e.g., calculating error detection checksums, executing encryption
schemes, transforming data for presentation, and moving data between address spaces, in one or two
integrated processing loops instead of performing them stepwise as in most systems. Thus, data will be
moved between memory and the CPU only one time.

Memory-CPU transfer optimizations like ILP increase efficiency if there are a lot of data touching
operations being performed. However, in our MoD scenario, we try to eliminate all data touching opera-
tions. ILP will have no effect on performance in our system and will therefore not be considered for the
data copy avoidance mechanism design.
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3.2.3.2 Memory-Device Transfers

Along the I/O pipeline, data is transferred between hardware devices, such as disks or network adapters,
and applications’ physical memory. This is often done via an intermediate subsystem, like the file system
or the communication system, adding an extra memory copy. A mechanism to transfer data without
multiple copying is direct I/O, which in some form is available in several current commodity operating
systems, e.g., Solaris and Windows NT. The most used techniques are direct memory access (DMA) and
programmed I/O (PIO) [52]:

• DMA implies that the I/O adapters transfer data directly from and to main memory without in-
volving the CPU. Transfer rates close to the limits of the main memory and the I/O bus can be
achieved by transferring large blocks of data in a single bus transaction. The data transfer can
proceed concurrently with the CPU activity as long as the data needed by the CPU resides in the
cache, i.e., main memory accesses may induce processor stalls during heavy DMA traffic. How-
ever, DMA increases complexity in the device adapters and caches are often not coherent with
respect to DMA transfers.

• PIO requires the CPU to transfer every word of data between main memory and the I/O adapter in
a programmed loop. Thus, two bus transfers are required: (1) when data is streamed from memory
to the CPU and (2) when transferring the data from the CPU to the device adapter (or vice versa).
The CPU is occupied during the transfer, and often, only a fraction of the peak I/O bandwidth is
achieved.

Due to high transfer rates, DMA is often used for device/memory data transfers. However, despite the
reduced bandwidth, PIO can sometimes be preferable over DMA. If data manipulations, e.g., checksum
calculations, can be integrated with the PIO data transfer, one can save one memory access, and after a
programmed data movement, the data may still reside in the cache, reducing further memory traffic.

3.2.3.3 Memory-Memory Transfers

Direct I/O is typically used when transferring data between main memory and a hardware device as de-
scribed above. However, data transfers between different process address spaces are necessary due to
protection and are done through well-defined channels, like pipes, sockets, files, and special devices,
giving each process full control of its own data [100]. For example, the data handled by an application
running on top of a monolithic operating system kernel, must cross the user-kernel boundary. Moreover,
additional user processes and the trend in operating system design towards a kernelized system structure
may introduce additional domain boundaries into the I/O data path [52]. Thus, in the future, it will be
even more important to reduce the costs of data transfers between different protection domains. Never-
theless, such physical copying is slow (see Section B.2) compared to the CPU speed and requires at least
two system calls per transaction, i.e., one on the sender and one on the receiver side.

Several general cross-domain data copy avoidance architectures have been suggested. These archi-
tectures try to minimize or eliminate all (B), (C), and (D) copy operations depicted in Figure 3.6 to reduce
the data transfer costs and thereby increase I/O bandwidth and throughput. We have divided the existing
mechanisms into three groups: (1) general purpose mechanisms supporting all operating system services,
(2) networking mechanisms reducing copy operations in the application-to-network data path, and (3)
application-specific streaming mechanisms transferring data as fast as possible through the system:

Universal Mechanisms: Already in 1972, Tenex [14], a page-based time-sharing system for the PDP-10
system, was one of the first systems to use virtual copying, i.e., several pointers in virtual memory
to one physical page. The pager permits pages to be shared for write as well as read references.
A CoW facility allows users to share address spaces and to obtain private copies of pages which
are changed. Accent [61, 138] generalized the concepts of Tenex by integrating virtual memory
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management and IPC in such a way that large data transfers could use memory mapping techniques
rather than physical data copying. Virtual copying is achieved by sharing the transferred pages
among the sending and the receiving domain, and it delays the copying until one of the sharing
domains attempts to update the shared data unit, i.e., only when a process modifies the page, a copy
is placed in this process’ own address space (using CoW). Furthermore, the V distributed system
[37] supports page remapping using move rather than copy semantics. During the last decade,
several systems have been designed which use virtual memory remapping techniques to transfer
data between protection domains without requiring several physical data copies. An interprocess
data transfer occurs simply by changing the ownership of a memory region from one process to
another. Additionally, there exist several other general purpose mechanisms supporting a zero-
copy data path between disk and network adapter like the DASH IPC mechanism [163], Container
Shipping [7], IO-Lite [110, 111, 112], Genie [23, 24, 25, 26], the universal continuous media I/O
system [41, 43], and UVM virtual memory system [42, 44, 45] which use some kind of page
remapping, data sharing, or a combination. Some of these mechanisms are further described in
Table 3.3A.

Networking Mechanisms: In the case of application-to-disk transfers, direct I/O can often be applied
since the traditional UNIX-like file system usually does not touch the data itself. However, in the
case of application-network transfers, the communication system must generate packets, calculate
checksums, etc., making it harder to avoid the data transfer through the communication system.
Nevertheless, there are several attempts to avoid data touching and copying operations by trans-
ferring data directly between application buffers and network interface, i.e., omitting physical data
transfer through kernel space [9, 18, 40, 47, 51, 54, 87, 149, 162, 171] and reducing the traditional
(B)(E) data path in Figure 3.6 to only (E). Since these mechanisms consider only the application-
to-network data path, these mechanisms are not outlined in detail in Table 3.3, but several different
designs are proposed: (1) Page remapping is used to virtually transfer data to the kernel; (2) PIO is
used to transfer data directly to the network card, and the data touching operations are performed
as the data is transferred through the CPU; (3) outboard protocol processors are used, and data is
transmitted directly to the network card where the packets are generated; and (4) user level com-
munication systems combined with DMA where the packets are generated in user space, and the
packets are copied directly to the network card.

Streaming Mechanisms: In addition to mechanisms removing copy operations in all kinds of I/O, some
mechanisms have been designed to create a fast in-kernel data path from one device to another,
e.g., the disk-to-network adapter data path. These mechanisms do not transfer data between user
and kernel space, but keep the data within the kernel and only transfer it between different kernel
subsystems. This means that target applications comprise data storage servers for applications that
do not manipulate data in any way, i.e., no data touching operations are performed by the applica-
tion. Examples of such mechanisms are the splice() system call [57, 58, 59], the Multimedia
Mbuf (MMBUF) mechanism [28], the stream() system call [101, 102], and the sendfile()
system call [186]. The in-kernel data path is created by transferring data by reference, data sharing,
or copying data directly between descriptors. Some of these mechanisms are further described in
Table 3.3B.

From these three classes of mechanisms, the streaming mechanisms are most appropriate in our scenario,
because they are designed for purposes similar to our desired data-path. The networking mechanisms
fail to support file system services, because only the application-to-network data path is considered
(some of these mechanisms might though be extended). Furthermore, techniques that rely on device-
specific characteristics such as programmable DMA or outboard protocol processors cannot provide
uniform, device independent copy-free I/O, because these mechanisms cannot transfer data that is already
in memory [122], i.e., these mechanisms are more suitable for applications where the user-level process
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manipulates or generates data itself like in a live-video broadcast. The universal mechanisms support
the disk-to-network data path, but the cost of mapping pages into user-space should still be omitted,
because the server application does not need data access as no data touching operations are performed.
Virtual memory remapping is not a simple technique, and it must be used with care to achieve high
performance. Measurements described in [45] show that on data chunks smaller than 4 KB the overhead
of mapping pages to another process might be more expensive than copying the data, i.e., although data
remapping is usually always faster than data copying, remapping also consumes time. This time comes
from kernel virtual memory bookkeeping and from side effects (such as translation-lookaside buffer
flushes) of address space changes [122]. Thus, the streaming mechanisms are most convenient, and we
have therefore summarized the most important properties from some of the streaming approaches in
Table 3.3B.

Table 3.3: Copy avoidance techniques.

(A) Universal mechanisms
Designed to OS Semantic How

DASH IPC Support an efficient message
passing mechanism for IPC.

DASH ker-
nel for Sun
3/50

Move Page remapping. The message header containing point-
ers to possible non-contiguous data pages is physically
copied whereas the data pages are remapped.

Container
Shipping

Data access and transfer pat-
terns of I/O pipelines, in-
crease IPC.

DEC OSF/1
v2.0 UNIX

Move Virtual memory page remapping. Pallets (contigu-
ous virtual memory pages) are wrapped in containers
(ordered set of pallets). Containers are shipped between
domains, and pallets get unloaded (mapped) only if data
are accessed; further gains in performance by selective
mapping of data.

IO-Lite Unify all buffering in a sys-
tem where all processes share
a single physical copy of the
data.

Digital
UNIX
v3.2C

Share
Copy
(CoW)

Shared memory and virtual memory page remapping.
Buffering in all subsystems integrated and a single
physical copy of the data is shared safely and concur-
rently. I/O data is stored in immutable buffers whose
location in memory never change. Access control and
protection through access control lists.

Genie I/O
System
(emulated
copy)

Improving data passing effi-
ciency while preserving copy
semantics.

NetBSD Copy Selective transient virtual memory mappings. Genie in-
puts or outputs data to or from emulated shared buf-
fers in-place. Data is shared by managing reference
counters, and a page is only deallocated if there are no
processes referencing the page. Copy semantic is pre-
served using input alignment and transient output CoW.

UVM Replace the Mach based
4.4BSD virtual memory
system.

NetBSD Move/-
Share/-
Copy¶

UVM provides three new virtual memory based data
movement mechanisms: page loanout, page transfer,
and map entry passing. The memory can be shared,
copied (CoW), and donated (moved). Page loanout and
page transfer allow processes to lend out and receive
pages of memory, i.e., providing a page-level granular-
ity data movement. Map entry passing allows a pro-
cess to exchange chunks of its virtual address space,
i.e., providing mapping-level data movement.

¶All semantics are supported.

(B) Stream mechanisms
Designed to OS Semantic How

MMBUF Remove all physical in-
memory copying when
transferring data from disk
to network. Specially
designed and optimized for
data transfers from disk to
network in an MoD server.

NetBSD Move/-
Share�

Includes both the buffer cache structure and the mbuf
structure in the mmbuf structure. The mmbuf structure
is used by both the buffer cache and the mbuf facility.
For a stream process, a ring buffer of mmbuf chains
are allocated, and two pointers for read and send are
maintained in the buffer ring. These are used to read
data from disk and to send data to the network interface.

continues on next page
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continued from previous page

Designed to OS Semantic How

splice() Copying between all† I/O
objects should be minim-
ized. General data transfers
between both hardware and
software I/O objects

Ultrix 4.2A Move/-
Share?

Removes the traditional I/O interfaces, kernel buffer
sharing, and page remapping. An in-kernel data path
is established where data is moved asynchronously
between I/O objects specified by file descriptors. Phys-
ical block numbers are remapped from the source’s buf-
fer header to the destination’s buffer header.

stream() Remove all‡ physical copy-
ing between I/O devices. De-
signed to support efficient
kernel streaming, i.e., dir-
ect data transfers between
devices without any virtual
memory boundary crossings.

Roadrunner Move Transfers by reference. A new architecture requiring
changes to all I/O systems establishes an in-kernel data
path where data is moved between I/O objects specified
by file descriptors. Uniform buffer representation for all
subsystems allows data transfers with or without trans-
formations, e.g., adding and removing network packet
headers.

sendfile() Minimize copy operations in
a stream scenario. Used
to improve performance in
WWW-servers and -caches
that transmit a file directly
without modifications.

Linux
FreeBSD
HP-UX ++

Move/-
Share?

This call copies a certain amount of data between one
file descriptor and another file descriptor or socket.
After sendfile finishes, the offset is updated.

�The mmbuf structure keeps data pointers to the memory area for both the file system and the communication system (share). However,
the access is sequential. The file system writes data into the buffer, and then the communication system reads and transmits the data.
?The literature does not say anything about the semantic, but it is either move or share (or somewhere in-between).
†The reported implementation supports splices between two file descriptors, between two sockets descriptors, and between a socket
descriptor and a frame buffer.
‡Depending on the input and output block, i.e., if the block size is variable or fixed and if the input block size is smaller or larger than the
output block size, a copy might be required.

3.2.4 Memory Allocation and Increasing Server Capacity by Sharing Resources

Usually, upon process creation, a virtual address space is allocated which contains the data of the pro-
cess. Physical memory is then allocated and assigned to a process and then mapped into the virtual
address space of the process according to available resources and a global or local allocation scheme.
This approach is also called user-centered allocation. Each process has its own share of the resources.
However, traditional memory allocation on a per client (process) basis suffers from a linear increase of
required memory with the number of processes.

In order to better utilize the available memory, several systems use so-called data-centered allocation
where memory is allocated to data objects rather than to a single process. Thus, the data is seen as a
resource principal. This enables more cost-efficient data-sharing techniques in the context of multimedia
systems [63, 89]:

• Batching starts the video transmission when several clients request the same movie and allows
several clients to share the same data stream.

• Periodic services (or enhanced pay-per-view) is a batching policy which assigns each clip a re-
trieval period where several clients can start at the beginning of each period to view the same
movie and to share resources. Such systems are often referred to as near VoD systems.

• Buffering (or bridging) caches data between consecutive clients omitting new disk requests for the
same data.

• Stream merging (or adaptive piggybacking) displays the same video clip at different speeds to
allow clients to catch up with each other and then share the same stream.

• Content insertion is a variation of stream merging, but rather than adjusting the display rate, new
content, e.g., commercials, is inserted to align the consecutive playouts temporally.
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These data-sharing techniques are used in several systems. For example, a per movie memory allocation
scheme, i.e., a variant of the buffering scheme, for VoD applications is described in [140]. All buffers
are shared among the clients watching the same movie and work like a sliding window on the contiguous
data. When the first client has consumed nearly all the data in the buffer, it starts to refresh the oldest buf-
fers with new data. Furthermore, batching multiple requests for the same movie into one logical channel,
i.e., broadcast one single stream to multiple concurrent clients, can significantly reduce the number of
streams required by a multimedia server. However, if the startup delay is large, the probability of client
reneging the playback request increases. In [48], the staggered broadcasting scheme is proposed where
a video broadcast is continuously retransmitted over k distinct channels at equal time intervals. The re-
quest withdraw rate is reduced by setting short batching intervals for popular videos and longer intervals
for videos that are less popular. Refinements of this scheme are for example based on client-side buffer-
ing. Stream tapping [33], patching [79], and gleaning [66] reduce latency by initially starting a separate
stream while tapping into an existing stream at the same time. The data is played out from the initial
stream until data from the tapped stream, which is retrieved at the same time and buffered at the client,
can be used. Periodic services are used in pyramid broadcasting [164]. The data is split into partitions
of growing size, because the consumption rate of one partition is assumed to be slower than the down-
loading rate of the subsequent partition. Each partition is then broadcast in short intervals on separate
channels. A client does not send a request to the server, but instead it tunes into the channel transmitting
the required data. The data is cached on the receiver side, and during the playout of a partition, the next
partition is downloaded. This pyramid scheme has a substantial storage requirement at the client-side. To
reduce the client-side buffering and still have low server bandwidth and startup latency, variations of the
pyramid schemes, like permutation-based pyramid broadcasting [3], skyscraper broadcasting [78], dy-
namic skyscraper broadcasting [55], greedy disk-conserving broadcasting [62], harmonic broadcasting
[82], cautious- and quasi-harmonic broadcasting [116], polyharmonic broadcasting [117], and polyhar-
monic broadcasting with partial preloading and mayan temple broadcasting [118], have been proposed
using more efficient and complex schemes to break up the data stream. For example, the skyscraper
policy uses the same broadcasting idea. However, to avoid very large partitions at the end of a movie,
and thus, to reduce the client buffer requirement, the partitioning is changed such that not every parti-
tion increases in size, but only every nth partition. Harmonic broadcasting reduces the total bandwidth
requirement, by dividing the stream into x equally-sized streams, and data from all streams is received
simultaneously. Nevertheless, performance evaluations show that the data-centered allocation schemes
scale much better with the number of users compared to user-centered allocation [164]. The total buffer
space required is reduced, and the average response time is minimized by using a small partition size at
the beginning of a movie.

The memory reservation per storage device mechanism [64] allocates a fixed, small number of
memory buffers per storage device in a server-push VoD server using a cycle-based scheduler. In the
simplest case, only two buffers of identical size are allocated per storage device. These buffers work
cooperatively, and during each cycle, the buffers change task as data is received from disk. That is, data
from one process is read into the first buffer, and when all the data is loaded into the buffer, the system
starts to transmit the information to the client. At the same time, the disk starts to load data from the next
client into the other buffer. In this way, the buffers change task from receiving disk data to transmitting
data to the network until all clients are served. Admission control adjusts the number of concurrent users
to prevent data loss when the buffers switch and ensures the maintenance of all client services.

In [106], the traditional allocation and page-wiring mechanism in Real-Time Mach is changed. To
avoid privileged users monopolizing memory usage by wiring an unlimited number of pages, only real-
time threads are allowed to wire pages, though, only within their limited amount of allocated memory.
This means that if more pages are needed, a request has to be sent to the reservation system. Thus, pages
may be wired in a secure way, and the reservation system controls the amount of memory allocated to
each process.

31



In our scenario, we try to optimize the data delivery for the most popular movies in a VoD application
or the hottest news clips in an NoD application. Which broadcast protocol to use, depends on the applic-
ation characteristics and the preferences of the system designer. In our system, we want few concurrent
channels per video clip, low download rate for each segment, short startup latency, low receiving rate
at the client, and minimized buffering requirement at the receiver side. However, several of these goals
are contradictory, and we must find a compromise where we find the best trade-offs regarding our server
design. The client requirements are not that important since the client receives data from one video-clip
(possibly at several concurrent channels) at a time, and a modern PC is able to handle such a workload.
Looking at the broadcast protocols above, some kind of periodic service, like pyramid-, skyscraper-, or
harmonic broadcasting, will give a good result where the per-client resource usage is minimized, and the
server workload will be approximately constant. Mechanisms like staggered broadcasting might have a
long startup latency, and stream tapping allows clients to start their own initial streams.

Finally, if we should also support all movies in a VoD database, we might apply a broadcasting
protocol for the top video clips only. If several concurrent clients access a media file not supported by
the periodic broadcasting scheme, resource requirement can still be reduced applying a caching (or data
replacement) strategy like viewer enrollment window [140], distance [174], generalized interval caching
[49], SHR [83], or L/MRP [104, 69] or some kind of stream tapping based scheme [33, 79, 66] for less
popular clips. However, this is subject of future work.

3.3 Communication Protocol Processing

As advances in processor technology continue to outpace improvements in memory bandwidth and as
networks support larger packets, proportionally less time is going to be spent on protocol processing and
related operating system overhead. The I/O data path is the major component of communication costs
and will remain so in the foreseeable future [9]. However, transferring data through the communication
protocols does add costs, even though they are marginal compared to the I/O data path. For example,
235 and 61 instructions are executed to send a packet in the Berkeley implementation of TCP and IP,
respectively [38]. The cost of operations on the data itself like checksum calculation dominate header
and protocol processing and the related operating system overheads [38, 39, 109]. Nevertheless, even
though the communication protocols’ packet processing are not the main bottleneck in the I/O data path,
improvements have been done to optimize the execution of the protocol stack. ILP [2, 39] reduces the
costs related to the strict layering where data is touched in various layers and therefore data is moved
between the CPU and memory many times. In [60], several ways of increasing communication system
speed are described. Most interesting in the context of this thesis are the ideas of reducing the number
of operations to get more efficient algorithms and to eliminate unneeded or replicated functionality. In
the sections below, we take a closer look at some approaches to reduce the overhead of processing data
through the protocol stack.

3.3.1 Packet Generation

From the generation of packet headers for a particular network connection, one can make some general
observations. For example, in the generation of IP packets sent by a particular TCP connection, a 20
B header is added at the front of each packet. 14 B of this header will be the same for all IP packets,
and the IP length, the unique identifier, and the checksum fields (6 B in total) will probably be different
for each packet. In addition, the header might contain a variable number of options. However, most IP
packets carry no options, and if they do, all packets transmitted through a TCP connection will likely
carry the same options. In the Berkeley implementation of UNIX, some of these observations are used to
associate a template with the IP and TCP headers for each connection with a few of the fixed fields filled
in, and Clark et al. [38] have designed a better performance IP layer that creates a template of the header

32



with the constant fields completed. Thus, transmitting a TCP packet on a particular connection involves
calling the IP protocol with the template and the packet length. The template will then be block-copied
into the space for the IP header where the non-constant fields are filled in.

The idea of pregenerating header templates has also been used with TCP. Saltzer et al. [142] designed
the TCP protocol to support remote Telnet login where the entire state including unsent data on the output
side is stored as preformatted output packets. This reduces the cost of sending a packet to a few lines of
code.

3.3.2 Checksum Caching

Checksum calculations are known to be a time consuming operation. In [85], the overhead of checksum
computations is removed by turning off checksums when it is redundant with the cyclic redundancy check
(CRC) computed by most network adapter, and some systems allow previously calculated checksums to
be cached in memory. In [90, 91], a similar approach to NLF is presented where video is preformatted
and stored in the form of network packets. Precomputing and storing the headers is also proposed, and
when the packets are scheduled to be transmitted, the destination address and port number are filled in,
and the checksum is modified. The IO-Lite unified I/O buffering and caching system [112] is optimized
to cache the computed checksum of a buffer aggregate, and if the same data is to be transmitted again, the
cached checksum can be reused. In [134], caching of prebuilt transport level packets, in both end-system
and network nodes, is used for load balancing and to reduce resource usage.

3.4 Discussion and Conclusions

The previous sections present a summary of the much significant works in the area of fast delivery of
multimedia data. Disk arrays and parallel disks in general are used to increase the overall storage system
throughput, whereas different data placement techniques are suggested to increase the performance of
a single disk. To avoid or minimize disk accesses, several caching and prefetching algorithms are pro-
posed, and memory copy operations are eliminated by sharing a memory region between processes or
transferring the memory page to a new process. Moving data between different protection domains along
the I/O-pipeline and processing them through the different subsystems and communication protocols is
very time consuming. Here, we summarize some of the limitations of traditional I/O mechanisms when
they are applied on networked multimedia systems:

• Data is retrieved from disk and copied several times between different memory address-spaces.
This copying is not a hardware constraint, but it is imposed by the system’s software structure and
its interfaces. A prime example is UNIX-based systems which require the physical copying of data
between different protected domains, e.g., user and kernel space [92]. Physical copying is detri-
mental to the performance of operating system and system-related software [121]. Copying and
processing data in different subsystems also introduces a lot of context switches which decrease
the utilization of the CPU. Some copy performance measurements are presented in Section B.2.

• Different parts of the end-system may add processing costs. These overheads include data touching
operations, like checksum calculations and encryption, and non-data touching operations, such as
network buffer manipulation, protocol specific processing (e.g., generating packets and setting
header fields), operating system functions, and error checking. In an MoD system, for instance,
large messages or packets should be used to achieve maximal throughput. However, data touching
operations’ overhead dominate the total processing time7, and this overhead scales approximately

7Non-data touching operations’ overhead is roughly constant and only indirectly affected by message size, i.e., overhead
increases with the number of allocated buffers or fragments into which a message is divided. Thus, the processing time for
large messages is dominated by data touching overhead [84].
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linearly with the message size. For example, using large messages, checksum calculation and data
movement operations can consume about 70% of the total processing overhead time [84].

• There is redundancy in the functionality of different subsystems meaning that different subsystems
perform the same operations or functions. In the data management system and the communication
protocols, for example, buffer management and error handling are often performed by both sub-
systems. This lack of integration requires that several identical copies of a data object are stored
in main memory where the effective size of physical memory is reduced by this duplication which
in turn may affect the hit rate increasing the number of disk accesses.

• A lot of concurrent users might request the same data which means that data could be processed
by the same subsystem several times. This introduces unnecessary overhead and could be avoided.
For example, the network subsystem is forced to recompute the checksum for the network packets
each time a data object is transmitted. Removing the checksum as proposed in [85] is an unfor-
tunate solution, because this may increase the probability of receiving damaged packets. Even
though the link level CRC should catch more errors compared to the transport level checksum,
corrupted packets are frequently not detected by the CRC [156]. This is due to transmission errors
in the end-systems or in the intermediate nodes due to hardware failures or software bugs.

• The subsystems are not adapted to each other to guarantee services and optimize server perform-
ance, e.g., QoS management, size of storage blocks, and protocol data units. In order to be able to
support the requested QoS, all the system components have to support the same QoS. This means
that if one component is not able to support the requested service, it will become a bottleneck.
Thus, the whole system will fail to provide a service with the requested quality.

Because of its ignorance of these issues, the traditional I/O system is an end-system bottleneck for sup-
porting high bandwidth, networked multimedia applications. Much work has been done in an attempt
to eliminate some of these bottlenecks, but little has been done to integrate these solutions into one sys-
tem, investigate how they work together, and propose a cohesive set of mechanisms that provide a more
complete and efficient solution. We have addressed three of these limitations in this thesis. In the next
chapter, we describe the design, implementation, and integration of our mechanisms, and we further
evaluate the related work described so far with respect to the mechanisms we have designed for our MoD
storage server.
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Chapter 4

Design and Implementation

The overall goal of our research is to maximize the number of concurrent clients a single MoD server
machine can support using standard off-the-shelf components. This is done by making optimal use of a
given set of resources, i.e., reducing the resource requirement both per-client and per-data-element. We
have designed and implemented a fast in-kernel data path for the common case operation in a storage
server, i.e., retrieval of data from the storage system and sending it to receiver(s) over the network,
where all in-memory copy operations are removed. Furthermore, a single data element is shared by all
concurrent users using a broadcasting scheme which also minimizes the start-up delay. Finally, to reduce
the number of consumed CPU cycles, we remove as many instructions as possible for each read and send
operation by removing redundant error management functionality and by prefabricating transport level
packet information.

In this chapter, we describe the requirements, design, and implementation of our mechanisms tuning
the I/O performance in an intermediate multimedia storage server. We assume that our server machine
has a disk array for persistent data storage, and we use the traditional Internet protocol suite [131, 132,
133, 153] for transmitting data, i.e., we use UDP over IP (IPv4). Section 4.1 describes the integrated
error management scheme [72] where storage system parity data is reused for FEC recovery data in
the communication system. In Section 4.2, we show how we reduce resource usage by optimizing
memory management, and how our NLF mechanism [71] reduces communication protocol processing
is presented in Section 4.3. Finally, we give an overview of the integrated server in Section 4.4 and
conclude with a discussion in Section 4.5.

4.1 Integrated Storage and Communication System Error Management

When sending data from disk in a server to a remote client in a distributed environment, several compon-
ents along the data path may fail and introduce errors. Error detection and correction schemes are used
in several subsystems, i.e., in the storage system and the communication system, so the correctness of
the information is checked multiple times as shown in Figure 4.1. A RAID system generates redundant
parity information to be able to recover from a disk crash and restore the lost data. When data is sent
to the communication system in the FEC case, another error mechanism is applied where a new set of
redundant parity information is computed to either detect or correct a possible network data corruption.

Figure 4.2 shows our approach to integrate the different error recovery mechanisms transmitting data
using FEC over UDP. As opposed to the traditional data read from a RAID system where the parity
information is only read when a disk error occurs, we want also to read the redundant error recovery data
and transmit this data to the remote client for use in the FEC scheme in the communication system. Thus,
instead of reading only the original data, we also read the parity data by simulating a RAID level 0 read
operation. All the data retrieved from the storage system is sent to the communication system where the
FEC encoder, which performs CPU expensive operations, can now be omitted. Finally, the data is sent
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Figure 4.1: Traditional error management.
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Figure 4.2: Integrated error management.

to the client where the communication system has an identical FEC decoder as in the storage system on
the server side.

In the following subsections, we look at our integrated error management scheme [72] including the
possible benefits and drawbacks of such a mechanism, the correcting capability requirements of a suitable
mechanism, and possible solutions supporting the requirements from both storage and communication
system.

4.1.1 Application of an Integrated Error Management Scheme

The attractiveness of FEC has changed during the past decades. In traditional networks, ARQ is used
almost exclusively, because variable capacity telephone lines made FEC inefficient and unreliable, and
because the complexity of FEC algorithms made the execution of these procedures too slow and expens-
ive. However, significant changes in communication technology for switched networks has reduced the
number of errors, making congestion the dominant source of errors, i.e., thus, enabling the use of more
efficient codes [99]. Nevertheless, both ARQ and FEC have their advantages and disadvantages. ARQ is
generally used in unicast protocols, because it is very efficient, simple to implement, and does not require
any processing of the data stream. On the other hand, it performs badly due to high buffer requirements
and long delays when the number of errors increases. This means that its biggest drawback is the need
for a feedback channel and the time required to recover missing packets. Another disadvantage of ARQ-
based schemes is the overhead, including both CPU cycles and buffer space, required to keep track of
the potentially large number of outstanding messages [10]. FEC, however, also has to transmit redundant
data for error recovery, which depending on the correcting capability may greatly exceed the amount of
redundant information using checksums in ARQ. In other words, FEC trades bandwidth for latency to
improve packet corruption rate. Thus, an important question is whether a FEC-based integrated error
management scheme is appropriate, using the redundant data from a disk array for error recovery in the
storage system and for FEC in the communication system. Next, we discuss some of these factors further
in the context of an MoD scenario.
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4.1.1.1 Loss Tolerance

One might argue that some data loss in a multimedia presentation, like the loss of a video frame, will
not degrade the perceptual quality of the playout, because the duration of each data element is often very
short [136], e.g., a video frame in a 30 fps presentation is displayed for 33.33 ms. The data loss may
be concealed for example by substituting a black frame for a lost frame as in [30], or just displaying the
previous frame a bit longer. However, in the case of a coded data stream with internal dependencies, an
error can destroy data used to predict the next data element(s). For example, in an MPEG coded video
[151], where we frames decoded with respect to both previous and future frames (P- and B-frames) , data
loss may propagate through several frames. This means that if the error occurs in a reference frame (I-
or P-frame), it will spawn until the next intra frame (I-frame) is presented resulting in a very corrupted
presentation due to the inter-frame prediction [19, 30]. Thus, some kind of error recovery is necessary to
prevent the error from propagating and degrading the quality of the multimedia presentation for a longer
period.

4.1.1.2 Multicast and Broadcast Scenarios

Unlike ARQ which has to retransmit data which is lost or corrupted in the network, FEC can tolerate
some amount of loss due to client self-reconstruction on damaged data. In multicast connections, FEC
can therefore have a big effect on server-side error management overhead since the global packet loss will
increase with the number of receivers and links. For small multicast groups, the gain of using FEC instead
of ARQ is enlarged quickly as the number of receivers increase and the number of shared links decrease.
For large multicast groups, the gain is even larger and independent of the number of remote clients [108].
Using ARQ as the end-to-end error control scheme in such an environment performs poorly, does not
scale well, and requires a lot of buffer space [136]. ARQ scales poorly for multicast protocols and large
groups, because the sender might have to deal with exceedingly growing number of acknowledgments
(ACKs) or negative ACK, and the chance for packet losses grows as the size of the group grows. Another
problem with ARQ in multicast protocols is that it requires a precise feedback from the receivers in order
to decide which packets to retransmit. FEC-based multicast protocols scale much better for large groups
than ARQ-based protocols, since packet losses will be handled at the receiver and will not occupy the
multicast line. Thus, FEC is a good solution for broadband communications where data is multicast
over wide area networks to a large group of clients [29, 50, 99, 136]. In such a system, performance is
significantly degraded by using ARQ for error control [96, 167], because the transmitter complexity is
proportional to the number of receivers, the latency may increase with the number of retransmissions,
and throughput of the server is reduced as the transmitter is busy sending retransmissions.

Even though ARQ usually is considered unusable in multicast and broadcast scenarios, there exists
work improving the TCP implosion and exposure problems. In [115], a retransmission-based error con-
trol scheme is presented dealing with implosion and exposure, and at the same time has a low recovery
latency suitable for delay sensitive data transmissions. The scheme typically recovers from errors in one
RTT or less by adding a replier to each router, i.e., the replier acts as a feedback and retransmission
server for the sub-trees connected to the router.

4.1.1.3 Real-Time Services

For real-time data services, or time sensitive and delay critical services in general, ARQ is not suitable
[6, 15, 19, 29, 96, 105, 127, 146]. A large drawback of ARQ is the need of a feedback channel and the
time required recovering missing packets. This is usually an important limitation when there are time
sensitive applications involved, e.g., a retransmission of a lost video frame may be wasted due to the high
bandwidth requirement, and the retransmitted video frame will probably be old (the playout of the video
has passed the point where the lost frame should be displayed) when arriving at the client site. Likewise,
low latency is necessary for applications supporting human interactions [10], like a video editing bench,
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process control, and remote sensing, in which the delay of retransmission will make the result unusable
in worst case. Consequently, FEC may be an appropriate error recovery scheme for time sensitive, high
bandwidth applications providing reliability without increasing end-to-end latency.

Nevertheless, there exists work extending TCP for continuous media streams. In [114], an enhanced
selective-repeat retransmission scheme is presented. The performance measurements show that ARQ
can successfully be used if the RTT is not to large and some playout buffering is employed.

4.1.1.4 Network Characteristics

The potential of FEC to recover from losses is highly dependent on the loss behavior of the network [10].
A wired network is more reliable and less vulnerable to bit errors due to noise than wireless networks,
and heavily loaded nodes are more exposed to packet loss due to congestion. This means that if the
network has a low error probability like many of today’s wired networks, the transmission of redundant
data for error recovery in FEC may be unnecessary, and ARQ should be used giving a better overall
performance. However, the skewed arrival of packets sent long distances over a variety of heterogeneous
networks is a global feature that seems to be harder to control on a local basis, i.e., by the server. It
therefore makes sense to protect traffic sent through such networks against losses by adding a moderate
level of redundancy using some kind of FEC [13]. Furthermore, as we now approach a more mobile
world where all kinds of networks are used, and the users (soon) may use different kinds of receiver
devices ranging from a traditional PC or workstation to a cellular phone or a personal digital assistant,
the gain of using FEC will increase. In fact, for high packet loss ratios, as is the case with noisy wireless
channels, the throughput of FEC-based systems tends to be higher than the throughput using ARQ [6].

4.1.1.5 Heterogeneous Environments

A possible drawback of FEC in addition to the increased bandwidth is that, in heterogeneous scenarios,
i.e., those with receivers of different capabilities and different requirements with respect to error recovery
ability, conventional FEC is not optimal. Receivers that do not need the improved probability of an error
free connection or better quality of the multimedia playout are forced to receive and process the data
stream consisting of user data and redundant data [50], and even an “optimal” FEC scheme cannot
provide guaranteed quality given the best-effort service of today’s current Internet.

4.1.1.6 Resource Requirements

In order to see the resource requirements using TCP, we give a simple example assuming a data trans-
mission between Oslo and Tromsø, i.e., a distance of about 1600 km. To be able to retransmit data, TCP
must hold data for at least one RTT. If we assume that data is transmitted at the speed of light (299792458
meters per second), and that we neither have delays in the intermediate nodes nor in the end-systems pro-
cessing data, managing timers, and sending acknowledgments, the time between sending the data and
receiving a confirmation is minimum 10.67 ms, i.e., propagation delay only. In this case, TCP must hold
at least 4.78 KB of data assuming a 3.5 Mbps bit rate. TCP uses a default transmission window of 16 KB
(TCP_SENDSPACE) which in this case holds. However, our assumption that RTT equals the propagation
delay only does not hold. Along the transmission path there will be several delays: driver queue at sender
side, processing and queues in intermediate nodes, and processing (for example checksum) and queue at
client side. Likewise, the acknowledgment packet returned to the sender must travel the same way back
experiencing the same delays, i.e., the real RTT will be higher than in our example giving a higher buffer
requirement, and using ping(8), the average RTT was measured to be 22 ms to www.cs.uit.no.

The example described above shows a best-case scenario where there are no losses and data only
need to be buffered for one RTT. However, if a packet is lost, the amount of data to be buffered is the
amount of data consumed from the data element is transmitted until the retransmission timer timeouts.

38



The retransmission timeout (RTO) value may vary for each connection. Initially, it is recommended to
set the RTO to three seconds [21, 125] (NetBSD uses six seconds), and the three seconds value seems
to be appropriate based on the measurements in [5], i.e., slightly more than 1 % had an average RTT
over three seconds. During the transmission, the RTT is measured, and the RTO is updated according to
the measured value as described in [125, 153]. However, it is recommended to at least have a RTO of
one second [125], and in case of a time out, the time between retransmissions is doubled (exponential
backoff). Still, a lower RTO is possible, but in NetBSD, values below 500 ms are not meaningful, because
the TCP protocol timeout routine is called only every 500 ms. Thus, during start-up we might have to
hold as much as six seconds of data and at least 500 ms during the connection in NetBSD, i.e., 2.6 MB
and 224 KB, respectively.

Our examples assume that the send window can be arbitrary dynamically changed. However, if the
used window size is static, the maximum throughput is given by window_size

RTT . Without the window scale
option, the maximum size is 64 KB (TCP_MAXWIN), but with the window scale option, the maximum
size is 64 KB × 2n where n is maximum 14 (TCP_MAX_WINSHIFT). Assuming the (unrealistic) RTT
above and maximum, non-scaling window, we can send at 4.7 Mbps which is slightly above the average
DVD data rate.

Using FEC, we do not need any retransmission buffer, but we do require n % more buffer space
and bandwidth to transmit n % parity data used for error recovery at the client side. Additionally, the
FEC coding operations consume CPU cycles. Thus, both ARQ and FEC schemes require resources,
and which scheme to use for a unicast stream is basically a trade-off between latency and bandwidth,
respectively. In the case of multicast streams, one should also consider scaling properties.

4.1.1.7 Summary

To avoid losses, some kind of error management should be applied since an error might propagate through
several video frames. Both ARQ and FEC have their advantages and disadvantages, but the conclusion
from the discussion above is that ARQ is usually not suitable in an MoD scenario due to long latency
of a retransmission, high overhead processing ACKs (especially in multicast transmissions), and large
buffer space requirement.

Despite its disadvantages, FEC can improve the multimedia playout quality even on networks with
high or highly varying loss rates. Recent results also suggest that network error control schemes using
FEC are good candidates for decreasing the impact of packet loss on the media quality [15]. Using a
FEC-based integrated error management mechanism combining disk array recovery with FEC in our
scenario, i.e., transmitting high bandwidth multimedia data to a large number of users in a heterogeneous
environment, therefore seems to be a good solution. The latency introduced by retransmission-based
error recovery schemes will be too high for applications with latency constraints, and a lot of buffer
space and processing overhead is required to handle the outstanding packets. Thus, FEC is usable,
because almost no buffering is required at the server side, there is no need for a retransmission channel,
it scales well in a multicast scenario, and the operation of error recovery is handed over to the client
rather than assigning this job to a heavily loaded server.

4.1.2 Correction Scheme Requirements

In the previous section, we argued for why FEC is a good solution for communication system error re-
covery in a real-time, multicast MoD scenario. However, a FEC scheme imposes a substantial encoding
overhead in a multi-user server. In our integrated error management scheme, this overhead is removed. A
challenge then is to find a code that suits both the storage and the communication system, and the integ-
rated error management scheme must have the following properties in a cost efficient, high performance
multimedia server:
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• Errors/erasure correcting capability: The coding scheme must be able to correct both bursts of
bit errors, e.g., introduced by some kind of noise during the data transmission over the network,
and large groups of erasures, e.g., due to a packet loss, a damaged disk block, or a disk failure.
The number of burst bit errors depends on the underlying network media where wired networks
are getting more and more reliable, but wireless networks will still be a source of introducing
errors. Moreover, to be able to recover from a disk failure or a packet loss, a set of codewords
and its error correcting information must be striped over several disks and distributed over several
packets. Thus, the size of the erasure group, i.e., erasure correcting capability, is determined by
the striping units in the RAID system and the network packet size in the communication system
(or the size of the striping units and the network packet size must be suited to fit the correcting
capability of the error management scheme).

• Throughput (performance): The error decoding algorithm must be efficient and fast to be able
to decode multimedia data in time for playout. For example, audio in telephony and CD-quality
require about 16 Kbps and 1.4 Mbps respectively, and a video stream’s requirement ranges from
approximately 1.2 Mbps for MPEG, to 20 Mbps and more than 1 Gbps for compressed and un-
compressed high definition television (HDTV) respectively [105, 151]. The current MPEG-2 DVD
standard has an average bit rate of 3.5 Mbps depending on the length, amount of audio, etc., and
the maximum bit rate is 9.8 Mbps (10.08 Mbps for audio, video, and sub-pictures) [184, 194].
This requirement is not that important for the encoding algorithm, because the encoding operation
is done once, and the coded error correction data is stored on and retrieved from the disks.

• Amount of redundant data: Since the error correction information will be transmitted to the remote
client together with the original data, a higher bandwidth is needed. As the bandwidth requirement
of multimedia streams already is very high and as increased bandwidth introduces more noise
raising the probability of an error, we should find a scheme which minimizes the amount of re-
dundant information. Nevertheless, this might be a contradictory requirement compared to the
correcting requirement above, because the correcting capability is often dependent on the amount
of redundant error correcting information.

• Applicable within a single file: We want to transmit both the original information and the stored
redundant correcting data, but we do not want to transmit data from other files. This means that
correcting schemes which calculate parity information based on disk setup regardless of which
files the disk blocks (or striping units) belong to, i.e., the redundant information may span several
different files, are not suitable to serve our purpose.

• Decoding costs dependent on loss rate: The cost of the decoding function should be dependent on
the amount of damaged data, i.e., if no data is corrupted, the decoding function only checks if all
the data is received, and no decoding is necessary. Thus, clients with a reliable network connection
should experience nearly no overhead.

• Systematic code: An appropriate recovery code must be systematic in that the codeword itself
explicitly contains the information block, i.e., the parity data is not interleaved into the original data
block. This is because in an error-free environment, where parity data should not be transmitted, a
non-systematic code would still have to transmit all data. Likewise, if a client on the server itself
would like to perform a data playout, no network errors will occur, but a non-systematic code must
run the data through the decoder.

• Memoryless code: The code must be memoryless, operating on fixed sized blocks, because the
storage system (disks) stores data using predefined block sizes.
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4.1.3 Error Model in Our MoD Scenario

In Section 3.1.1, we described typical data corruption and loss rates. Disk failures and bit errors are quite
rare, but they do occur. The dominant cause of data loss is congestion. The measurements described
in Section 3.1.1, show that consecutive losses up to 30 packets are average, and the total loss rate is
somewhere between 0 - 15 %. With these numbers as a basis, we decided to configure our prototype
such that it should be able to correct 12.5 % of loss or data corruption. With an eight disk RAID system,
we tailor the size of the codeword, which is the amount of data subject to reconstruction, to contain
256 symbols, i.e., 224 for application data and 32 for parity data. A symbol is a single data element
within the codeword. The symbol size is a configurable parameter, and each symbol is transmitted as a
single packet, i.e., packet size equals symbol size1. In summary, using this error model and the described
codeword configuration, we are able to correct one disk failure in the eight-disk disk array and any 32
out of 256 packets in the communication system.

4.1.4 Finding a Suitable Correction Scheme

To find a recovery code that meets our requirements, we have evaluated the existing non-commercial
codes2 described in Section 3.1.2.1 with respect to the requirements described in Section 4.1.2. Thus, a
suitable code must meet the demanding requirements of both subsystems. There must exist a possible
system configuration, i.e., striping layout, network packet size, and amount of redundant correction
information, that gives adequate performance (decoding must be done in time for a hiccup free playout
on the client side) and that corrects the varying number of errors and erasures that occur.

First, since we have blocks of fixed size in the storage system, a block code rather than a convolutional
code is preferred. This means that also the IETF FEC scheme [126] used for audio data in [15, 17] and
video data in [16] sending a low quality copy of the data as redundant data in subsequent packet(s) is
not appropriate in our integrated solution. During a disk recovery operation we would like to be able
to restore the data with the original quality which is not possible with this scheme unless the redundant
data is an exact copy of the original data, i.e., similar to mirroring. However, transmitting two identical
copies for error management is not suitable for example due to bandwidth requirements.

Second, the traditional RAID recovery mechanisms are not applicable in the communication system.
In RAID level 1 (mirroring), all the data would be sent twice giving 100 % redundancy. RAID level 2 - 5
recovery using simple XOR-based reconstruction is not appropriate, because this error management
scheme cannot handle the loss of consecutive packets due to network congestion, i.e., only one out of
eight packets might be lost or corrupted in this scenario. Furthermore, the idea of multi-dimensional
parity calculations used in some disk array configurations to correct more than one disk failure, like
RAID level 6 and as proposed in [12, 77], cannot be applied since the error correction information
corrects disk blocks spanning several different files. Since we want to reuse the redundant information
for FEC in the communication system where only one file is transferred to a remote client, parity codes
spanning only one file are appropriate.

Thus, suitable codes comprise traditional block codes only, because these codes can easily be con-
figured in a suitable way. Turbo codes can be viewed as block codes, but they use convolutional codes
for generating parity and are therefore not evaluated. Tornado codes are very similar to Reed-Solomon
Erasure codes, but require slightly more redundant data and will therefore not suit the parity data re-
quirement in the storage system. In the following subsections, we evaluate some Reed-Solomon-like
codes. We have performed several experiments on a 167 MHz Sun UltraSparc1 to test coding speed. We

1The difference between symbol and packet might be a bit confusing, but a symbol is used in the context of the error
management mechanism and packet in the context of the data transmissions. Nevertheless, each symbol is sent as an individual
packet, i.e, they have equal sizes.

2Designing and implementing a new code is beyond the scope of our research. Our primary goal is to demonstrate that
an integrated error management scheme will save a lot of processing resources on the server and that it can be designed using
existing codes.
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used Quantify3 to estimate the number of used CPU cycles, the time to execute the code, and the coding
throughput. In the following subsections, we present the conclusions from these tests, and we outline a
possible solution selecting the best coding scheme for our requirements.

4.1.4.1 Reed-Solomon Codes

The easiest and least complex solution of integrating the storage and communication system data recov-
ery management would be to use a correction scheme which corrects both errors and erasures. Tradi-
tional Reed-Solomon codes have these correcting capabilities, and we have tested this kind of code4.
However, this code fails to support some of the requirements above. Conventional FEC schemes using
Reed-Solomon have a uniform error correction capability which can result in poor bandwidth utilization
due to a complex algebraic decoding operation, and the amount of redundancy is doubled compared to
traditional storage system (RAID) recovery schemes. Since we do not know whether the data is damaged
or not, the decoding function must always be performed on the whole codeword, i.e., client side cost is
not dependent on the loss ratio. Additionally, the overall coding performance will usually (depending
on hardware) not be efficient enough for a multimedia presentation. Our tests show in a best-case (no
errors in the data stream) and a worst-case (12.5 % loss) scenario decoding throughput of 3.6 Mbps and
1.7 Mbps, respectively. Thus, we do not consider pure Reed-Solomon as suitable for our integrated error
management scheme.

4.1.4.2 Reed-Solomon Erasure Codes

In current wired networks, the probability of getting a bit-error is very small, and congestion losses are
usually the dominant form of data loss. The network can often be modeled as a well-behaved erasure
channel where the unit of loss is a packet. Thus, by only using erasure correction, recovery can be greatly
simplified [6], and correcting power can be approximately doubled [10].

If we assume that bit errors are negligible, we can apply only an erasure code like the ones used
in [6, 99]. We have evaluated such a solution where the erasure correcting code is used as the storage
system failure recovery mechanism and as the erasure correcting FEC scheme in the communication
system. There exist several possible implementations of such codes, e.g., Reed-Solomon erasure codes
based on Cauchy matrices [13]5 and Vandermonde matrices [136] over finite fields. Since the Cauchy-
based code is reported faster than the Vandermonde-based code [29], we have performed tests on this
code using the same scenario and the same correcting scheme as described above.

The encoding time is approximately constant when generating the parity data, but the decoding time
may vary, i.e., increasing with the amount of loss [13]. The decoding function first checks how many
of the original packets are received, and if all have arrived correctly no further decoding is necessary.
The decoding measurement is therefore a worst case scenario within the limits of the code, i.e., we lose
32 of the packets containing real data. Our performance measurements show that on the 167 MHz Sun
Ultrasparc1, we can achieve decoding (and encoding) throughputs above 6 Mbps if the packet size is
above 512 B, and in a more reliable network where the amount of loss is reduced, the code will perform
even better.

Thus, if we assume that bit errors are negligible, this is an suitable code. However, one of our goals
in designing a multimedia server is to support presentation of data to a wide range of remote receivers.
Thus, data will also be transmitted over more error-prone networks, like wireless networks, suffering

3Quantify estimates the needed CPU cycles and gives an upper limit of the performance, because the estimated times are
calculated using the cycle count divided by the CPU clock frequency, i.e., assuming the program has the CPU alone. To
compute the execution times in ms and the throughput in Mbps, Quantify assumes an UltraSparc with clock rate of 168 MHz.
Please note that these results exclude Quantify overhead and also possible memory effects, i.e., Quantify subtracts the overhead
of using resources itself.

4We used the Reed-Solomon code implemented by Phil Karn available at http://imailab-www.iis.u-tokyo.ac.jp/∼robert/rs.tar.
5The Reed-Solomon Erasure code described in [13] is available at http://www.icsi.berkeley.edu/∼luby/cauchy.tar.uu.
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from data destruction caused by different kinds of noise. This means that we also must take bit errors
into consideration when designing our system. Pure Reed-Solomon erasure codes fail to support network
topologies more vulnerable to unknown errors and are consequently not suited for recovering this type
of errors in the communication system.

4.1.4.3 Combined Checksum and Erasure Codes

In the previous subsections, we have showed that error correcting schemes have insufficient performance,
and the decoding cost is independent of the amount of corruption. Schemes that correct only erasures fail
to reconstruct damaged data due to bit-errors. However, one possible solution is to still view congestion
(packet) loss as the dominant data corruption source. Then, we combine the erasure correcting scheme
running on large blocks spanning multiple packets described above with some kind of error detection
(or correction) scheme running on small blocks within a single packet. Thus, we get an inner and an
outer mechanism of error management. This means that a fast efficient inner error detection is applied
within each packet to detect (or correct) bit errors introduced by noise, and an erasure correcting scheme
is applied to a larger information block spanning several packets capable to correct a large number of
erasures (see Figure 4.3). If an error is detected, but cannot be corrected, by the inner mechanism, or
the whole packet is lost, it is marked as an erasure where the outer recovery scheme is responsible for
restoring the original data block. In such an integrated recovery mechanism, the outer erasure correcting
scheme will also work as the storage system recovery mechanism and correct failures due to bad disk
blocks or disk crashes.

Erasure correcting

Error
detecting/correcting

{

Error
detecting/correcting

{

Error
detecting/correcting

{

Error
detecting/correcting

{

Error
detecting/correcting

{. . . .

Figure 4.3: Inner and outer error management mechanism.

In such a design, we have two alternatives. The inner mechanism can be either detecting or correct-
ing. If we have an inner correcting scheme, i.e., using a code similar to the Reed-Solomon code tested
in Section 4.1.4.1, the performance would still be a bottleneck, and we need twice as much redundant
data compared to a pure Reed-Solomon scheme. Thus, the inner scheme should only be error detecting,
marking the packet as corrupted, and letting the outer erasure scheme correct the damage. This kind of
scheme requires less redundant data and performs better as error detecting is faster and less demanding
compared to error correcting. Furthermore, the easiest solution in this approach is to use the traditional
16-bit transport level checksum [20, 68, 159] used in traditional protocols like UDP and TCP for error
detection, because nearly no additional redundant data is added compared to the Reed-Solomon eras-
ure codes, and the checksum calculation operation is already optimized for performance on different
architectures.

Next, we describe our prototype design and implementation. We use the Reed-Solomon erasure code
based on Cauchy matrices as the storage system error recovery mechanism and outer error management
scheme in the communication system. Within each packet, we use the traditional transport level check-
sum for error detection, and if a packet is damaged, it is marked, and we leave it up to the erasure code
to correct the error.
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4.1.5 Integrated Error Management Prototype

In this section, we present a prototype for the integrated error management scheme using the Cauchy
based Reed-Solomon Erasure code. We first describe a general scheme, and then we present our proto-
type scheme.

4.1.5.1 General Scheme

The Cauchy based Reed-Solomon erasure code [13] is very flexible regarding configuration. Generally,
this code can be configured as (n,m) overGF (2L) where n is the total number of symbols in a codeword,
m is the number of information symbols, and L determines the size of the finite field. The number
of parity symbols is given by n − m, and if s denotes the number of segments within a symbol, the
size of each symbol in bytes is given by 4 × s × L. n, m, L, and s can be arbitrarily configured
in Z+ as long as n, m < 2L−1. Since the code also is to be used in a disk environment, the symbol
size should be a power-of-two to fit into a disk block, i.e., the size of one or multiple symbols should
equal the block size. n should be chosen to be #disks×disk_block_size

symbol_size , and m should be chosen to be

n − #parity_disks×disk_block_size
symbol_size if the error models have corresponding loss behaviors in the storage

system and the communication system. If the network error model indicates a higher loss rate, we
should decrease m to allow more parity symbols in each codeword, i.e., we will also have parity blocks
on other disk blocks than the parity disk, or increase the number of disks in the disk array and have more
than one parity disk.

As we can see, there are several possible schemes that can be configured using this code. Almost any
error model can be handled, but the performance of the required configuration should be tested. Next, we
describe the prototype scheme where we have tested the code given an eight-disk disk array and the error
model described in Section 4.1.3, i.e., bit errors are rare and the dominant cause of loss is congestion.

4.1.5.2 Example Scheme

This section present our example scheme for the integrated error management mechanism using the
Cauchy based Reed-Solomon Erasure code in a multimedia storage server offering services like NoD or
VoD. We have tested different code configurations and used a minimum coding limit of about 6 Mbps to
find the configuration useful. In this scenario, we want to be able to recover from a single disk error6 in
the disk array.

The Cauchy-based Reed-Solomon Erasure code experiments show that this code can reach decoding
times appropriate for a multimedia environment like ours. We use a (256,224) over GF (28) Cauchy-
based Reed-Solomon Erasure code. Thus, any 32 out of 256 data blocks can be corrupted and the code
will still be able to recover the damaged data. In the storage system, this means that data is striped over
eight different disks where one is a parity disk. The communication system transmits each block as a
single packet and can get about 12.5 % of the packets garbled by noise or lost in the network. Thus, the
algorithm should be able to recover from most of the losses according to the measurements reported in
Section 3.1.1.

There are also various factors to consider when deciding the network packet size, because the code-
word symbol size has impact on the decoding performance. Since each symbol in the correcting code
is sent as a separate packet, the packet size affects the coding performance. Decoding performance,
throughput and start-up delay, depends on the codeword configuration, the symbol size, and the available
CPU resources. This also applies to encoding operations, but decoding speed is most interesting. To find
suitable symbol size values, we extended the tests performed in Section 4.1.4.2 on the Cauchy-based

6It should be adequate to be able to recover from a single disk crash using today’s top-end disks, because, assuming disk
errors occur independently, the probability of two disks failing at the same time is very low, i.e., 1012 using Seagate Barracuda
and Cheetah disks [202] or Western Digital Enterprise disks [207].
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Reed Solomon Erasure code using symbol sizes from 32 B to 64 KB on a 167 MHz Sun UltraSparc 1
using the reported codeword configuration and a worst case loss scenario, i.e., dropping 12.5 % of the
packets or one disk out of eight correspondingly. Figure 4.4A shows that the throughput increases with
larger symbol sizes. If we use symbol sizes equal or larger than 1 KB, the client system will be able
to decode streams with data rates of 6 Mbps and more on this system (the performance levels out after
1 KB symbols). However, increasing throughput by using larger symbol sizes also increases the worst
case start up delay (see Figure 4.4B), because there is more data to decode per codeword. Therefore,
to reduce the experienced start-up delay, we do not use symbol sizes larger than 8 KB. This results in a
worst-case decoding delay of 2 seconds or less on the 167 MHz Sun UltraSparc 1.
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Figure 4.4: Cauchy-based Reed Solomon erasure decoding.

Furthermore, we do not want the codeword to span different files, and each codeword has a fixed
length, i.e., half a codeword will on average not be used and will result in some fragmentation on the
disk. A large symbol size gives a greater fragmentation, i.e., a codeword with 256 symbols and a 1
KB symbol size gives an average (max) fragmentation of 128 KB (255 KB). However, compared to a
5 minutes, 6 Mbps video clip of 225 MB, this still might be applicable. Additionally, each network
has an MTU, and each packet must fit in the MTU. If a packet has a larger size than the MTU, the
packet is fragmented into two or more fragments introducing extra overhead in the network. Moreover,
many small packets might result in an overflow in the scheduling queue in the routers (congestion) if the
maximum queue length is reached, and packets might be lost.

To avoid further fragmentation, we should use a disk array stripe which suits the correction code
codeword. Thus, a stripe that contains a single codeword or a solution where a codeword is distributed
on several whole stripes might be convenient. Using our (256,224) over GF (28) Cauchy-based Reed-
Solomon Erasure coding scheme, striping the codeword symbols across 8 disks results in 32 codeword
symbols stored on each disk. This gives us four different schemes for our prototype shown in Figure 4.5
using packet sizes (or codeword symbols) of 1 KB, 2 KB, 4 KB, and 8 KB. These packet sizes imply
codewords of 256 KB, 512 KB, 1024 KB, and 2048 KB (containing 224 KB, 448 KB, 896 KB, and 1792
KB original data), respectively. Using a 2 KB packet as an example and 64 KB disk blocks (striping
units), the 224 information packets are stored on the seven data disks, i.e., 32 symbols within each disk
block. These data are also used to generate 32 parity symbols which are stored in one disk block on the
parity disk. Thus, this configuration corresponds to RAID-level 4 write operation.

The performance gain of our integrated error management mechanism is achieved during the data
retrieval and transmission to the remote clients. During retrieval simulate a RAID level 0 read operation
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Figure 4.5: Integrated error management prototype design.

reading both information and parity data, and each striping unit consists of multiple packets (symbols)
each transmitted separately as shown in Figure 4.5. Thus, the storage system parity data is reused for
FEC recovery data removing the server side FEC encoding operation.

4.1.6 Scheme Shortcomings

As mentioned before, we cannot recover from all losses in the network, i.e, we can adapt to less amount
of loss, but the scheme can not adapt to higher loss without reconfiguring the scheme. Furthermore, our
assumption regarding losses occurring in small bursts only is often not valid. Thus, despite our recovery
scheme, some receivers may experience losses. For example, if more than 32 packets per transmitted
codeword are damaged or corrupted in our scheme, the decoding function will not be able to recover
the missing data. Nevertheless, we still want the best possible quality of the data playout. One possible
solution is to additionally use some kind of loss concealment at the client side as for example described
in [127], i.e, this approach is data-type specific and is not appropriate at the system level. If a packet is
lost and cannot be recovered, the loss can be hidden from the receiver by some sort of reproduction of the
lost data. This can for example be done by simply copying the previous data element or by interpolation
using the surrounding data to produce a replacement for the lost packet(s). Another example is to use
a hybrid recovery scheme. We can for example combine FEC and ARQ like in type I or type II hybrid
ARQ [32, 67]. However, in this thesis we assume that our error model is valid and regard greater loss
scenarios as future work.

4.2 Zero-Copy-One-Copy Memory Architecture

Memory management has been a critical issue in high performance systems for a long time. Several zero-
copy architectures removing physical data copying, i.e., reducing resource consumption of individual
clients, have been designed to optimize resource usage and performance using shared memory, page
remapping, or a combination of both [129]. However, concurrent clients requesting the same data require
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their own set of resources. Traditional broadcast or multicast is an easy way of dealing with per client
resource allocation. To minimize a possible start up delay, a couple of broadcast partitioning schemes are
proposed [129]. Still, zero-copy and delay-minimized broadcasting only reduce the per-data or per-client
resource usage, respectively. To optimize both, we integrate both mechanisms, in a zero-copy-one-copy
memory architecture7 , to eliminate all physical in-memory copy operations, to share one single copy of
a data element in memory, and to have a short start-up delay. This subsection describes this memory
architecture.

4.2.1 In-Kernel Disk-to-Network Data Path

In this subsection, we look at the zero-copy data path reducing resource requirements on a per-data-
element basis. We present our basic idea, use one appropriate existing mechanism as a basis for further
design, and describe the new kernel interface through the new stream system calls.

4.2.1.1 Basic Idea

The basic idea of our zero-copy data path is shown in Figure 4.6. The application process is removed
from the data path, and in-kernel copy operations between different subsystems are eliminated by sharing
a memory region for data. The file system sets the b_data pointer in the buf structure to the shared
memory region. This structure is sent to the disk driver, and the data is written into the buf.b_data
memory area. Furthermore, the communication system also sets the m_data pointer in the mbuf struc-
ture to the shared memory region, and when the mbuf is transferred to the network driver, the driver
copies the data from the mbuf.m_data address to the transmit ring of the network card.

Operating System

File System Communication System

Memory

Bus(es)

buf mbufb_data m_data

Disk Driver Network Driver

physical data path

data pointers

Figure 4.6: Basic idea.

4.2.1.2 Choosing Mechanism

To implement this design, we have analyzed several proposed zero-copy data path designs (see Section
3.2.3). In INSTANCE, we have a specialized system and do not need to support all general operating
system operations. Therefore, we have used a mechanism that removes the application process from the
data path and transfers data between kernel subsystems without copying data (see for example [28, 58,
186, 101]). As a starting point, we have chosen to use the Multimedia M-buf (MMBUF) mechanism [27,

7The name zero-copy-one-copy refers to a combination of a zero-copy implementation of an in-kernel data path with a
broadcasting scheme that serves multiple clients with one in-memory copy.

47



28, 36], because of its clean design and reported performance. Below, MMBUF denotes this mechanism
in general whereas mmbuf refers to the data structure containing the MMBUF variables similar to mbuf.

MMBUF is developed to reduce data copying in an MoD server in the MARS project [28] at Wash-
ington University, St. Louis, as an enhancement to the 4.4 BSD UNIX. A new kernel buffer management
system provides a zero-copy data path for networked multimedia applications by unifying the buffer-
ing structure in file I/O and network I/O. This buffer system looks like a collection of clustered mbufs
that can be dynamically allocated and chained. Both the mbuf header and the buffer cache header is
included in the mmbuf header used for network and file I/O respectively, so by manipulating the header,
the mmbuf can be transformed either into a traditional buffer that a file system and a disk driver can
handle or an mbuf which the network protocols and network drivers can understand. Furthermore, for
multimedia applications a new interface is provided to retrieve and send data which coexist with the
old buffer cache based data path for applications that use the read() and write() interface. A
stream_open() system call corresponding to the traditional open() opens a file and initializes the
use of the file descriptors. The system call stream_read() bypasses the old buffer cache and reads
data from a file into an mmbuf chain. Both synchronous (blocking) and asynchronous (non-blocking)
semantics are supported. Moreover, the data is sent to the network using a new stream_send() call
which converts the mmbuf chain into a cluster mbuf chain without any copies. At setup time, each stream
is allocated a ring of buffers, each of which is an mmbuf chain. The size of each buffer element, i.e.,
the mmbuf chain, depends on the size of the multimedia frame it stores, and each buffer element can be
in one of the four states: empty, reading, full, or sending. Furthermore, to coordinate the data read and
send activities, two pointers (read and send) to the ring buffer are maintained. Then, for each periodic
invocation of the stream process, these pointers are used to handle data transfers. If the read pointer is
pointing to a buffer element in the empty state, data is read into this chain of mmbufs and the pointer is
advanced to the next succeeding chain on which the next read is performed. If the send pointer is holding
a full buffer element, the data stored in this buffer element is transmitted. Finally, both read and send
requests for multiple streams can be bunched together in a single call minimizing system call overhead.

4.2.1.3 Changes Made to the Native MMBUF Mechanism

To support our requirements and system components, including a later version of NetBSD, and to further
increase the performance of the original MMBUF mechanism, we have made the following modifica-
tions:

• The allocation and deallocation of mmbufs have been changed to use the pool mechanism in
NetBSD [197], because this reduces the time used to allocate and free a buffer item. On a Pen-
tiumIII 933 MHz machine, malloc() and free() (which is used in the original design) used
5.80 µs and 6.48 µs, respectively. Using the pool mechanism, these times are reduced to 0.15 µs
for both allocating and deallocating the mmbuf. To allocate and free mmbuf memory clusters, we
have added some functionality from the NetBSD pool mechanism like locks to the original mmbuf
cluster pool to assure that one cluster is not handed over to more than one stream.

• We reimplemented the stream application programmer interface (API) system calls. The interface
is almost identical, but the underlying functions are somewhat changed. We have for example
removed the timing mechanisms used by the real-time upcall mechanism in MARS [28] which
guarantee periodic data transfer8 . We have also implemented some additional system calls to
perform more extensive measurements.

• The native MMBUF system transmitted data on an ATM network. We had to modify the network
send routine to allow UDP/IP processing (because the NLF prototype uses UDP, see Section 4.3).

8In this thesis, we have only looked at achieving maximum performance. Guaranteed services and QoS provision are a
subject of future work.
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In addition to the possibility of sending the whole mmbuf chain as a single packet, we enabled
sending each mmbuf as an own network packet. This is because the disk performance is better
reading large blocks, and we read more data than a single packet can hold. The integrated error
management scheme also uses a smaller packet size compared to the amount of data read each
read operation.

• When sending data from a chain in the MMBUF buffer manager, the original design issued a wait
until all the data in the chain was sent before a new read on that chain could be executed. This
might introduce some delays (the process will sleep) if the queue in the network driver is long. The
traditional mechanisms just deliver the data to the queue and return. In our initial performance
experiments, we achieved a higher throughput using traditional system calls. However, a new
memory block is allocated for the chain regardless of whether the data is transmitted or not (as in
traditional mbuf manner), so to avoid this delay, we removed this strict waiting on the alternating
buffers and let the call return after handing the data over to the driver, i.e., the possible blocking
delay is removed.

The MMBUF mechanism integrates the buffering architecture of the file system and the commu-
nication system. As shown in Figure 4.7, the mmbuf data structure contains both the file system buf
structure and the communication system mbuf structure. The data pointers in these structures then point
to a shared data area (an mmbuf external memory cluster), i.e., all the buf.b_data pointers point to
the start of the data area, and each mbuf.m_data pointer is advanced by a configurable size, i.e., the
used packet size which is 1 KB, 2 KB, 4 KB, and 8 KB (see Section 4.1.5.2).

mmbuf buf

mbuf

mmbuf
data area

mmbuf buf

mbuf

mmbuf buf

mbuf

mmbuf buf

mbuf

mmbuf buf

mbuf
buf.b_data

mbuf.m_data

Figure 4.7: Using the mmbuf as both buf and mbuf.

Flags are used to manage synchronization between the subsystems preventing both subsystems from
accessing the data area at the same time. This means that the MMBUF mechanism transfers data between
different protection domains using a transfer semantic or transfer model somewhere between the move
and the share model described in Section 3.2.2.
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4.2.1.4 Stream System Calls

To make use of the zero-copy data path between disk and network, we have implemented the adapted
MMBUF system calls and some additional system calls to perform more extensive measurements. To
replace the traditional system calls used in a server-like application shown in Figure 4.8A, we have cre-
ated stream_open(), stream_read(), stream_send(), and stream_close() presented
in Figure 4.8B:

stream_open(int num, void *sarray): To initialize a server retrieving data from disk and
transmitting it to a remote client over a network connection, we use the stream_open() system
call. With a stream we implicitly mean a data transfer from the storage system to the network, and
this call merges these operations into one operation, i.e., this system call opens the requested file
and creates a connected network socket to the client’s IP address and port number. Thus, it is a
replacement for open(), socket(), and connect().

stream_read(int num, void *sarray): This system call avoids physical in-memory copy
operations from the file system in kernel space to the application in user space and is a substitute
for the traditional read() system call. stream_read() issues a read operation from disk
where data is put in the mmbuf data area instead of using the traditional file system buffers. This
system call will not copy data up to the application in user space, but only return when the disk
request is sent to the disk driver (asynchronous mode). Strict waiting for the disk read to complete
is supported (synchronous mode), but it requires a kernel recompilation.

stream_send(int num, void *sarray): This system call replaces the traditional send()
on a connected socket to avoid physical in-memory copy operations from the application in user
space to the communication system in kernel space. It will check if the read operation issued by
stream_read() is finished. If the data is retrieved from disk, stream_send() will access
the same data area and transmit it through the communication system. Otherwise, this system call
goes to sleep and will be woken by the file system when the disk operation finishes. This system
call will return after putting the packets into the driver queue (asynchronous mode). Strict waiting
for the packets to be sent is removed (see above), but is supported (synchronous mode). However,
it requires a kernel recompilation.

stream_close(int num, void *sarray): This system call tears down the stream by clos-
ing the file descriptor of the transmitted file and the network socket, i.e., it is a replacement for
close() which traditionally must be called twice.

The input parameters for all these system calls are num describing the number of streams and *sarray
pointing to a streamState array. The first parameter is used to make operations on several streams

filefd = open(...); stream_open(num, sarray);
socketfd = socket(...);
connect(socketfd, ...);

while (more to send) { while (more to send) {
read(filefd, buf, length); stream_read(num, sarray);
send(socketfd, buf, length); stream_send(num, sarray);

} }

close(filefd); stream_close(num, sarray);
close(socketfd);

(A) Pseudo code of a server using the traditional system calls. (B) Pseudo code of a server using the stream system call.

Figure 4.8: Replacement of traditional system calls with our new stream API.
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struct streamState {
int fd; /* Data file descriptor */
int sockfd; /* Socket descriptor */
int nochains; /* Number of alternating chains */
int read_len; /* Amount of data to read/send into/from in one operation*/
char *file_path; /* Filename of file to open */
char *nlffile_path; /* Filename of NLF meta-data file to open (if NLF is used) */
int flags; /* Set required operations (NLF/prefetching) and return errors */
struct sockaddr_in addr; /* Used to open and connect the socket during stream_open */
char *IPaddress; /* Destination IP address */
u_int16_t portno; /* Destination port number */

};

Figure 4.9: The struct streamState used in the stream system calls.

within one system call (reducing system call overhead), and the value indicates how many streams to
serve for this system call. The streamState structure, shown in Figure 4.9, describes the input
parameters and the state of each stream, e.g., file name, file descriptor, socket descriptor, how much data
to read and send, some flags, destination IP address and port number, etc. The *sarray pointer points
to the start of an array holding one streamState structure for each stream.

This new stream API reduces the overhead of the traditional data and control path shown in Figure
4.10. As depicted in Figure 4.11A, the data remains in the kernel whereas the control is handed over
to the application process. Furthermore, the time to make a system call is substantial compared to just
making a call to a function in the same memory space (Section B.3 presents the system call overhead).
Furthermore, an unfortunate property of traditional disk operations is that they are indeterministic. This
means that the application is not guaranteed a delivery deadline. Thus, data which should be sent period-
ically might be delayed due to high disk workload. To deal with this problem, we use prefetching of data,
i.e., try to retrieve the data in advance before it is requested. In addition to the straight forward replace-
ments of the traditional system calls above, we have implemented two other system calls (with identical
input parameters) to further reduce the overhead in our MoD server as presented in Figure 4.11B:

read() sendto()

application process

user space

kernel space

control pathdata path data element

disk interface network interface

Figure 4.10: Traditional read()/send() data and control path.

stream_rdsnd(int num, void *sarray): This system call merges stream_read() and
stream_send(), i.e., instead of returning the control back to user space, this system call im-
mediately processes the data arriving from disk through the communication system to the network.
Thus, the kernel is accessed only one time.

stream_sndrd(int num, void *sarray): This system call extends stream_rdsnd()with
prefetching using two (or more) alternating buffers for read and send operations respectively. One
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control pathdata path data element

disk interface network interface

(A) The stream_read()/stream_send() system calls. (B) The stream_rdsnd() system call.

Figure 4.11: The data and control path using our new system calls.

buffer is used for disk operations while the other is used for sending data through the communic-
ation system. The read operation is then trying to retrieve the data to be transmitted to the client
one period in advance.

Finally, we have implemented a system call for repositioning the file offset (moving the read/write file
pointer), i.e., for use in jumps, restarting, etc.:

stream_seek(void *state, off_t offset, int op): This is a stream version of the
traditional lseek() system call. You may set the file offset according to where you are now
and according to the start of the file. Additionally, stream_seek() may restart the file, i.e.,
setting offset to 0 and clearing the end-of-file flag used in the stream. The seek operation will
immediately affect streams without prefetching. In the case of prefetching, the current imple-
mentation, will reposition the read offset, but the send operation will first send the prefetched data
remaining in memory. Thus, the send operation does not see the seek operation.

The input parameters for this system call are different compared to the other stream system calls, because
the seek operation is not equal for each stream. *state is a streamState-pointer to the selected
stream. offset describes the offset, and op describes how to seek: (1) OFF_SEEK_SET sets offset to
offset, (2) OFF_SEEK_CUR sets offset to offset plus current location, and (3) OFF_SEEK_REW
rewinds the file to the start.

4.2.2 Broadcasting Scheme

The zero-copy data path eliminates the in-memory copy operations in our storage node, but each client
that is served by the storage node still requires its own set of resources in the storage node. For each
client request, the data for the respective client has to be stored in the virtual address space of the serving
process. This means that physical memory is allocated and mapped into the virtual address space of
the process according to available resources and a global or local allocation scheme. This approach is
also called user-centered allocation, because each client has its own share of the resources. However,
traditional memory allocation on a per-client basis suffers from a linear increase of required memory
with the number of clients.

In order to better utilize the available memory, several systems use so-called data-centered allocation
where memory is allocated to data objects rather than to a single process. We design our storage node
to use a periodic service like pyramid broadcasting [164] or its derivatives (see Section 3.2.4). In this
approach, data is split in partitions of growing size, because the consumption rate of one partition is
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assumed to be lower than the downloading rate of the subsequent partition. Each partition is broadcasted
in short intervals on separate channels. A client does not send a request to the storage node, but instead
it tunes into the channel transmitting the required data. The data is cached on the receiver side, and
during the playout of a partition, the next partition is downloaded. Performance evaluations show that
data-centered allocation schemes scale much better with the numbers of users compared to user-centered
allocation [164]. The total buffer space required is reduced, and the average response time is minimized
by using a small partition size at the beginning of a movie.

4.2.2.1 Choosing Protocol

In Section 3.2.4, we found periodic service protocols like pyramid-, skyscraper-, or harmonic broad-
casting suitable for our purpose, and which protocol to use is dependent on several factors. Pyramid
broadcasting requires that each channel transmits at least at full consumption rate, and the buffering
requirement at the client is substantial, i.e., 50 % of the video. Skyscraper broadcasting requires less
client buffering at the cost of more channels broadcasting at the playout rate making the server work-
load higher. Thus, the harmonic broadcasting schemes seem to be suitable for our purposes, because
the transmission rate of channel Si decreases as i increases. However, pure harmonic broadcasting may
fail to deliver data in time for playout, but this problem is solved by the successor schemes [116, 117].
In [118], a harmonic broadcasting scheme with no startup delay is proposed, but this scheme requires
that a client buffers the start of all videos in advance, at a high memory cost, before selecting which
video to download and view. This video-prefix buffering requires a lot of buffer space for videos which
will never be watched, and we find this scheme unrealistic. We therefore assume a cautious harmonic
broadcasting protocol [116], because of its simpleness. Quasi- and polyharmonic broadcasting further
reduce the required server bandwidth slightly, but they also increase complexity. In the next section, the
cautious harmonic broadcasting protocol is presented.

4.2.2.2 Cautious Harmonic Broadcasting

Like harmonic broadcasting, cautious harmonic broadcasting [116] breaks a video into n equal-length
segments of duration d = D/n where D is the total duration of the video. The size S of the video is
given by S = D × b where b is the playout rate of the video, and each segment Si has size S/n. The
original harmonic scheme repeatedly broadcasts segment Si with bandwidth b/i in separate streams, i.e.,
one stream per segment. This gives a total bandwidth requirement for this video of
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where H(n) is the harmonic number of n. The harmonic series diverges [56], but from Table 4.1 we see
that the total server bandwidth requirement per video increases slowly with the number of segments, and
with a reasonable number of segments, the total server bandwidth requirement will be below six times
the consumption rate. However, harmonic broadcasting may fail to deliver data in time, so the cautious
harmonic protocol changes this transmission scheme slightly within one video to guarantee in-time data
delivery (see proof in [116]). The first stream transmits segment S1 at bandwidth b, but the second
stream is different, i.e., the second stream transmits segments S2 and S3 alternately at full bandwidth.
Then stream i, i = [3, n], transmits segments Si+1 with bandwidth bi = b/i. Thus, to guarantee in-time
data delivery within the same startup latency limits, the total bandwidth requirement is increased to
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This means that b × (1/2 − 1/n), n > 3, more units of bandwidth is required compared to the original
harmonic broadcasting.
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n H(n) n H(n) n H(n)

1 1.000 10 2.929 100 5.187

2 1.500 20 3.598 200 5.878

3 1.833 30 3.995 300 6.283

4 2.083 40 4.279 400 6.570

5 2.283 50 4.499 500 6.793

Table 4.1: Harmonic numbers.

The rest of the scheme is identical to the harmonic broadcasting scheme. The client must wait until
the first stream transmitting segment S1 restarts at the beginning before starting to receive (and view). At
the same time, the reception of the all other streams dedicated for this video transmitting the remaining
segments is also started. Thus, data will arrive out-of-order, and about 40 % client side buffering is
needed [82].

4.2.2.3 Client Overhead

The harmonic broadcasting scheme can save a lot of server resources, but implies an increased client
overhead. Looking at the example described in Section 2.2 where 1000 concurrent clients retrieve a
3 minute 3.5 Mbps video clip in a true NoD scenario, i.e., the server has one stream for all clients, the
performance gain is large applying the cautious harmonic broadcasting scheme. In the stream-per-client
approach, the server will have to transmit 1000 concurrent 3.5 Mbps streams. Using cautious harmonic
broadcasting and assuming a maximum startup latency of 5 seconds (excluding transmission delay), the
video is partitioned into 36 segments. The total server bandwidth requirement for this news clip is then

B = b

(
1

2
+H(n− 1)

)
= 3.5 Mbps×

(
1

2
+H(35)

)
= 3.5 Mbps× (0.5 + 4.147) = 16.26 Mbps

using equation 4.1. However, the client will experience a higher workload and resource requirement,
because it has to receive all the streams concurrently (only during the download/playout of the first
segment) and buffer data for later use. On average, the client will receive 16.26 Mbps in this example,
and this will decrease as the playout of segments finishes (number of streams goes down). Receiving
this decreasing data rate from the network should be no problem using existing network cards. The
disk I/O (assuming we have to buffer arriving data on disk) can be slightly higher compared to network
I/O as we both write the incoming data on disk and read the segment currently presented to the client,
i.e, approximately 16.26 Mbps + 3.5 Mbps = 19.76 Mbps in the example. However, the first segment
is viewed as it arrives at the client, and there might be no need for buffering the data in this segment.
Nevertheless, using a Seagate Cheetah X15 (ST318451LW) [203], which achieves a minimum data rate
of 299 Mbps, this data rate is no problem.

4.2.3 Integrating the In-Kernel Data Path and the Broadcasting Scheme

The integration of the zero-copy data path and the delay-minimized broadcasting scheme is depicted in
Figure 4.12. The data file is split in partitions, and each of these partitions are transmitted continuously
in rounds using the zero-copy data path (see Figure 4.6) where data is sent to the network using UDP and
IP multicast. Thus, our memory architecture removes all in-memory copy operations making a zero-copy
data path from disk to network, i.e., the resource requirement per-data element is minimized. Addition-
ally, this mechanism reduces the per-client memory usage by applying a delay-minimized broadcasting
scheme running on top of the in-kernel data path.
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Figure 4.12: The Zero-Copy-One-Copy Memory Architecture.

4.2.4 Zero-Copy-One-Copy Prototype

The zero-copy-one-copy memory architecture design presented in the previous section is only partly
implemented in our prototype. The zero-copy data path reducing per-data-element resource require-
ment is fully implemented and tested. However, the delay-minimized broadcasting scheme reducing the
per-client resource demand is at the current stage not implemented. There are several reasons for this.
The broadcasting scheme found suitable for our purpose (cautious harmonic broadcasting) is not im-
plemented, but only proved mathematically. Likewise, most of the other broadcast protocols presented
in literature are also to the author’s knowledge not fully implemented, but they are rather simulated in
a simulation environment and proved mathematically9 . Another reason is that there is no easy way of
determining the exact performance gain using a broadcasting scheme. The broadcasting scheme enables
several clients to share a single data element in memory, i.e., we are able to support a lot of users, but still
only a limited number of concurrent streams. Thus, the server workload will be approximately constant
using the broadcasting scheme regardless of the number of clients. An implementation would only be
used for proof of concept which already is done in theory and by simulations [62, 78, 164]. Furthermore,
implementation of such a scheme requires a testbed able to handle broadcast transmissions. At present,
we have no such infrastructure meaning that broadcast experiments could not be performed.

4.3 Network Level Framing

Each time a client retrieves data from a server, the data processed through the communication system
protocols executing the same operations on the same data element several times, i.e., once for each
client. Measurements described in [168] show that the sender latency is dominated by the transport level
checksum operation, i.e., most of the time is consumed due to reformatting data into network packets and
calculating the checksum. This operation is repeated for each client and seems to be wasteful, because
an identical sequence of packets might be created each time – differing only in the destination IP address
and port number fields. A logical approach to reduce this overhead is to create this sequence of packets
once, store it on disk or in memory, and later transmit the prebuilt packets saving a lot of processor
resources.

To reduce this unnecessary workload in the communication system protocols, i.e., performing the

9However, at SIGMETRICS’01, lessons learned from an implementation of periodic broadcast will be presented [22].
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same operations on the same data for each packet transmitted (Figure 4.13A), we regard the server as
an intermediate node in the network where only the lower layers of the protocol stack are processed
(Figure 4.13B). When new data is sent to the server for disk storage, only the lowest two protocol layers
are executed, and the resulting transport protocol packets are stored on disk. When data is requested by
remote clients, the transport level packets are retrieved from disk, the destination port number and IP
address are filled in, and the checksum is updated (only the new part of the checksum, i.e., over the new
addresses, is calculated). Thus, the end-to-end protocol which performs the most costly operations in the
communication system, especially the transport level checksum, are almost completely eliminated.

Upload to server
Frequency: low (1)

Retrieval from server
Frequency: very high

Transport layer

Application layer

Network layer

Link layer

Upload to server
Frequency: low (1)

Retrieval from server
Frequency: very high

Transport layer

Application layer

Network layer

Link layer

(A) Traditional server storage. (B) NLF.

Figure 4.13: Traditional server storage versus NLF.

This section focuses on the design and implementation of the network level framing (NLF) concept
[71], which enables us to reduce the server workload by reducing the number of operations performed
by the communication system at transmission time. We use the Internet protocol suite [153], and from
Section 4.1.1, we see that ARQ-based schemes, like TCP, are not suitable in a broadcast multimedia
scenario with real-time requirements. UDP is appropriate, for example, according to [146]10, and we use
this protocol in our MoD server. Below, be look at the basic idea, the design and implementation, and
the performance of NLF.

4.3.1 Basic Idea

As shown in Figure 4.13B, we use the idea of asynchronous packet forwarding in the intermediate net-
work nodes, and our multimedia storage server is considered as an intermediate storage node where the
upper layer packets, i.e., UDP packets, are stored on disk. The intention of NLF is to reduce the overhead
of CPU intensive, data touching operations in the communication protocols like the checksum calcula-
tion and thereby increase the system performance. Since ARQ-based schemes are not suitable for our
multicast and real-time environment [152], we use UDP as the transport level protocol to transmit data
from the server to the clients.

4.3.2 When to Store Packets

If data is arriving from a remote site as depicted in Figure 4.13B using UDP, the most efficient approach
regarding overhead to store the transport level packets is to collect incoming UDP packets and put them
directly on disk without transport protocol processing. However, this is not a suitable solution, because
the arriving packet header will be partly invalid. The source address must be updated with the server
address, the destination fields will be unknown until transmission time, and the checksum must be ac-
cordingly updated. Furthermore, UDP is an unreliable protocol where there might be losses. A reliable
transport protocol like TCP must therefore be used to assure that all data are transmitted correctly to

10TCP may be the appropriate protocol for control messages between server and client [146].
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the server. This is shown as phase 1 in Figure 4.14. Finally, the integrated error management scheme
described in Section 4.1 may use a different block size than the arriving packet size (each packet in a
TCP stream might even vary as TCP may gather several transmitted blocks into one packet) and also
requires that we transmit the redundant parity data calculated by the storage system. Consequently, we
cannot store incoming packets directly.

Transport layer

Application layer

Network layer

Link layer

UDP

IPIP

TCP

IPIP

UDP

UDP

TCP

phase 1

phase 3

phase 2

Figure 4.14: NLF in detail.

To be able to prefabricate UDP packets of correct size and with a correct, partly completed header,
we store packets processed through the transport level protocol (phase 2 in Figure 4.14), i.e., after the
UDP packet has been generated and the checksum has been calculated, but before handing it over to the
IP protocol.

4.3.3 Splitting the UDP Protocol

To preprocess data through the UDP layer and store packets on disk, we split the traditional BSD
udp_output() procedure [169], according to phases 2 and 3 in Figure 4.14. This gives two dis-
tinct functions as depicted in Figure 4.15: (1) udp_PreOut(), where the UDP header is generated,
the checksum is calculated, and the packet is written to disk, and (2) udp_QuickOut(), in which the
remaining fields are filled in, the checksum is updated with the checksum difference of the new header
fields, and the datagram is handed over to the IP protocol.

udp_output() udp_PreOut() udp_QuickOut()

Disconnect connected socket

Hand over datagram to IP

Fill in IP header fields

Calculate checksum

Prepare pseudo header
for checksum

Prepend IP and UDP
headers

Temporarily connect

Store prefabricated UDP packet

Precalculate checksum

Prepare pseudo header for
checksum, clear unknown fields

Prepend IP and UDP
headers

Disconnect connected socket

Hand over datagram to IP

Fill in IP header fields

Update checksum

Prepare pseudo header
for checksum update

Prepend IP headeronly

Temporarily connect
Depending on whether the
socket is connected or not

Always performed by UDP

Figure 4.15: udp_output(), udp_PreOut(), and udp_QuickOut().
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By looking at Figure 4.15, one might wrongly assume that the same (or even more) work is performed
in our udp_PreOut() and udp_QuickOut() functions compared to the traditional udp_output().
It is important to note, however, that in our MoD scenario where the multimedia data is retrieved mul-
tiple times, our approach will cause considerably less work. The udp_PreOut() is executed once per
UDP datagram, and then the output is stored on disk. For each client, only the udp_QuickOut() is
executed where several operations, especially the time consuming checksum calculation, is considerably
simplified (see Section 4.3.5.2).

4.3.4 Prefabrication and Data Transmission

The process of prefabricating UDP packets and storing them on disk is depicted in Figure 4.16A. The
data is processed through udp_PreOut() to prefabricate and store the UDP packet, i.e., the output
of CPU intensive operations like the checksum calculation is stored in the packet header. Finally, to
optimize storage system performance, several packets are concatenated to form a disk block, and the
newly formed blocks are written to disk.

UDP-PreOut

…

…

UDP header

UDP payload } UDP packet

UDP-QuickOut

…

…

…

IP

UDP header

UDP payload}UDP
packet

IP header

} IP
packet

(A) Prefabricating transport level packets and storing
them on disk.

(B) Retrieving transport level packets from disk and
sending them to the client.

Figure 4.16: The prefabrication and data transmission processes.

The data retrieval from disk and the process of sending the packets to the network is sketched in Fig-
ure 4.16B. The whole UDP packet is retrieved from disk and is processed through the udp_QuickOut()
where only a quick assembly of the packet is performed, i.e., the following four steps are performed: (1)
the missing values, i.e., source port number, destination port number, and destination IP address, are filled
in the appropriate fields of the UDP packet, (2) a checksum over these three fields is calculated, (3) the
value of the UDP checksum field is updated by adding the checksum of the three new field values to the
precalculated UDP checksum, and (4) the UDP packet is handed over to the IP protocol. Consequently,
the server side UDP protocol operations are reduced to a minimum at transmission time. Furthermore,
since the server application will only retrieve data from the storage system and then forward the data
to the communication system without performing any operations on the data itself, the data retrieval
and transmission operations should be performed using our zero-copy, in-kernel data path. This will
additionally reduce system call overhead and data movement operations.
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4.3.5 Checksum Operations

Originally, the UDP checksum is calculated over the three areas displayed in Figure 4.17: a 12 B pseudo
header containing fields from the IP header, the 8 B UDP header, and the UDP data. These values are
contained in the udpiphdr structure, as depicted in Figure 4.18, which holds the UDP and IP headers.
The pseudo header values are inserted into the IP header fields. The udpiphdr will be placed in front
of the first mbuf structure to enable prepending of lower-layer headers in front [169], and the traditional
in_cksum() is called with a pointer to the first mbuf containing the UDP packet to calculate the 16 bit
transport level checksum.

32-bit source IP address

32-bit destination IP address

16-bit UDP length

16-bit UDP checksum

16-bit destination port number

16-bit UDP length

16-bit source port number

8-bit protocolzero

0 15  16 31

}
}
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precalculated checksum field
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Figure 4.17: Used fields for UDP checksum computation.
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Figure 4.18: udpiphdr structure with the fields used for checksum.

The checksum procedure in our NLF mechanism is divided into two parts. In the checksum pro-
cedure in udp_PreOut(), we precalculate the checksum over the known header fields and the UDP
payload, and the checksum procedure in udp_QuickOut() updates the stored checksum value with
the checksum of the new fields (shaded in Figure 4.17) in the pseudo and UDP headers. The two check-
sum operations are described next.

4.3.5.1 Precalculating Checksum

The udp_PreOut() function generates UDP packets with (precalculated) checksums (see Figure
4.16A), but to use the prefabricated packet for transmission from server to client, we have to fill in
the corresponding source and destination IP addresses and port numbers. However, most of these val-
ues are unknown when storing the data. The source IP address will be the server’s IP address, but the
source port number will be allocated dynamically at transmission time, and the client’s destination IP
address and destination port number are also unknown. Therefore, these unknown fields are initialized
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to zero (see Figure 4.18) before the checksum is calculated using the traditional in_cksum() function,
in order to assure that these fields will have no affect on the checksum.

4.3.5.2 Updating Checksum

In order to transmit data from server to clients, the prefabricated UDP packets are read from disk and
then processed through the UDP/IP communication protocols using udp_QuickOut() instead of the
traditional udp_output() at the transport layer. Since the udpiphdr structure is placed in front
of the first mbuf in the chain of mbufs holding the UDP packet data, the checksum procedure can be
simplified as shown in Figure 4.19. We only have to update the stored checksum with the new port
numbers and destination IP address, and because these fields were initialized to zero before calculating
the stored checksum, the value of these fields are just added to the stored checksum value. We do not need
to check whether there are more mbufs containing data or whether there are words spanning between the
mbufs. Finally, after the checksum has been updated, the udp_QuickOut() continues the protocol
processing in the same way as the traditional udp_output().

int in_QuickCksum(struct mbuf *m)
{

u_short *w;
int sum;

/* Some more declarations */
....

/* return a pointer to the data associated with an mbuf,
and cast the pointer to the specified type, i.e., u_short */

w = mtod(m, u_short *);

sum = ~w[13]; /* Stored checksum value */
sum += w[11]; /* Destination port */
sum += w[10]; /* Source port */
sum += w[9]; /* Destination IP address, last part */
sum += w[8]; /* Destination IP address, first part */

REDUCE;
return(~sum & 0xffff);

}

Figure 4.19: Checksum calculation procedure used in udp_QuickOut().

4.3.6 Network Level Framing Prototype

To be able to test and evaluate the NLF mechanism, we have designed and implemented a prototype
of the NLF mechanism in NetBSD. This design differs slightly from the basic idea. We store the com-
munication system meta-data (packet headers) in an own meta-data file. When a stream is opened, this
meta-data file is retrieved from disk and stored in memory (if this is a large file, we might use some
kind of sliding-window technique to keep in memory only the most relevant data). During data trans-
mission, the right packet header is retrieved from the meta-data file according to the offset of the data
file and the size of each packet. The header is put into its own mbuf, and that mbuf’s next pointer is set
to the mbuf chain containing the data. We split the headers and the media data into two files (“split-file”
storage) because our multimedia server also uses integrated storage and communication system error
management (see Section 4.1). The recovery scheme uses fixed size blocks (either one packet contains
data from several disk blocks or one disk block contains a power-of-two number of packets), each to be
transmitted as a packet. Storing packets, including headers, contiguously on disk will greatly increase
the complexity of the integrated error management scheme storing both packet headers and media data
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(codeword symbols) within one disk block. Storing the meta-data in a separate file also enables the use
of different protocols and packet sizes without storing the data several times, i.e., only several meta-data
files are necessary to hold the packet size dependent meta-data.

Additionally, we do not store incoming packets in the current prototype. We prefabricate the transport
level packets using a special system call where a locally stored file is given to the packet prebuild routine,
which generates the meta-data (packet headers) and stores them in their own file. Furthermore, the
data touching checksum operation is the main CPU cycle consumer, so our prototype precalcuates the
checksum over the packet payload only (application level data) and stores this on disk, but the packet
header is generated on-the-fly during transmission time. This simplifies the prefabrication function and
reduces the storage requirement of the meta-data file by 80 %. Nevertheless, the performed prefabrication
should still be sufficient to prove the advantages of the NLF concept.

mmbuf buf
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mmbuf buf

mbuf
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mmbuf buf

mbuf

mmbuf buf

mbuf
buf.b_data

mbuf.m_data

cksum

cksum

cksum

cksum

cksum

checksum
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Figure 4.20: The NLF prototype implementation using the zero-copy data path.

The idea of the prototype implementation is shown in Figure 4.20. The checksum meta-data is
retrieved from disk and stored in memory during stream setup. As the size of an mbuf has increased to
256 B in the current version of NetBSD, and the data area per mmbuf is 512 B, we have some room
for additional variables. We have therefore added a checksum variable (integer) which holds the stored
checksum value. During stream read and each buffer initialization the checksum value is retrieved for
each packet according to the data read from disk. To find the correct offset in the meta-data file, we use
the formula

checksum_offset =
data_read_offset

NBPMMBUF
× sizeof(int)

where NBPMMBUF is the size of each packet (number of bytes in each mmbuf), and data_read_offset is
the current file offset in the streamed file. For each MMBUF in the current chain, the checksum_offset is
advanced by the size of the checksum. When the mmbuf is sent to the transport protocol the checksum
value in the mmbuf is used as an argument for the NLF checksum procedure, i.e., the checksum routine
performed at transmission time only calculates the checksum of the packet header and adds it to the
stored checksum to obtain the final checksum.
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4.4 Putting It All Together

Above, we have described our three mechanisms which individually will improve performance in an
MoD server. They are orthogonal, meaning that they can be used alone or combined in a system. In this
section, we look at how to integrate them in one MoD storage server as shown in Figure 4.21.
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Figure 4.21: Integrating all the mechanisms in the INSTANCE MoD server.

The integrated error management and the NLF schemes should be closely integrated if both tech-
niques are used. This is because our recovery scheme uses fixed size code blocks, each to be transmitted
as a UDP packet. The size of the packets (or size of a group of packets stored within a single disk block)
must therefore fit into the disk block size boundaries. Additionally, we also transmit the calculated parity
information to the remote clients which also must be stored in a network level format. The performance
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analysis in Section 4.1.5.2 shows that the correcting scheme performs best using symbol (packet) sizes
of 1 KB, 2 KB, 4 KB, or 8 KB, and we will therefore use one of these packet sizes. However, these
sizes are too small to make efficient use of today’s disks. In [135], disk requests of 64 KB or larger are
suggested, and these numbers are backed up by our own disk efficiency analysis (see Section B.1 for
details). Therefore, we perform (multiple) disk requests using the maximum disk block size in NetBSD
of 64 KB and afterwards split the read data block into several packets depending on the selected packet
size.

The integrated error recovery and NLF write operation is shown in Figure 4.21. The data is handed
over to the storage system where write operations are done à la RAID level 4 using the information
data to generate a set of redundant parity data for recovery. Each of the codeword symbols, i.e., recovery
scheme blocks, is processed through udp_PreOut() to prefabricate and store the UDP packet (only the
checksum) as described in Section 4.3.4. The NLF meta-data is then stored in a separate meta-data file.
To reuse the stored parity data for FEC in the communication system, read operations are performed in a
RAID level 0 fashion. Additionally, NLF meta-data is retrieved from disk, containing the precalculated
checksum for either application or parity data, and is processed through the udp_QuickOut()where
only a quick assembly of the packet is performed.

The memory architecture has no direct implications on the other mechanisms and can be used in all
cases. However, as the integrated error management scheme uses fixed size packets, we have to set this
size in the NBPMMBUF variable describing the amount of data in the mmbuf. The NLF mechanism is
implemented using the zero-copy data path as described in Section 4.3.6, and can therefore not be used
without the MMBUF mechanism in the current prototype.

4.5 Discussion and Conclusions

The delay introduced by the decoding function in the integrated error management scheme may be in-
creased depending on the codec used. For example, in an MPEG stream, frames are reordered and
the frame size may vary. The decoder has always one future I-frame and one P-frame in the buffer,
because the B-frames refer to future frames. Thus, before decoding the MPEG stream, the entire group-
of-pictures must be available. The delay introduced by the error management scheme, will therefore
increase if the amount of data required buffered by the MPEG decoder exceed the amount of data within
one codeword, i.e., one might have to receive (and possibly reconstruct) several codewords before the
MPEG decoder can start.

In [90, 91], a similar approach to NLF is presented where video is preformatted and stored in the form
of network packets. However, the authors only describe an expected performance gain in the number of
concurrent streams, because the number of instructions is greatly reduced. Furthermore, as the whole
packet is stored as one unit, all streams must use one predefined packet size. In contrast, by storing the
packet data in a separate meta-data file, our design enables several packet sizes without storing the data
elements more than once. Furthermore, checksum caching in memory in a multimedia storage server,
as described in [112, 134], is only efficient if the data is accessed and transmitted frequently and not
paged out. For example, in the case of HDTV data delivery, most data will be paged out, and this type
of caching will give no performance gain. However, caching in network nodes to enable other data
distribution schemes, is an issue of future work.

The choice of a periodic broadcast protocol, i.e., cautious harmonic broadcasting, is based on min-
imizing the server workload as much as possible at a fair complexity of the partitioning and transmission
scheme. We have assumed that network and client bandwidth can retrieve all the broadcasted streams
belonging to one file concurrently, and that there is enough buffer space (disk or memory) to buffer about
40 % of the data at the client. However, this assumption may not hold in some cases. In the given NoD
example playing out a high data rate video stream (3.5 Mbps), the client has to support an incoming data
rate during the playout of the first segment of 16.2 Mbps (this bandwidth requirement drops as more and
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more segments finish). Thus, if the client hardware does not support this bandwidth, it cannot be serviced
by our NoD server using the cautious harmonic broadcasting protocol scheme. However, the problem of
insufficient client bandwidth can be solved in several ways:

• The bandwidth requirement is dependent on the number of segments in the harmonic broadcasting
protocol where each augment is transmitted in a separate stream. Thus, by reducing the number of
segments (and thereby the number of streams), the client bandwidth requirement is relaxed at the
cost of increased startup latency due to longer segments.

• The latency issue from the solution above can be solved at the cost of increased server bandwidth
requirement. The same number of segments are used reducing client bandwidth requirement, but
each segment is transmitted in several streams (each transmitting the whole segment) with different
starting times. For example, the latency may be halved transmitting each segment in two streams
separated in time by the half of the length of the segment, but this doubles the server bandwidth
requirement.

• Different broadcasting protocols can be used, for example where only one segment is retrieved at a
time lowering the client bandwidth requirement, i.e., using pyramid broadcasting with an α = 1.5
the client bandwidth requirement will be 5.25 Mbps. However, this client bandwidth requirement
is decreased at the cost of a higher server bandwidth requirement, because all streams must be
transmitted at the data rate of the consumption rate or higher.

• Another solution would be to support quality adaption where the stream is divided into a base
quality layer and several quality enhancement layers as proposed in [88]. In case of insufficient
client bandwidth, the quality enhancement layers of the stream are discarded reducing the playout
rate and thereby the bandwidth requirement. Reducing the playout rate to 1 Mbps by dropping
quality enhancement layers reduces the bandwidth requirement to 4.64 Mbps using the described
cautious harmonic broadcasting protocol scheme which is a data rate that can be supported to
Norwegian homes today by broadband companies [179].

The various solutions make a trade-off between server and client requirements, and different scenarios
(applications, environments, users) may have different preferences, i.e., an analysis should be made in
each case. Nevertheless, users having a high data rate connection and sufficient client-side resources
should be able to retrieve the data in full quality. Thus, we believe that quality adaption in combination
with a broadcasting scheme, that is configured to “satisfy” both server and client requirements, is a good
solution.

Another assumption is that we assume that the different multimedia files will be accessed by a large
number of concurrent users. The gain in offering such a periodic data delivery depends on the number of
viewers. If the total resource requirement for the periodic task exceeds the total requirement of each client
in a unicast scenario, it is more efficient to allocate one stream for each client. Thus, a broadcast scheme
is best suited for popular videos, e.g., the top ten. For less popular videos, some kind of contingency
channels [146] could be allocated where resources are set aside for single unicast streams, though still
using the zero-copy data path.
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Chapter 5

Performance Evaluation

In the previous chapter, we described the design and implementation of our operating system enhance-
ments to improve the I/O performance of multimedia storage servers. In this chapter, we describe the
performance measurements carried out on our mechanisms using a simple benchmark application server
transmitting data from our server machine to another machine over a point-to-point network. Since this
thesis focus on I/O performance and nor process management, we implemented a simple process-per-
stream server, but a future server will probably benefit form a thread-based architecture. Furthermore,
each measurement is carried out several times to get a credible result, and we present statistics like max-
imum, minimum, average, standard deviation, and confidence intervals. In the tables, the values are
labeled max, min, avg, stdev, and ci, respectively. Each measurement is also performed using different
packet sizes (see Section 4.1.5.2), and when listing the different values for each size, we have included
the packet size in parenthesis. In order to see the relationship between the expected improvements from
removing bottlenecks and the actual measured performance gain, we estimate the expected performance
increase based on our system analysis (limitations are summarized in Section 3.4 and some measure-
ments are presented in Appendix B) and compare the measured and estimated performance to determine
if other factors have influenced the results.

In the first section of this chapter (Section 5.1), we describe the experimental environment. Sections
5.2, 5.3, and 5.4 describe the specific experiments and present the experimental results from our three
mechanisms. Section 5.5 presents an evaluation of the total server improvement, and we discuss and
analyze the results further in Section 5.6.

5.1 Experimental Environment and Performance Monitoring Tool

There are many different factors that may influence the measured results when performing experimental
tests on a system. Different hardware architectures have different instruction sets, and each subsystem
often has several parameters that could be varied for each test, e.g.:

• hardware parameters like the size of memory, machines and architectures, hardware components
like disks, buses, network cards, etc., and

• software parameters like the size of the kernel address space, size of different kernel sub-maps,
file system (disk) block size, mbuf external cluster size, transport level packet size, network MTU
size, etc.

Furthermore, the application could make read and send requests of different sizes, and each test should
be run several times to get a credible result. However, if we were to consider all these parameters and use
different configurations for each one of them, the number of tests would be very large. To limit the scope
of this thesis, we have limited the number of variable parameters and their values. We have used only
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one set of hardware (described below), and we have kept the size of the kernel memory maps, the file
system block size, and the mbuf (and mmbuf) external cluster size constant using default NetBSD values.
What we have varied in our tests are the background load, the number of concurrent streams, and the
transport level packet size. Furthermore, we tested the different configurations of our system, i.e., three
stream versions of the server (using stream_read()/stream_send(), stream_rdsnd(), and
stream_sndrd()) with and without NLF. The results are then compared with the results of a tradi-
tional server. The tests are performed using packet sizes of 1 KB, 2 KB, 4 KB, and 8 KB, because these
packet sizes perform best using the integrated error management scheme (see measurements in Section
4.1.5.2). Furthermore, if not described explicitly in the text, each test is performed 100 times to get a
trustworthy evaluation of the system, i.e., we try to eliminate infrequent events like garbage collection,
log files being reset, etc. during our experiments. Some of the tests could have been performed on other
packet sizes, i.e., the tests on the data-path and NLF. However, the tests carried out achieve the perform-
ance improvement we required and projected, so further tests using other packet sizes or other system
configurations are regarded as future work.

We have performed the tests using a Dell Precision WorkStation 620 with a PentiumIII 933 MHz
processor and 256 MB Rambus direct random access memory (RDRAM) running NetBSD 1.5ALPHA2.
This machine has only one 9.1 GB, 10,000 rounds-per-minute SCSI hard disk. Therefore, we simulated
a RAID system by storing both application level data and parity data on the same disk. We connected
this machine to another PC using an isolated, point-to-point gigabit ethernet network (see Section A.1
for more details).

To measure time in kernel and user space, we have implemented a software probe using the Intel
RDTSC instruction. This instruction reads the processor cycle count giving a nano-second granularity
and is used in a similar way as described in [187]. To avoid issues affecting the measured cycle count
like out-of-order execution, we used the CPUID instruction in the software probe forcing every preceding
instruction in the code to complete before allowing the program to continue. The overhead of executing
this software probe comprises 206 cycles running inside the kernel and 273 cycles in user space. These
values equal to both the lower and upper limits of the 99% confidence interval and should therefore
be reliable. On our 933 MHz test machine, the overhead corresponds to about 0.22 µs and 0.29 µs,
respectively. In the performance results presented in the following subsections, this overhead is already
subtracted (for further information about the software probe, see Section A.2).

Finally, to see the total speed up in the amount of effective time used in the operating system kernel,
i.e., the time the process really uses the CPU, we have measured the process’ used kernel time. For these
measurements we used getrusage() [198] which returns information about the resources utilized by
the current process.

5.2 Integrated Error Management

In Section 4.1.4.2 and 4.1.5.2, we performed some performance tests to find a suitable code configuration
including codeword and symbol sizes, because this has an impact on the efficiency of the system. To
further analyze the performance of our prototype and to see if our error management scheme is applicable
in a real system, we have designed a simple benchmark application in which we transfer a 225 MB file
between the server process and the client process. We performed a worst-case decoding performance test
introducing a maximum number of errors within the code’s correcting limit on several different client
machines using symbol (packet) sizes of 1KB, 2 KB, 4 KB, and 8 KB on the (256,224) over GF (28)
Cauchy-based Reed-Solomon Erasure code.

5.2.1 Client Side

By reconstructing the lost data at the client side instead of waiting for a retransmission, the clients may
experience a better data presentation at the cost of increased memory and CPU usage compared to a
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scenario where we have long retransmission latencies. Our measurements show that our code is able
to decode the data in time for a high data rate presentation. The average decoding performance on our
different machines is displayed in Table 5.1. Most of our experiments show that a standard MPEG-2
DVD data stream of 3.5 Mbps with maximum data loss can be recovered in time. Furthermore, there are
no large performance differences when varying the symbol size between 1 KB and 8 KB, and all these
configurations are adequate regarding throughput. However, depending on the requested data rate our
tests indicate some minimal hardware requirement. For example, the Tech Pentium (166 MHz) machine
is able to support a data rate of only about 3 Mbps.

Throughput (Mbps) Delay (s)

Machine 1 KB 2 KB 4 KB 8 KB 1 KB 2 KB 4 KB 8 KB

Sun UltraSparc 1, 167 MHz, Solaris 2.6 6.02 6.51 6.36 6.20 0.30 0.56 1.16 2.45

Sun Ultra 4, 300 MHz, Solaris 2.6 9.99 10.71 10.55 10.49 0.18 0.33 0.69 1.47

Dell PowerEdge 6300 500 MHz, Red Hat Linux 6.1 8.16 7.43 6.52 6.47 0.14 0.49 1.11 2.25

Dell Inspiron 7000, 400 MHz, Red Hat Linux 6.1 10.03 9.27 9.48 9.59 0.18 0.40 0.82 1.54

Cinet PPI-600, 350 MHz, Red Hat Linux 6.1 8.96 9.22 9.05 8.89 0.20 0.39 0.85 1.63

Tech Pentium, 166 MHz, Red Hat Linux 6.1 3.18 3.32 3.34 3.25 0.58 1.11 2.16 4.50

Tech AMD K7, 700MHz, Red Hat Linux 6.1 17.10 17.40 16.67 16.53 0.11 0.21 0.44 0.95

Cinet PPI-600, 350 MHz, NetBSD 1.4.1 10.35 10.71 10.37 10.12 0.18 0.34 0.71 1.45

Dell Inspiron 7000, 400 MHz, NetBSD 1.4.2 10.62 10.05 10.52 10.66 0.17 0.36 0.70 1.38

Cinet PPI-600, 350 MHz, OpenBSD 2.6 14.87 16.28 14.85 14.22 0.12 0.22 0.49 1.04

Dell Precision 620, 933 MHz, NetBSD 1.5ALPHA2 23.03 20.67 20.80 20.75 0.08 0.18 0.35 0.71

Table 5.1: Average decoding throughput and start-up delay varying the symbol (packet) size.

Table 5.1 also shows the experienced start-up decoding delays in our experiment. Due to the decoding
cost, the client might experience an increased start-up delay ranging from about 0.1 - 4.5 seconds (if a
maximum number of errors occurs) depending on the processor speed and the block size used. The
delay increases with the size of the symbol, and since there are no large differences in throughput of the
evaluated schemes, a symbol size of 1 KB or 2 KB is appropriate.

Finally, as there usually is some variance in the accessibility of the processor (unless some kind of
reservation-based scheduling is provided), and thus in the decoding throughput, some client-side buffer-
ing should be provided. Nevertheless, despite all the overhead introduced on the client side, the recovery
from lost packets can be made in time to support average MPEG-2 DVD video playout, with exception
of the Intel Pentium (166 MHz) machine, assuming client hardware similar to the machines we used in
our experiments.

5.2.2 Server Side

The server side performance gain, when integrating the error management mechanisms and reading the
parity data from disk, is substantial. Storing and retrieving parity data from disk requires no extra stor-
age space compared to traditional RAID systems, because one disk is already allocated for parity data.
Furthermore, it requires no extra time for data retrieval, because the recovery disk is read in parallel with
the original application data. We have no overhead (neither acknowledgment handling nor buffer space)
managing retransmissions, and the usage of the parity data from the RAID system as FEC recovery
data offloads the storage node from the encoding operation resulting in significant performance improve-
ments. As shown in Table 5.2, a PC with a PentiumIII 933 MHz CPU is capable of encoding data at a
maximum throughput of 24.34 Mbps (1 KB packets), 22.07 Mbps (2 KB packets), 22.67 Mbps (4 KB
packets), 22.94 Mbps (8 KB packets) using the Cauchy-based Reed Solomon Erasure code. The table
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also shows the effective CPU time for the parity encoding of the 225 MB file. Without this encoding
operation, the same system can achieve a throughput of nearly 1 Gbps (see Section 5.3.2.2). The only
overhead on the storage node side in our approach is 12.5 % of increased buffer space and bandwidth
requirement to hold the redundant data in memory and transmit it over the buses and the network. Thus,
using our integrated error management mechanism, the storage node workload is greatly reduced com-
pared to traditional FEC schemes, and the clients experience a smoother data playout compared to ARQ
based schemes, because no latency is introduced due to retransmissions. Finally, note that the decoding
performance presented in Table 5.1 also applies to the storage system recovery rate. If we assume that we
use 9 GB hard disks in our disk array, the recovery of a whole disk takes about 420 seconds (assuming
a throughput of 22 Mbps on our PentiumIII 933 MHz PC and that the system is dedicated to rebuild the
failed disk).

Size max min avg stdev 99% ci 95% ci

Measured throughput (Mbps) 1 KB 24.69 22.29 24.34 1.70 [22.34 - 24.67] [22.41 - 24.61]

2 KB 22.27 21.30 22.07 0.75 [22.32 - 24.50] [22.38 - 24.50]

4 KB 22.84 22.33 22.67 0.35 [22.31 - 24.45] [22.34 - 24.45]

8 KB 23.12 22.81 22.94 0.13 [22.31 - 24.38] [22.32 - 24.38]

Used CPU time (s) 1 KB 76.71 64.94 72.15 2.43 [68.21 - 76.67] [68.34 - 76.45]

2 KB 81.42 78.15 80.72 0.75 [78.36 - 81.33] [78.50 - 81.30]

4 KB 79.21 78.80 79.02 0.09 [78.80 - 79.18] [78.87 - 79.18]

8 KB 78.57 77.98 78.32 0.12 [78.02 - 78.57] [78.06 - 78.54]

Table 5.2: Cauchy FEC encoding.

5.3 Zero-Copy-One-Copy Memory Architecture

In this section, we describe our performance evaluation of the traditional disk-to-network data and control
path using system calls like read() and send() (illustrated in Figure 4.10) versus our zero-copy
data and control path using the system calls described in Section 4.2.1.4. First, we try to analyze the
expected gain using our basic tests described in Appendix B measuring copy performance and system
call overhead. Then, we analyze the performance gain transmitting only one stream, and afterwards
we look at the multi-stream scenario. Finally, we look at the expected performance gain using the
broadcasting protocol on top of the zero-copy data path.

5.3.1 Expected Gain

By using our zero-copy data path, the time to perform the copy operations should be saved. For example,
reading 64 KB data from the storage system into the specified buffer in user space requires on average
137.1 µs to perform the copyout() function (see Table B.2 in Section B.2). If using 4 KB packets,
the copyin() function uses on average 1.65 µs to copy data into the kernel. Thus, transmitting a 1 GB
file in 64 KB blocks at a time, requires 16384 read operations of 64 KB and 262144 send operations of 4
KB. In all, this should be 16384 × 137.1 µs + 262144 × 1.65 µs ≈ 2.7 s used for copy operations alone.
This time should be saved using our stream API instead of the native NetBSD read and send operations.

If we look at the system call overhead when transmitting 1 GB in 64 KB blocks (the kernel splits
the 64 KB block into smaller packets), the stream_read() and stream_send() system calls
require 16384 read and 16384 send operations, respectively. Using the stream_rdsnd() system call,
which merges the read and send operations into one operation, should reduce this cost by 50 %. Our
measurements in Section B.3 (see Table B.3) show that on average 0.40 µs is used each time we perform
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an access to the kernel. This means that about 16384 × 0.40 µs = 6.55 ms should be saved in kernel
access time. Thus, by reducing the number of system calls, we might expect a small decrease in time to
transmit the data, but it will not be very significant.

In a multi-stream scenario, all concurrent streams share the set of resources, and the average per-
formance will decrease per stream. However, the used CPU time should be approximately constant with
the exception of adding time to perform context switches.

5.3.2 Single Stream Scenario

We performed three types of experiments on a single stream. First, we used the stream_read() and
stream_send() system call pair (see Figure 4.11A), which eliminate the data copy operation, but
still hand over the control to the application before data is read and sent to the network. Second, we used
the stream_rdsnd() system call (see Figure 4.11B) to eliminate data copy operations and to refrain
from handing over the control to the application before data is read and sent to the network. Finally, we
also prefetch data from disk using the stream_sndrd() system call which has an identical data and
control path as stream_rdsnd() (see Figure 4.11B).

To measure the performance of the different servers (using the different system calls), we have meas-
ured the time it takes to transfer a 1 GB file from the storage system to the network interface. Each test
is repeated 100 times to get a reliable result, and the data transfer time is measured using the software
probes described in Section 5.1. Furthermore, to see the system behavior under different kinds of ma-
chine workloads, we have run the tests with two background workloads: (1) no workload, i.e., no other
processes running on the machine except the operating system itself, and (2) high CPU load, i.e., 10
concurrent processes just using the CPU performing time consuming float and memory copy operations.
In addition to the CPU bound background workload, I/O bound workloads occupying the storage system
and the network could be used. However, in order to test the system with as authentic a workload as
possible, we tested the system in a multi-stream scenario, because the load imposed on an MoD server
will be the load from several concurrent streams.

5.3.2.1 Transmission Time Reading Data From a Disk Storage System

The performance results, for reading and transmitting a 1 GB file to the remote client, are shown in
Table 5.3. As we can see, the disk storage system is a bottleneck, and the performance gain of using a
zero-copy data path is absorbed in the large data retrieval times from disk, i.e., the average throughput
of all measurements, regardless of using copy operations or not, is about 215 Mbps. To see the real
performance benefit of the MMBUF zero-copy mechanism, we performed the same measurements on
a 1 GB file in a memory file system (in some systems called a ramdisk). This means that the time to
retrieve data is reduced from a disk access to a memory copy operation.

5.3.2.2 Transmission Time Reading Data From a Memory File System

The average results, reading 1 GB data from a memory file system1 and sending it to the remote client,
are plotted in Figure 5.1 where the zero-copy data path is represented by the stream_read() and
stream_send() system calls. Table 5.4 presents several statistics calculated from all the measure-
ments. If there is no load on the system (Figure 5.1A), the time to transmit is reduced to 54.19 % (1
KB packets), 54.96 % (2 KB packets), 50.67 % (4 KB packets), and 47.30 % (8 KB packets) of the
traditional read()/send() time. Furthermore, if we have a highly loaded machine (Figure 5.1B),

1Holding a 1 GB file in a memory file system requires a lot more memory than we have in our machine (256 MB). Since
the size of the memory file system is limited, we performed these experiments using a ∼30 MB memory file system, and we
simulated a large file read by repeatedly (38 times) reading a 28662512 B file using the stream_seek() system call to reset
the file offset.
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Operation Size max Min Avg stdev 99% ci 95% ci

read()/ 1 KB 41.81 40.62 40.70 0.19 [40.62 - 41.81] [40.62 - 41.22]

send() 2 KB 41.47 40.62 41.41 5.40 [40.62 - 41.47] [40.62 - 41.18]

4 KB 41.49 40.62 40.69 0.15 [40.62 - 41.49] [40.62 - 41.20]

8 KB 41.74 40.62 40.69 0.19 [40.62 - 41.74] [40.62 - 41.26]

stream_read()/ 1 KB 40.08 39.27 39.31 0.10 [39.27 - 40.08] [39.28 - 39.57]

stream_send() 2 KB 40.72 40.61 40.63 0.02 [40.61 - 40.72] [40.61 - 40.70]

4 KB 40.98 40.60 40.62 0.05 [40.60 - 40.98] [40.60 - 40.78]

8 KB 41.35 40.60 40.62 0.08 [40.60 - 41.35] [40.60 - 40.68]

stream_rdsnd() 1 KB 39.58 39.27 39.30 0.06 [39.27 - 39.58] [39.28 - 39.57]

2 KB 40.82 40.61 40.63 0.03 [40.61 - 40.82] [40.61 - 40.70]

4 KB 40.79 40.60 40.62 0.03 [40.60 - 40.79] [40.60 - 40.70]

8 KB 40.81 40.60 40.62 0.03 [40.60 - 40.81] [40.60 - 40.71]

stream_sndrd() 1 KB 39.60 39.28 39.29 0.05 [39.28 - 39.60] [39.28 - 39.38]

2 KB 40.85 40.58 40.61 0.05 [40.58 - 40.85] [40.59 - 40.83]

4 KB 41.47 40.59 40.61 0.10 [40.59 - 41.47] [40.59 - 40.83]

8 KB 41.46 40.58 40.62 0.10 [40.58 - 41.46] [40.59 - 40.84]

Table 5.3: Time (in seconds) to transfer 1 GB from a disk (no load).

the respective times are reduced to 29.27 % (1 KB packets), 28.51 % (2 KB packets), 28.67 % (4 KB
packets), and 26.57 % (8 KB packets) of the native NetBSD read and send operations. This shows that
a zero-copy data path also scales much better than the traditional mechanisms, because less resources,
like the CPU, are used. The zero-copy mechanism degrades by factors 6.30, 5.90, 6.20, and 6.08, i.e.,
the time to transmit 1 GB data is increased by these factors, whereas the performance of the traditional
server is reduced by factors 11.67, 11.37, 10.96, and 10.83, respectively to increasing packet size.
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Figure 5.1: Average time to transmit 1 GB from a memory file system.

If we compare the different stream versions, we can observe that by using the stream_rdsnd()
system call instead of the stream_read()/stream_send()pair, the performance is increased mar-
ginally. This means that compared to other time consuming operations, the overhead of making a system
call (see Section B.3) can almost be ignored. Moreover, the results from the prefetching scenario, i.e., us-
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Operation Load Size max Min Avg stdev 99% ci 95% ci

read()/ No 1 KB 20.16 20.00 20.06 0.04 [20.00 - 20.16] [20.00 - 20.15]

send() 2 KB 19.95 19.81 19.87 0.03 [19.81 - 19.95] [19.82 - 19.92]

4 KB 18.02 17.85 17.94 0.03 [17.85 - 18.02] [17.87 - 18.01]

8 KB 19.01 17.51 17.76 0.27 [17.51 - 19.01] [17.52 - 18.51]

High CPU 1 KB 273.48 208.96 234.10 13.25 [208.96 - 273.48] [211.24 - 260.64]

2 KB 236.56 208.73 225.99 5.11 [208.73 - 236.56] [215.60 - 235.46]

4 KB 209.35 183.82 196.67 5.53 [183.82 - 209.35] [186.73 - 208.46]

8 KB 207.12 169.62 192.33 7.02 [169.62 - 207.12] [177.54 - 205.53]

stream_read()/ No 1 KB 10.89 10.07 10.87 0.08 [10.07 - 10.89] [10.87 - 10.89]

stream_send() 2 KB 10.93 10.91 10.92 0.01 [10.91 - 10.93] [10.91 - 10.93]

4 KB 9.22 9.02 9.09 0.03 [9.02 - 9.22] [9.04 - 9.19]

8 KB 8.49 8.36 8.40 0.02 [8.36 - 8.49] [8.37 - 8.44]

High CPU 1 KB 76.20 58.86 68.51 3.71 [58.86 - 76.20] [60.85 - 75.96]

2 KB 75.90 56.02 64.43 4.20 [56.02 - 75.90] [57.87 - 74.59]

4 KB 65.98 48.34 56.38 3.97 [48.34 - 65.98] [49.07 - 64.91]

8 KB 68.32 43.54 51.11 4.11 [43.54 - 68.32] [44.46 - 60.66]

stream_rdsnd() No 1 KB 10.89 10.06 10.87 0.08 [10.06 - 10.89] [10.86 - 10.88]

2 KB 10.92 10.90 10.92 0.00 [10.90 - 10.92] [10.91 - 10.92]

4 KB 9.28 8.85 9.01 0.15 [8.85 - 9.28] [8.87 - 9.26]

8 KB 8.42 8.22 8.28 0.06 [8.22 - 8.42] [8.24 - 8.42]

High CPU 1 KB 61.01 47.67 54.47 3.38 [47.67 - 61.01] [48.30 - 60.61]

2 KB 60.51 45.25 53.93 3.12 [45.25 - 60.51] [48.03 - 59.27]

4 KB 53.67 40.66 46.74 2.68 [40.66 - 53.67] [41.48 - 52.14]

8 KB 51.97 34.17 42.69 3.04 [34.17 - 51.97] [36.73 - 48.77]

stream_sndrd() No 1 KB 13.06 12.51 13.02 0.05 [12.51 - 13.06] [12.98 - 13.05]

2 KB 12.63 12.48 12.52 0.03 [12.48 - 12.63] [12.49 - 12.62]

4 KB 11.14 11.02 11.08 0.05 [11.02 - 11.14] [11.02 - 11.14]

8 KB 10.91 10.80 10.85 0.04 [10.80 - 10.91] [10.80 - 10.90]

High CPU 1 KB 124.34 98.79 111.01 5.09 [98.79 - 124.34] [99.83 - 120.64]

2 KB 134.57 103.99 118.85 5.74 [103.99 - 134.57] [107.81 - 131.82]

4 KB 119.82 92.87 104.92 5.56 [92.87 - 119.82] [94.76 - 116.65]

8 KB 106.77 78.70 92.91 6.66 [78.70 - 106.77] [81.71 - 105.79]

Table 5.4: Time (in seconds) to transfer 1 GB from a memory file system.

ing the stream_sndrd() system call, show a larger time to process data through the system compared
to stream_rdsnd(). Prefetching should be performed by using free available time in the storage sys-
tem to retrieve data to be used next. However, as data is read from a memory file system, the CPU is
used to read the data, and the CPU is never idle in our tests. Thus, there is no spare time to retrieve
data in the prefetching scenario, which means that there is no time to be saved. We use in the remaining
tests only the stream_read()/stream_send() pair and the the stream_rdsnd() system call.
Nevertheless, prefetching, as performed in stream_sndrd(), will be very useful in a system having
a disk storage system with a retrieval rate that is equal to or better than the rest of the storage server
components.

Finally, since the disk represents the major bottleneck in the system, and this is solved by using a
memory file system (at the cost of memory and CPU resources in the test bed), we will in the remaining
tests read data from memory assuming a faster persistent storage system.
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Size max min avg stdev 99% ci 95% ci

1 KB 173.09 0.69 2.28 15.55 [1.71 - 6.96] [1.77 - 2.69]

2 KB 107.36 1.44 4.63 3.84 [3.65 - 16.66] [3.77 - 7.34]

4 KB 212.17 3.21 7.73 31.41 [5.81 - 61.20] [6.03 - 10.86]

8 KB 139.58 2.17 14.72 6.30 [11.74 - 50.16] [12.38 - 17.28]

Table 5.5: Time to execute ether_output() per transport level packet (µs).

Total ip_output() ether_output()

Size max min avg max min avg max min avg

4 KB 33535 30891 31886.90 31532 29073 30005.30 2003 1805 1881.60

8 KB 24068 22939 23320.90 22969 21887 22233.40 1133 1052 1087.50

Table 5.6: Amount of loss in number of packets.

5.3.2.3 Server Side Congestion

As some of these values indicate a throughput of approximately 1 Gbps when reading data from the
memory file system, we checked to see if the network card could be a bottleneck by counting transmitted
packets. Our tests show that all packets are correctly transmitted through the UDP/IP layers, but we
experience some loss when enqueuing the packet on the interface output queue and when retrieving the
packet from the queue for transmission. The packets are dropped at two places. If the transport level
packet is fragmented in the IP protocol, ip_output(), the system checks whether there is room in the
queue for all the fragments of the current packet. If not, all the fragments are dropped. If there seem to be
enough free buffers in the queue, all the fragments are sent to the upper layer of the ethernet layer. A new
check on the queue length is performed, in ether_output(), where fragments are again dropped if
the queue is overloaded. This means that the times presented above to send data have a small source of
error. The time to process the packets through the ether_output() function is not included for those
packets dropped from the IP layer. If the packet size is 1 KB, the ether_output() function is always
executed, because we do not have any fragmentation. If the packet size is above the interface MTU (2KB,
4 KB, or 8 KB), fragmentation occurs and packets might be dropped in the IP layer. In our measurements,
we experienced some loss using 4 KB and 8 KB packets2 . To see the margin of error in our tests, we
measured the time to execute the ether_output() function (and the remaining IP instructions) for all
fragments depending on the transport level packet size and the amount of loss. Table 5.5 shows execution
times, and Table 5.6 shows the number of packets lost during transmission of 1 GB of data3. If the packets
are dropped in ip_output(), the time to execute the ether_output() function should be added
in the measurements above. For example, using 4 KB packets, we lose on average 30005 packets whose
execution time through ether_output() corresponds to about 224 ms. For a 8 KB packet size, the
corresponding time to execute ether_output() for the lost packets is about 322 ms. This means that
our measurements are about 2 - 3 % too low using 4 KB or 8 KB packets in the zero-copy data path.
Furthermore, when the network card driver dequeues packets and tries to pack the data into the transmit
ring on the network card, the packets are occasionally put back on the queue, because the transmit ring
is full. This means that the network card is not able to send data fast enough when receiving bursts of
packets, and the 1 Gbps network card is therefore a bottleneck. If we have blocking system calls waiting

2That we do not experience any loss using 1 KB and 2 KB packets, is probably because there are more instructions to
execute with respect to the amount of data compared to packet sizes of 4 KB and 8 KB.

3We measured the amount of loss by inserting monitors (counters) into ip_output() and ether_output(). Thus,
all traffic through IP is monitored, i.e., if another process has transmitted a packet, this packet is also counted giving a small
margin of error.
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for all the packets to be sent, this delay will be added to the total time used to transmit the file. In our
tests, we do not wait until all packets are sent before proceeding with the other operations, because then
all the read operations would have to wait before all packets are sent in a chain giving even more delays.
Since we do not wait until all packets are sent, there might be some packets left in the driver’s transmit
ring when we execute the last probe (in user space) measuring the time. Thus, a small source of error is
introduced into the measurements by this re-enqueuing, but as the total time to transmit the whole file is
quite large, this source of error should be negligible. This server side congestion means that we have met
the Gbps capacity of the network card and the network card is therefore a bottleneck in our testbed.

5.3.2.4 Estimated Versus Measured Performance Gain

If we now compare the performance gain with the expected gain described in Section 5.3.1, we see that
our prediction holds quite well. Compared to the used CPU time presented in Table 5.7 and Figure
5.2, we see that using the stream API (stream_read()/stream_send()) on average reduces the
kernel time by 3.98 seconds using 4 KB packets. The copy operations in this scenario consume about
2.7 seconds. Moreover, time to execute ether_output() for dropped packet in the ethernet queue is
about 0.2 seconds. The stream API also saves time to process the data through the file system removing
most of these instructions, e.g., time to do a buffer cache lookup, buffer allocation, and calling functions
like dofileread(), vn_read(), ffs_read(), bread(), bio_doread(). These functions
further call other functions. Using the MMBUF mechanism, this chain of functions is strongly simplified
and adapted to our stream. All functions is merged into one function in our stream buffer manager.
Likewise, the time to process data through the socket layer is simplified and merged into the send function
in the stream buffer manager. Finally, using native NetBSD functionality, block breakdown into smaller
packets is done in user space requiring more system calls, i.e., one for each packet to send. Thus, we
save more time than just removing the overhead of copy operations, but as we can see the time saved
by not performing any memory copy operations still constitutes most of the increase in performance.
Furthermore, the expected gain in reducing the number of system calls also seems to be correct. Using
4 KB packets the time is reduced by approximately 8.9 ms (the values in Table 5.7, indicating 10 ms, is
rounded off to have two decimals) whereas we expected to reduce the time by about 6.5 ms. This gap

Operation Size max min avg stdev 99% ci 95% ci

read()/ 1 KB 11.29 10.88 11.06 0.08 [10.89 - 11.27] [10.93 - 11.19]

send() 2 KB 11.32 10.87 11.07 0.09 [10.87 - 11.24] [10.89 - 11.21]

4 KB 10.19 9.79 9.98 0.08 [9.80 - 10.15] [9.86 - 10.12]

8 KB 9.38 9.02 9.17 0.07 [9.02 - 9.33] [9.05 - 9.29]

stream_read()/ 1 KB 7.37 7.11 7.27 0.05 [7.18 - 7.37] [7.19 - 7.37]

stream_send() 2 KB 7.10 6.86 6.98 0.05 [6.87 - 7.08] [6.88 - 7.07]

4 KB 6.09 5.88 6.00 0.05 [5.88 - 6.08] [5.90 - 6.07]

8 KB 5.96 5.75 5.86 0.05 [5.75 - 5.95] [5.77 - 5.94]

stream_rdsnd() 1 KB 7.39 7.16 7.27 0.05 [7.17 - 7.37] [7.18 - 7.36]

2 KB 7.08 6.84 6.97 0.05 [6.85 - 7.08] [6.86 - 7.05]

4 KB 6.10 5.86 5.99 0.04 [5.88 - 6.06] [5.91 - 6.05]

8 KB 5.94 5.72 5.84 0.05 [5.73 - 5.93] [5.76 - 5.93]

stream_sndrd() 1 KB 7.85 7.48 7.62 0.06 [7.49 - 7.79] [7.51 - 7.71]

2 KB 7.27 7.05 7.16 0.05 [7.07 - 7.26] [7.07 - 7.25]

4 KB 6.27 6.05 6.14 0.05 [6.07 - 6.26] [6.07 - 6.23]

8 KB 6.15 5.89 6.00 0.05 [5.91 - 6.10] [5.91 - 6.08]

Table 5.7: CPU time (in seconds) used by the kernel transferring 1 GB.
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Figure 5.2: Histogram over used CPU time in the kernel.

in time is probably due to a decrease in the number of instructions merging the read and send operation
into one system call.

5.3.3 Multi-Stream Scenario

The previous section shows that we can send data in Gbps speed (limited by the Gbps network card)
using our zero-copy data path in our testbed. However, how fast a system can shovel a single stream out
is not of primary interest in our MoD scenario or most other applications. Most multimedia streaming
applications do not need support for one stream transmitting at Gbps speed. For example, the maximum
bandwidth of MPEG-2 DVD is about 10.08 Mbps including audio, video, and sub-pictures [184]. Thus,
a more appropriate metric of server capacity is how many concurrent clients can the system support at
a given bandwidth requirement. As stated in the introduction of this thesis, our goal is to the reduce
resource requirements in a traditional server to support more concurrent clients. Therefore, we have
looked at performance when transmitting several concurrent streams (each to be broadcast to several
concurrent clients) using a packet size of 1 KB and 2 KB4. Each stream transmitted 1 GB of data from a
memory file system through the communication system to the network. However, as memory is a scarce
resource, several streams had to read the same file. This means that streams using traditional system calls
could have a caching effect on the buffer cache which will not be present in our storage node broadcasting
data. To make equal conditions for all tests, we removed this caching effect by reducing the total buffer
cache size from 13168 KB to 200 KB. Finally, during these tests the memory file system consumed
approximately 35 % of the CPU resources for all tests.

5.3.3.1 Transmission Times

Our results show that our zero-copy mechanism performs better than the native NetBSD mechanisms.
Figure 5.3A/C presents the difference in time to transmit the data per stream depending on packet size,
and this time increases faster using traditional system calls compared to our stream mechanism. In the
Zero-Copy 1 measurement, we have used the stream_read()/stream_send() system call pair.
The test Zero-Copy 2 represents a scenario where the system call overhead is reduced by merging the
read and send operations into one single system call, i.e., stream_rdsnd(). Figure 5.3B/D shows the

4Since we experienced loss using packet sizes 4 KB and 8 KB, we only performed this experiment using 1 KB and 2 KB
packets.
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per client throughput, and the Zero-Copy 2 test indicates a throughput improvement per stream of at least
a factor of two, e.g., using 1 KB packets and 150 streams, our stream mechanism achieves a throughput
of 5.10 Mbps per stream while in contrast the native NetBSD transmits at 2.03 Mbps per stream.
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Figure 5.3: Average per stream performance transmitting 1 GB from a memory file system.

5.3.3.2 Context Switches

If there are several concurrent processes on a machine, each process is usually allowed to run for a
certain amount of time or until it voluntarily suspends itself, e.g., waiting for I/O to complete. This
also consumes resources and reduces the overall system performance. The measured number of context
switches per stream we experienced in our multi-stream experiments is nearly constant, because we
always have to wait on a read before we can transmit the requested data block, i.e., approximately one
context switch per read call (∼16,700). However, in the case where idle time on the storage devices can
be used for prefetching, each process can run on the processor for a longer time without being preempted
due to waiting on I/O to complete. The total server performance in such a scenario will decrease slightly
with the number of simultaneous streams.

However, the measurements in the previous section also show an improvement by reducing the
number of system calls. This improvement is larger than expected compared to the cost of accessing
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the kernel (see Section B.3). However, by looking at the context switches, the stream_read()/-
stream_send() pair has 99.9 % involuntary context switches, i.e., because a higher priority process
becomes runnable or the current process exceeded its time slice. The stream_rdsnd() system call
has about 99.5 % voluntary context switches, i.e., usually waiting for a resource to become available.
This may have a large impact on performance. Involuntary context switches are triggered by an inter-
rupt or exception where the interrupt also requires communication with the controller, e.g., to signal an
“end-of-interrupt”. Processes performing voluntary context switches go to sleep of their own free will,
i.e., running in the kernel in this case. The cost related to transferring control to another process is the
same, but the difference is how the context switch is activated (see Figure 5.4). To give an indication
of some (not all the communication with the controller is included) of the interrupt overhead, we ran a
simple micro-benchmark5 measuring the number of cycles used in our testbed. The results is shown in
Table 5.8. Thus, an involuntary context switch is more expensive to perform, and this may be a possible
explanation to the unexpected high difference in performance.

involuntary context switch: interrupt dispatch→ context store→ <scheduler>→ context restore→ interrupt return

voluntary context switch: context store→ <scheduler>→ context restore

Figure 5.4: Simplified description of voluntary and involuntary context switches.

Operation Number of cycles

Interrupt dispatch 145

Interrupt return 141

Sending “end-of-interrupt” to controller 625

Context store 72

Context restore 72

Table 5.8: Context switch and interrupt overhead.

5.3.3.3 Server Side Congestion

Also in the multi-stream scenario, we experience some server-side congestion. However, as more data is
transmitted in total, one might expect more data to be lost. This is not the case, because as the system
uses more time to perform context switches, the network card is able to use this time to empty (or at
least reduce the number of pending packets in) the queue. Nevertheless, as Table 5.9 shows, we do
experience some loss meaning that we do have a small margin of error. The packets dropped in the
ether_output() function are negligible with respect to processing time (but of course the client will
experience a lost packet due to the network card bottleneck). This means that the measurements using 1
KB packets is as close as possible to an error free transmission result. When using 2 KB packets, each
packet is fragmented, and the ip_output() function discards some data before sending it down the
protocol stack. This means that one protocol layer is not processed for these packets resulting in a slightly
lower time measurement result (see Table 5.5). Nevertheless, compared to the single-user experiments,
the amount of loss per stream is very small. For example, transmitting 50 concurrent streams, 0.09
packets are lost per stream which corresponds to about 0.41 µs on average. Compared to the average
time to transmit the 1 GB file in this test of 509.05 seconds, the margin of error is about 8 ×10−8 %,
i.e., the packet drop rate is insignificant with respect to the time to process the data through the operating
system.

5This benchmark is implemented by Åge Kvalnes, University of Tromsø. The cycle count is measured using the RDTSC
instruction, but the code is not serialized using the CPUID instruction (see Section A.2.1).
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ip_output() ether_output()

Size Streams max min avg stream avg max min avg stream avg

stream_read()/ 1 KB all 0 0 0 0 0 0 0 0

stream_send() 2 KB 25, 50 0 0 0 0 0 0 0 0

75 163 0 18.11 0.24 6 0 0.67 0.01

100, 125 0 0 0 0 0 0 0

150 1293 0 161.62 1.08 31 0 3.88 0.03

stream_rdsnd() 1 KB 25 0 0 0 0 5552 1059 2418.60 96.74

50 0 0 0 0 8584 2679 5058.80 101.18

75 0 0 0 0 9399 0 6054.50 80.73

100 0 0 0 0 283 0 55.20 0.55

125 0 0 0 0 1854 0 261.30 2.09

150 0 0 0 0 445 0 51.00 0.34

2 KB 25 0 0 0 0 0 0 0 0

50 272 79 128.60 2.57 7 1 4.40 0.09

75 1684 912 1269.70 16.93 40 21 28.00 0.37

100 2622 1898 2201.30 22.01 71 41 51.60 0.52

125 5563 3005 3911.40 31.29 107 55 82.20 0.66

150 6359 5241 5883.00 39.22 147 112 134.60 0.90

Table 5.9: Number of packets lost for all concurrent streams.

5.3.3.4 Estimated Versus Measured Performance Gain

The performance gain in our multi-stream scenario is as expected. The gain per stream is even larger
compared to the single stream scenario, because the stream mechanism requires less resources and there-
fore scales better. The amount of used CPU time is also as estimated. The measured times are slightly
larger due to more context switches.

However, the large difference between using the stream_read()/stream_send() system call
pair and the stream_rdsnd() system call is not as first expected. A further analysis shows that the
difference probably is due to having involuntary versus voluntary context switches, respectively. An
involuntary context switch is triggered by an interrupt or an exception which additionally introduces
communication with the interrupt controller.

5.3.4 Broadcasting Protocol Gain

A broadcast protocol for periodic services improves the efficiency of our MoD server. Such schemes
reduce the server bandwidth requirement at the cost of increased client workload and resource require-
ment. In Section 4.2.2.3, we showed one example looking at the scenario described in Section 2.2. The
traditional stream-per-client approach requires the server to transmit 1000 concurrent 3.5 Mbps streams.
Using cautious harmonic broadcasting and assuming a maximum startup latency of 5 seconds, the video
is partitioned into 36 segments (transmitted on 35 channels), and the total server bandwidth require-
ment is 16.26 Mbps regardless of the number of concurrent clients using equation 4.1. Increasing the
size of each segment to 10 seconds, further reduces the required bandwidth to 13.79 Mbps. As the
stream-per-client approach overhead increases with the number of clients, the broadcasting scheme over-
head increases with the number of segments. In Figure 5.5A, we show the relationship between startup
latency and server bandwidth requirement in our NoD example. As we can see, the server bandwidth
requirement is greatly reduced, regardless of maximum startup delay. The figure also shows staggered
broadcasting and pyramid broadcasting. In the pyramid broadcasting scheme, we have varied the α
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parameter which is the segment increase value. The number of channels needed are found using a first
segment of 5 seconds and increasing each following segment with a factor of α, i.e., we increased and
counted segments until we reached a total size of 3 minutes. Each channel transmits at a bandwidth α×b
where b is the playout rate. The total server bandwidth requirement per video is lowest using the cautious
harmonic broadcasting, i.e., 16.26 Mbps compared to pyramid broadcasting 47.25 Mbps (α = 1.5) and
49 Mbps (α = 2) and staggered broadcasting 126 Mbps. All schemes have a significant improvement
over the stream-per-client scenario with 1000 concurrent clients (3.42 Gbps). The pyramid scheme has
a stair-shaped graph, because the number of segments is not increased for each startup latency. The
number of needed segments is depicted in Figure 5.5B6, and we see that we need fewer segments using
pyramid broadcasting, but at the cost of increased bandwidth. Furthermore, not every segment require
an own channel, because several segments can be multiplexed into one channel using the low bandwidth
transmission in cautious harmonic broadcasting.
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Figure 5.5: Broadcast protocol comparison using 3.5 Mbps, 3 minutes videos.

5.4 Network Level Framing

In this section, we describe our performance evaluation of the NLF mechanism. First, we analyze the
expected gain using statistics and measurements from others and by performing a simple measurement
transmitting data with and without checksum operations. Then, we look at the performance gain meas-
ured in the kernel using our NLF implementation in NetBSD.

5.4.1 Expected Gain

By integrating the error management schemes in the storage and the communication systems (reusing
storage parity information for FEC in the network), we do not have to handle retransmission overhead in
a multicast scenario on the server side, and the time consuming execution of the complex parity encoding
algorithms are omitted. Thus, as our experimental evaluation of the integrated error management scheme
shows, the network error recovery operations are performed with a sufficient throughput to present data
from a high data rate multimedia stream at the client side. The only server side costs, depending on the
required recovery capability, are an increased requirement of buffer size and bandwidth.

6Staggered broadcast needs only one segment, but the broadcast is restarted after a certain interval requiring several chan-
nels, i.e., video_length/maximum_delay which will be one more channel than cautious harmonic broadcasting.
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Data touching operations like checksum calculation are addressed as one of the major time con-
sumers in the end-systems [38, 85]. For example, in a performance measurement described in [84],
the processing overhead of data touching operations of the UDP/IP protocol stack is 60 % of the total
software processing time. In [113], 370 µs were used per KB to process the packets through TCP/IP
calculating the checksum. To reduce this data touching cost, we store the UDP packets on disk including
output from the data touching, CPU intensive checksum calculation. The gain of our checksum pre-
computation depends on the packet size. In our scenario using the described packet sizes and updating
only the source port (16 bit), destination port (16 bit), and destination IP address (32 bit), the on-line
checksum procedure is executed over only 0.77 % (1 KB packets), 0.39 % (2 KB packets), 0.19 % (4
KB packets), and 0.10 % (8 KB packets) of UDP data. In our prototype implementation, we generate
the header during transmission time, i.e., the on-line checksum procedure is executed over 1.91 % (1
KB packets), 0.97 % (2 KB packets), 0.49 % (4 KB packets), and 0.24 % (8 KB packets) of UDP data,
and the time spent on checksum operations should therefore be reduced to nearly the same (we must add
some time for initializing the checksum function, etc.). Furthermore, as we only calculate the checksum
over known position fields, all located in the same mbuf, no checks for byte swapping or odd numbers
of bytes in an mbuf are needed. Thus, if 60 % of the UDP/IP processing time is spent on checksum
calculation [84], we might expect a processing speed-up of a factor of two by prefabricating the UDP
packets and eliminating most of the data touching overhead as we propose in our MoD server, i.e., the
CPU will be available for other tasks. However, to see an approximate gain in throughput, we did a
simple experiment measuring the maximum throughput in a gigabit environment, using netperf, between
two machines using 32 KB send and receive buffers, a 1 Gbps network, and a 350 MHz processor. The
result is shown in Table 5.10. The throughput improvement of our approach should be nearly the same7

as the difference between the UDP measurements with and without checksum. Thus, by using NLF,
we could expect a throughput gain when sending data from the server of about 10% compared to the
traditional UDP protocol.

Packet size without checksum (Mbps) with checksum (Mbps) Throughput improvement removing checksum (%)

4 KB ∼420 ∼385 ∼9.1

8 KB ∼450 ∼405 ∼11.1

Table 5.10: Maximum measured UDP throughput.

5.4.2 Kernel Measurements

To see the real performance of NLF, we have measured the time spent in the traditional UDP protocol
and the respective time spent in our protocol using the udp_QuickOut() function. The experi-
ment was carried out in our test environment by transmitting a large data file of 225 MB8 using the
stream_rdsnd() system call providing a zero-copy data path as described in Section 4.2.1.4. The
time was measured using the software probe described in Section A.2, and we sent 1 KB, 2 KB, 4 KB,
and 8 KB packets, i.e., this corresponds to sending 219483, 109742, 54871, and 27436 packets respect-
ively. When looking at the results below, keep in mind that the protocol processing is “protected” by
splsoftnet() which blocks soft network interrupts (protocol stacks), i.e., a packet is allowed to be
processed through the communication protocols without being interrupted by other processes sending
packets. Furthermore, no other user level processes are allowed to start running before the current pro-
cess returns from the kernel or voluntarily performs a context switch, e.g., waiting for a disk operation

7It will not be exactly the same, because we still have to update the checksum. The checksum is not completely removed,
but only reduced to a minimum.

8We used a 225 MB file in the measurements using in-kernel probes, because the memory area holding the probe data was
limited, and we performed one measurement per packet (each requiring two probes).
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to complete. Also note that our implementation is in the C-programming language with the portable
version of the checksum routine as a base, whereas the traditional UDP protocol uses the performance
optimized checksum routine in assembly language modified for each CPU according to [20].

5.4.2.1 Protocol Processing Time

Table 5.11 and Figure 5.6A present the measured times spent in the UDP protocol. As we can see, our
version of the UDP protocol is faster than the traditional protocol. Furthermore, as we only compute the
checksum over the packet headers, the overhead of processing the packet through the UDP protocol is
approximately constant using NLF (0.14 µs for the checksum operation and 0.77 µs for the entire UDP
protocol). Using the traditional protocol, we see that this overhead is dependent on the packet size.
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(A) Whole UDP protocol (including checksum). (B) Checksum operations.

Figure 5.6: Average time per packet spent in the UDP protocol and on checksum operations.

Table 5.11 and Figure 5.6B present the measured times calculating the checksums. The overhead of
the NLF approach is approximately constant whereas the traditional protocol overhead varies with the
packet length. On average, the time to execute the checksum procedure is reduced by 95.98 % (1 KB
packets), 97.87 % (2 KB packets), 98.91 % (4 KB packets), and 99.45 % (8 KB packets) when using
NLF. When comparing these experiments with the measurement of the whole UDP protocol, we observe
that the results are almost identical. This is because the checksum operation is really the time consuming
operation that is almost removed in NLF. However, please note that the experiments are run separately to
minimize the impact of the probe, i.e., the peeks in checksum experiments might not correspond to the
peeks in the respective experiment measuring the whole UDP protocol.

The relationship between the processing of the whole protocol and the checksum is shown in Figure
5.7. This figure presents the total time used in the UDP protocol to transmit the 225 MB file and the
amount of this time used for the checksum operation. The checksum overhead is, as also shown above,
reduced using NLF, but the rest of the UDP protocol processing (displayed in the lightly-shaded area in
the figure) is the same regardless of whether we use NLF or traditional UDP.

5.4.2.2 Transmission Time

Even though we experience some server-side congestion (see Section 5.3.2), we have also measured
the time to transmit 1 GB from a memory file system to the network using the zero-copy data path
and NLF. We have only tested this in a single stream scenario, because we expected even more loss
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Operation Size max min avg stdev Total† 99% ci 95% ci

UDP with NLF 1 KB 34.82 0.57 0.73 0.21 159534.04 [0.65 - 1.65] [0.66 - 0.93]

2 KB 28.54 0.49 0.73 0.20 79842.12 [0.64 - 1.66] [0.65 - 1.29]

4 KB 15.67 0.58 0.73 0.16 39795.15 [0.64 - 1.27] [0.65 - 1.23]

8 KB 9.39 0.47 0.77 0.22 21089.07 [0.64 - 1.40] [0.65 - 1.28]

Traditional UDP 1 KB 44.97 3.54 4.02 0.72 883065.69 [3.71 - 5.90] [3.75 - 4.48]

2 KB 63.49 3.64 7.19 0.92 789312.83 [6.70 - 8.71] [6.76 - 7.99]

4 KB 52.20 12.63 13.49 1.29 740045.14 [12.81 - 14.50] [12.91 - 14.05]

8 KB 63.94 9.95 26.14 1.80 717267.33 [25.20 - 40.74] [25.36 - 26.82]

in_QuickCksum() 1 KB 25.84 0.11 0.14 0.17 32054.33 [0.12 - 0.33] [0.12 - 0.28]

2 KB 16.83 0.11 0.14 0.12 14937.14 [0.12 - 0.29] [0.12 - 0.24]

4 KB 9.65 0.11 0.14 0.15 7825.87 [0.12 - 0.30] [0.12 - 0.28]

8 KB 10.79 0.11 0.14 0.32 4292.73 [0.12 - 0.30] [0.12 - 0.24]

in_cksum() 1 KB 62.84 2.97 3.48 0.95 764056.33 [3.11 - 4.43] [3.14 - 4.04]

2 KB 50.03 3.21 6.56 1.33 719533.76 [6.07 - 7.67] [6.12 - 7.00]

4 KB 59.99 11.97 12.88 1.54 706522.90 [12.22 - 20.81] [12.32 - 13.41]

8 KB 75.25 9.30 25.54 2.14 700819.37 [24.45 - 45.24] [24.54 - 26.30]
†This column is the total amount of time used for the whole stream.

Table 5.11: Time per packet spent in the UDP protocol and on checksum operations (µs).
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Figure 5.7: Accumulated UDP protocol execution time versus total time spent on checksum operation.

due to an overloaded network queue in the multi-stream scenario. Table 5.12 shows the results using
the stream_rdsnd() system call with NLF in a no load scenario. Compared to the corresponding
results without NLF in Table 5.4, we see a small improvement, i.e., 2.2 % (1 KB packets), 11.6 % (2 KB
packets), 24.0 % (4 KB packets), 22.0 % (8 KB packets). However, comparing the amount of server-side
loss in Table 5.6 and 5.13, we also see that the amount of loss has increased. Using 1 KB packets, all loss
is in the ether_output() function, which means that this function is executed in this case. However,
using the other packet sizes, we experience loss in ip_output() and approximately 391 ms (2 KB
packets), 679 ms (4 KB packets), and 695 ms (8 KB packets) should be added to our measured times.

81



Adding the execution time for the ethernet function, then gives a smaller improvement of 2.2 % (1 KB
packets), 8.1 % (2 KB packets), 16.5 % (4 KB packets), 13.6 % (8 KB packets), i.e., with and without
NLF.

Operation Size max min avg stdev 99% ci 95% ci

stream_rdsnd() 1 KB 10.65 10.61 10.63 0.01 [10.61 - 10.65] [10.62 - 10.64]

2 KB 9.83 9.60 9.65 0.05 [9.60 - 9.83] [9.62 - 9.82]

4 KB 6.88 6.82 6.85 0.01 [6.82 - 6.88] [6.82 - 6.87]

8 KB 6.48 6.44 6.46 0.01 [6.44 - 6.48] [6.44 - 6.47]

Table 5.12: Time to transfer 1 GB from a memory file system using NLF (no load).

Total ip_output() ether_output()

Size max min avg max min avg max min avg

1 KB 14515 12665 13514.70 - - - 14515 12665 13514.70

2 KB 88310 85080 86938.00 85812 82659 84492.70 2526 2351 2445.30

4 KB 93608 86446 90463.80 90968 83809 87811.30 2691 2597 2652.50

8 KB 48848 47430 48436.00 47576 46266 47184.80 1300 1164 1251.20

Table 5.13: Amount of loss in number of packets using NLF.

5.4.2.3 Estimated Versus Measured Performance Gain

To see the total speed up in the amount of time used in the operating system kernel, we also measured the
used CPU time in the kernel per process. In this experiment, we transmitted the 225 MB file using both
the traditional UDP protocol and NLF. As Table 5.14 and Figure 5.8 show, the total CPU time used by
the kernel is greatly reduced using NLF compared to using the traditional UDP protocol. The total time
is reduced in average with 51.32 % (1 KB packets), 54.07 % (2 KB packets), 61.16 % (4 KB packets)
and, 61.66% (8 KB packets). This means that our prediction of having a processing speed-up of a factor
of two in Section 5.4.1 holds. Furthermore, the time to execute the checksum procedure is reduced by
about 95.9 - 99.5 % depending on packet size when using NLF. This is approximately as expected in
Section 5.4.1.

Operation Size max min avg stdev 99% ci 95% ci

UDP with NLF 1 KB 773013 726169 748494.85 9906.31 [726169 - 773013] [729842 - 768811]

2 KB 705007 643219 673464.21 9842.35 [643219 - 705007] [655569 - 694999]

4 KB 524133 475994 495996.71 8141.70 [475994 - 524133] [481033 - 512695]

8 KB 505235 453829 480951.96 10384.19 [453829 - 505235] [462563 - 501402]

Traditional UDP 1 KB 1567585 1501467 1537586.03 13364.58 [1501467 - 1567585] [1509630 - 1563475]

2 KB 1509054 1415464 1466213.96 16497.26 [1415464 - 1509054] [1435745 - 1500248]

4 KB 1316653 1243363 1276913.82 12076.36 [1243363 - 1316653] [1254025 - 1299215]

8 KB 1278349 1212957 1254541.61 13022.20 [1212957 - 1278349] [1225299 - 1274588]

Table 5.14: The total time spent in the kernel using the traditional UDP protocol and using NLF (µs).
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Figure 5.8: Time spent in the kernel using traditional UDP and using NLF (µs).

5.5 Total Server Performance

The INSTANCE enhancements are orthogonal, and as shown in the previous sections, each mechanism
increases performance in a particular part of the system. The integrated error management removes the
24 Mbps (1 KB packets) encoding bottleneck on our test machine at the cost of 12.5 % extra storage
and bandwidth using the current scheme configuration. Thus, 12.5 % of the data transmitted is parity
data for error recovery which means that the effective bandwidth of the server is reduced. Nevertheless,
the encoding bottleneck and the retransmission overhead are removed which means that an effective
throughput of about 875 Mbps could be achieved as the zero-copy measurements show a total throughput
close to 1 Gbps.

Figure 5.9 shows the gain in used CPU time in the kernel running a server without FEC. We see
that using the zero-copy data path together with NLF reduces the used CPU time by 66.18 % (1 KB
packets), 70.37 % (2 KB packets), 75.95 % (4 KB packets), and 75.25 % (8 KB packets) compared to the
traditional data path. If the server should also perform FEC encoding, an additional overhead of 346.92
seconds (1 KB packets), 388.54 seconds (2 KB packets), 380.50 seconds (4 KB packets), and 375.45
seconds (8 KB packets) should be added to the approximately 10 seconds used for the server using the
traditional data path (same test as in Section 5.2.2, but on a 1 GB file). Additionally, the total time used
by the system includes the time spent executing instructions in the server application, but as these times
are below 0.5 seconds regardless of which server we use, we have not added this overhead into the figure.

The cautious harmonic broadcasting scheme increases the client reception rate (but not the consump-
tion rate), and this influences the integrated error management scheme recovering from lost and damaged
packets at the client side. We can decode the data as it is played out or when the data arrives. Decoding
at presentation time reduces the CPU requirement at the cost of also buffering the parity data until it is
presented to the user. Decoding at arrival increases the decoding performance requirement, because all
streams are decoded concurrently. However, some of the machines used in our test are capable of decod-
ing multiple streams from the broadcast protocol. For instance, our NoD example requires 16.26 Mbps,
and some of the tests indicate that even a 350 MHz machine can decode these streams. Nevertheless,
PentiumIV processors are already relatively cheap today, and in a couple of years, almost everyone will
have a machine capable of the decoding load imposed by retrieving several concurrent streams. Thus,
the FEC decoding operation imposed on the client by the integrated error management scheme will not
be a bottleneck using the broadcast protocol.
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Figure 5.9: Histogram over used CPU time in the kernel.

5.6 Discussion and Conclusions

Our performance experiments show that a single disk storage system is a severe bottleneck in a Gbps
environment (see Section 5.3.2.1). However, even though we need a persistent storage system and not
only a memory file system which is erased during a crash or reboot, our performance tests show the
benefits of the zero-copy data path assuming an adequate storage system. The storage system bottle-
neck can be solved using parallel off-the-shelf disks. The Seagate Cheetah X15 (ST318451LW) [203]
achieves a minimum data rate of 299 Mbps. Thus, connecting several such disks to the new SCSI fiber
channel interface, which offers extremely fast bus data rates of up to 3.2 Gbps for a dual loop, may solve
the Gbps storage system bottleneck. Additionally, our tests indicate the performance of servers that use
memory-based files after system start-up or the performance of servers using future mechanical-free stor-
age devices. Companies like Opticom ASA [200] are building such storage devices. If this technology,
based on memory films, can be made persistent, it will remove the need for mechanical devices, such as
disks and tapes. At the current stage of the development of this technology, Opticom projects that their
memory films are (will be) about one million times faster than any mechanical system.

Figure 5.7 shows that, by using NLF, packet header generation is the most time consuming operation
in our modified UDP protocol. Thus, by either including the packet header in the NLF implementation
(as in the basic design) or additionally using the idea of pregenerating header templates on connection
setup [38, 142], the overhead of filling in header fields can be reduced. In this context, the headers will
always be identical, with the exception of the checksum field, so it will probably be preferable to only
pregenerate a header template at stream initialization time instead of retrieving all this information from
disk. The checksum for the header template could also be precalculated during stream initialization, min-
imizing the checksum operation in the function described in Figure 4.19 without storing the entire packet
including header. If we precalculate the header template checksum, the template can, after performing
the checksum operation (due to using the pseudo header in this operation), also include most of the IP
protocol header fields, and the IP protocol processing will thereby also be minimized. However, such an
implementation of NLF and a further analysis of this topic are considered as future work.

Conventional wisdom says that bigger packets are better due to less costs transmitting the data [153].
The packet sizes are so far determined only on the recovery code’s coding performance, and based on
the experiments evaluating these schemes, a packet size of 1 KB or 2 KB seems to be appropriate with
respect to start-up latency and decoding throughput. The zero-copy and NLF experiments show better
performance using larger packets, but the amount of server-side congestion also increases (due to low
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processing overhead and network card bottleneck). However, the packet size also affects performance
in other components like the network itself and the routers. Fragmentation in the IP layer is not always
appropriate which means that each packet should be below the path’s MTU. On the other side, the Internet
is heterogeneous and different links might have different MTUs. Furthermore, a basic problem of routers
is that they are store-and-forward devices. They normally receive the entire input packet, validate the
IP header including the IP checksum, make their routing decision, and start sending the output packet.
Assuming a 1 Gbps network line, the latency time in each node is given by p1+p2

230 + p3 where p1 is the
amount of information data (in bits) in each packet, p2 is the header size (in bits), and p3 is processing
and queuing overhead. This means that a smaller packet size is better. In summary, using large packets,
the reduced costs associated with the network are less data to send (less packet headers), fewer routing
decisions, and reduced protocol processing and device interrupt handling overhead. Smaller packets give
less packet fragmentation and reduce latency in the intermediate nodes. Thus, the optimal packet size
is determined by several factors which vary for each link in a heterogeneous environment, and more
research is therefore required in this area [153].

In the multi-stream tests above, several streams read data from the same file stored in a memory
file system. We minimized the buffer cache in the file system to minimize any caching effects. In the
broadcasting scheme, each stream will read data from different files, and caching effects will not be
present. However, minimizing the buffer cache this way does have side effects. When using a small
buffer cache, the amount of memory (and the number of buffers) in the cache is decreased. There
might be a problem when a process requests a new buffer for an I/O operation, and the process might
have to wait longer for an available buffer compared to the case of using a normal buffer cache. On
the other hand, a larger buffer will probably have available buffers, but also gain performance due to
caching effects. To see the difference, we made a simple monitor (taking small snapshots only) to see the
number of times a new buffer had to be allocated, how many times a requested buffer was not available
(which means that the process had to retry until a buffer was available), and the size of each request
(buf->b_bufsize). Our results show that a small cache benefited minimally from caching, i.e., a
new buffer has to be allocated, whereas the large cache has large caching gains. On average, in the small
cache scenario only, every other process had to retry to allocate one buffer during the whole transmission,
i.e., (almost) no latency is added due to multiple calls to getblk(). We do not know, however, how
long time the process slept before an available buffer was allocated. The size of each data request to the
storage system also varied according to the amount of available memory. The average size was about
20 KB and 50 KB using small and large caches, respectively. Thus, a small cache will also have more
requests to the storage system still only retrieving the same amount of data. Thus, both small and large
buffer caches introduce a small margin of error in our multi-stream tests, and the memory file system
requires CPU resources, memory space and bandwidth, and causes data in the cache to be flushed more
often. Future tests should therefore be performed using a disk-based storage system capable of delivering
data at the requested rate (or faster) where each stream can read data from separate files, i.e., no caching
effects and no additional latencies waiting for available buffers.

As described in Section 5.3.2, we have a source of error in the measurements, because we experienced
some congestion in the ethernet queue. This means that neither the ether_output() function nor the
low-level network card driver code are executed for all the packets processed through UDP/IP. However,
as the loss-experiments show, the margin of error is about 2 - 3 %, and if we add the execution time of
the ether_output() function for the lost packets, we still have a huge improvement compared to
the traditional data path. Increasing the queue length (if_snd.ifq_maxlen), which is by default 50
(IFQ_MAXLEN) or, as in our case, increased by the network card driver to 511 (TI_TX_RING_CNT - 1),
will help if the network card is sometimes idle. This means that data is sent in large bursts and there is
a long time period between each burst making the driver queue empty before each burst, but this is not
the case in our scenario. Figure 5.10 depicts a plot of the queue level in one of the transmissions where
we monitored the queue length each time a packet was to be enqueued, and as we can see the driver
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has no idle time. The network card is simply not able to transmit the packets fast enough, i.e., the data
is processed too fast through the operating system, and we therefore have a congestion within the end-
system itself. Nevertheless, most of the data processing operations are executed for all the packets, i.e.,
all packets are processed through the UDP/IP protocols. This means that even though we have some
server side loss, the results give a good indication of the improvements using our mechanisms. There is,
however, a need for some rate control mechanism which is not provided by UDP or a mechanism which
waits if the queue is overloaded so that we do not lose packets in the server end-system.
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Figure 5.10: Plot of the ethernet queue level (amount of packets in the queue).

If we look at the used CPU time and assume that the disks and the network card are not a bottleneck,
the used CPU times to process data through the system indicate a throughput of 1.49 Gbps and 3.83
Gbps using the zero-copy data path without and with NLF, respectively. Thus, if the operating system
processing was the only bottleneck, we should be able to achieve data transmissions at these speeds. Note
also that, in these tests, data is read from a memory file system making a memory copy operation, i.e.,
replacing data in the cache and consuming CPU cycles and memory bandwidth. This means that data
could be sent even faster if the only processing done by the CPU was the disk driver execution (assuming
a sufficient disk-based storage system bandwidth). This means that using the mechanisms described in
this thesis, the operating system is no longer a bottleneck, because data can be processed through the
system faster than our hardware components can manage.

In summary, our mechanisms perform as expected. Storing parity data on disk removes the FEC
encoding bottleneck. The zero-copy data path and NLF reduce the time to process data from disk to
network interface, and the broadcasting protocol enables data sharing between concurrent clients by
broadcasting one set of data to all clients viewing the same file.
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Chapter 6

Conclusions

In the research performed in the context of the INSTANCE project, we addressed the challenging prob-
lem of optimizing performance of an MoD server. In this chapter, we summarize the contributions of
this thesis and explore directions for future research.

6.1 Summary

The emergence of high data rate applications like NoD and VoD presenting audio and video data to re-
mote viewers has made the traditional I/O data path a bottleneck in a server supporting a lot of concurrent
users. The operating system mechanisms are traditionally designed in a layered structure and optimized
for management of small files. In the case of multimedia applications, these operations are not efficient,
and the operating system itself imposes a lot of overhead transferring data from the storage system to the
communication system.

In this thesis, we have identified three different bottlenecks in traditional systems in the context of
high data rate multimedia applications: (1) error management, (2) memory management, and (3) commu-
nication protocol processing. For example, we have redundant functionality, in-memory copy operations
even though data is not manipulated, and repeated identical operations on the same date elements. Based
on system analysis and literature work, we have designed and implemented three solutions each im-
proving the performance. Our performance tests show that we overcome the limitations imposed by the
identified bottlenecks.

6.2 Contributions and Critical Review of Claims

The overall goal of the INSTANCE project and this thesis is to improve the I/O performance of MoD
servers by avoiding the major bottlenecks in the common case operation of storage nodes, i.e., retrieving
data from disk and sending it to remote clients. We achieve this goal by applying three orthogonal
techniques:

• integrated error management, which reuses storage system parity data and thereby removes the
FEC encoding operation at the server side,

• zero-copy-one-copy memory architecture, which eliminates all in-memory copy operations by in-
tegrating the buffering schemes and sharing one single data element between all concurrent users
using a delay-minimized broadcasting scheme, and

• NLF, which reduces the transport level protocol processing by precalculating the packet payload
checksum.
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The performance of these mechanisms is summarized by the following critical review of the claims stated
in Section 1.4:

Claim 1: Error management is a potential, but removable, bottleneck.
Integrated error management frees the MoD server from all resource intensive error management
tasks by using precomputed parity data in a FEC scenario. In general, using n % parity data, we
can recover from a total data corruption rate of n % in either the storage or the communication
system. The described and tested scheme configuration allows recovery from one disk failure and
12.5 % packet loss or corruption in the network. Furthermore, the decoding time at the client is
relative to the number of network errors and introduces in the worst case only a delay of 100-
700 ms depending on the packet size on a client with a 933 MHz CPU. The decoding throughput
measurements show that the multimedia data stream can be decoded in time for a hiccup free
presentation on the client side on several different machines and architectures.

Claim 2: Memory copy operations are a potential, but removable, bottleneck.
The zero-copy-one-copy memory architecture integrates the file system and communication sys-
tem buffering and creates an in-kernel data path. The removal of copy operations reduces the
amount of needed memory and CPU resources, and minimizes the time to transmit data. We have
shown that the zero-copy data path increases the number of concurrent clients that can be supported
by at least 100 %.

Claim 3: Concurrent clients represent a potential, but removable, bottleneck.
Data is periodically broadcasted using the zero-copy-one-copy memory architecture. Thus, an
unlimited number of users can receive the broadcasted packets. Furthermore, using the cautious
harmonic broadcasting protocol, the server bandwidth requirement per stream is reduced, and the
number of streams is maximized using the zero-copy data path. Thus, by broadcasting data, the
number of users is no longer a bottleneck.

Claim 4: Transport level checksum operations are a potential, but removable, bottleneck.
The NLF mechanism significantly reduces the only data touching operation at transmission time in
our MoD server. The resource requirement per stream is reduced, and combined with our in-kernel
data path, the used CPU time by the kernel is reduced by 66.18 - 75.95 % depending on the packet
size.

Claim 5: By removing the mentioned bottlenecks, the operating system is no longer a critical component.
The bottlenecks addressed in this thesis strongly limit system throughput in the context of high
data rate applications. Our results show that using our mechanisms in a single stream scenario
and thereby eliminating the noted bottlenecks, data can be processed faster through our system
compared to what standard off-the-shelf hardware can handle. Assuming that hardware is not the
bottleneck, our tests measuring the consumed CPU cycles indicate a throughput of 3.83 Gbps using
the copy-free data path and NLF. This data rate is above the hardware limitations of network cards
today, i.e., the operating system is no longer a critical component. Another possible bottleneck
is the peripheral component interconnect (PCI) bus. A 64-bit, 66 MHz PCI bus can at maximum
transfer 4.2 Gbps where a transfer consists of one address phase and any number of data phases
[204], i.e., the effective data rate is decreased due to bus idle time between transfers and addressing
and signaling packets.

In a multi-stream scenario, the overall system performance drops slightly. The overhead of context
switches is substantial, but if we use a faster CPU (which is available), data could still be processed
through the operating system faster than (our) hardware is currently capable of handling. This
overhead will also decrease if we use a thread-based server whereas we now have one process for
each stream.
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Today, the network card bottleneck can be removed similar to the storage system bottleneck. There
exist network cards supporting virtual networks which provide load balancing by spreading the
transmitted data over parallel network cards to increase outbound bandwidth, e.g., the 3Com net-
work card used in our tests [1, 176]. There is, however, lack of support in many operating systems
(at least NetBSD1). Furthermore, parallel Gbps network cards will reach the single PCI bus band-
width limit, but several PCI buses can be used connected with a PCI bridge.

Thus, the overall conclusion is that there still are parts of the operating systems that might be
critical in high data rate systems. Our tests show that hardware limits the performance in our
experiments, but hardware components can be organized in parallel to increase performance.
To see whether the operating system still is a bottleneck requires further tests on parallel high-
performance hardware. However, removing the bottlenecks addressed in this thesis is a marginal
step towards the goal of invalidating the phrase operating systems are not getting faster as fast as
hardware [109] – at least in the context of our special read-only MoD scenario.

Thus, in the context of high data rate multimedia systems, our bottleneck claims hold. The bottlenecks
can be removed, and this makes the hardware in our testbed a bottleneck. The fifth claim about the
operating system as critical component in a multimedia environment will in a lot of scenarios be true.
However, to prove this claim generally, there has to be done more research in this area.

For the example application described in Section 2.2, transmitting a 3.5 Mbps, 3 minutes video
to 1000 concurrent users, the resource requirement is drastically reduced when using the mechanisms
proposed in this thesis. The amount of memory is reduced from 192 KB to 64 KB (67 % reduction)
per read and transmit operation, and the in-memory copy operations over the user-kernel boundary are
eliminated. The number of system calls is reduced by 50 % using the stream_rdsnd() system call,
the buffer cache operations are omitted, and the communication protocol processing is reduced greatly.
The needed number of streams per video clip is reduced using a broadcasting scheme which implies a
further reduction in total memory usage and bandwidth requirement. For example allowing a maximum
delay of five seconds, the number of streams is reduced from 1000 to 35, and the total server bandwidth
requirement is reduced from 3.42 Gbps to 16.26 Mbps using the cautious harmonic broadcasting scheme.
It is also noteworthy that, the server requirement will increase further with more clients using a per-client
connection, whereas the workload will be approximately constant regardless of the number of clients
using a broadcast protocol.

In summary, we have shown that the INSTANCE approach and its potential to improve the I/O
performance of a single storage node by a factor of two is to the best of our knowledge unique. There are
several important results in the area of zero-copy implementation and in the area of pyramid broadcasting
schemes; and some works report the usage of prefabricated packets. However, none of them has reported
a combination of two or more of these three techniques and their corresponding integrated performance
improvement.

6.3 Critical Assessments

The mechanisms proposed in this thesis mainly address application scenarios where data is streamed to
the client without any data manipulations at the server side. Furthermore, the server design is optimized
for streaming without any user interaction. Which mechanisms to use depends on the client behavior
(interactions and file access patterns) and the supported functionality (encryption, changing video codec,
etc.), i.e., different applications may need different mechanisms.

Since we started this work in 1998, there has been considerable improvements in hardware develop-
ments. For example, new network cards today can perform on-board checksum calculations offloading

1Such support is currently being implemented, see http://mail-index.netbsd.org/tech-kern/2001/07/13/0017.html and
http://mail-index.netbsd.org/tech-kern/2001/07/13/0020.html
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this intensive task from the CPU. However, even though the hardware has been available for a while,
the operating systems have only recently added support for this2. This means that the CPU intensive
checksum operation can now be performed by the network card itself which means that the current NLF
mechanism might be unnecessary unless it is extended as described in Section 6.4.3. Nevertheless, the
NLF functionality will still be valuable in systems not supporting on-board checksumming.

Our current prototype and test environment is limited by two elements: the speed of the single disk
and the number of receivers. However, these limitations have been accounted for in our test cases and
do not effect the usefulness of the results presented here. First, the performance of a chain of eight
high-speed disks or a RAID system using disks like the Seagate Cheetah X15 (ST318451LW) [203],
each capable of achieving a minimum data rate of 299 Mbps, connected to a 64 bit 66 MHz PCI bus are
able to deliver a total data rate above the 1 Gbps limitation of the network card. Second, the usage of IP
multicast to multicast data to multiple receivers instead of IP unicast to send data to a single receiver has
no influence on the server load and performance of the send operation.

6.4 Open Issues and Future Work

An MoD system enhanced with the mechanisms described in this thesis has better resource utilization
and performance compared to a system using traditional operating system mechanisms. However, there
are still a lot of open questions and unsolved tasks, and the MoD server design presented here can be
extended in several ways. In the subsections below, we give some examples.

6.4.1 Implementation Issues

The current data prefetching approach only prefetches one data element, i.e., data for the next operation
in a one-block-read-ahead manner, whereas our disk-based storage system performance evaluation in
Section B.1 indicates that the larger the read operation the better. Reading and transmitting more data
at a time is not a solution, because our tests show that we might lose packets in the packet queue before
data is transmitted to the network card if bursts of data larger than 64 KB are sent to the communication
system. Therefore, a possible solution could be to replace the traditional FFS file system which has
block allocation and data placement policies that are suboptimal for multimedia data storage with special
multimedia file systems like Symphony [143, 144] or Minorca [166]. Additionally, one could have a
prefetching pool preloading multiple 64 KB data elements at a time reducing the disk access frequency.
The data pool should have a lower limit on the number of elements in the pool. When the number of
elements remaining in the pool drop below the lower limit, a group of new elements is fetched from the
storage system.

The current NLF prototype precomputes the checksum over the application level data, i.e., not over
the packet header itself. Figure 5.7 shows that it is the packet header generation and the checksumming
that are the most time consuming operations in our modified UDP protocol and not the data payload
checksum calculation. Thus, by additionally using the idea of pregenerating header templates [38, 142]
and precomputing the checksum over the template, the overhead of filling in header fields and the header
checksum operation can be reduced - both for UDP and IP. Furthermore, we now hold the whole NLF
meta-data file containing the precomputed checksums in memory, because we do not want the low-
bandwidth disk accesses of the meta-data file to interfere with the high data rate accesses of the applica-
tion information data. However, this is at the cost of much memory space. One way of improving this is
to implement a “sliding window” over the meta-data file, i.e., holding only the most relevant parts of the
file in memory.

2NetBSD added support for in-bound and out-bound IPv4, TCP, and UDP checksumming to NetBSD-current in June 2001,
see http://mail-index.netbsd.org/tech-net/2001/06/02/0002.html.
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Our zero-copy data path is only accessible through our stream API in our prototype. However, if
traditional applications should be able to use this mechanism without reimplementing the parts making
I/O requests, we should extend the interface to include standard API. This could simply be done by
including an extra flag when opening a file indicating that the file should be streamed from disk to
network without any server-side modifications, i.e., using the zero-copy data path. If a stream flag is
set, this indicates that the f_ops file operation pointer in the struct file kernel descriptor table,
i.e., one entry for each open kernel vnode and socket, should point to our stream operations vector
(streamops) instead of the traditional file vnode operations vector (vnops) using the traditional data
path. In the case of merging the stream system calls, we could, for example, make the read perform both
disk and network I/O, whereas the send call will be empty.

Our tests show that packets are occasionally dropped in the network driver queue due to overload.
Depending on the latency requirement, this can be handled differently. In an application which does
not have room for delays, one might drop the packet like the current prototype does. However, if a
small buffering is applied or if the timing requirements is flexible, we should add a control mechanism.
If the packet is dropped, ether_output() or ip_output() calls m_freem() which frees the
mbuf chain containing data for this packet. A control mechanism can for example check the mbuf type
(MT_MMBUF in case of a stream) before calling m_freem() to drop the packet. The error is then
returned to our buffer manager, and the packet is just retransmitted to the communication system.

6.4.2 Short-Term Experimental Issues

In the short term, further tests could be performed on the existing prototype. As our infrastructure does
not have support for broadcast or multicast, we could not perform tests on the broadcasting scheme in
our memory architecture. It might be hard to come up with specific figures or numbers of performance
gain regarding broadcast, because the resource requirement is constant regardless of whether we have
one or several concurrent clients, but we move focus from clients to streams, where each stream can
support several (unlimited) clients. However, it should be proved that the scheme works in practice, and
the experienced workload and delay on the various clients should be measured.

Even though we purchased a top-end workstation for performance measurements, we meet some
hardware limitations and bottlenecks. This forced us to use a memory file system and prevented us from
evaluating the prefetching mechanism we proposed, because there is no free time in the storage system
to prefetch data. The current mechanism should probably perform better in a system where the storage
system is not a bottleneck like the tests in the MARS project [28] indicate. Furthermore, some of our
tests show that the 1 Gbps network card is a bottleneck, i.e, either the queue in the communication system
or the queue on the network card (the transmit ring) is overloaded. Furthermore, the amount of memory
was a limiting factor in our experiments, because we used a memory file system to overcome the storage
system bottleneck, and each stream holds the NLF meta-data file in memory. Extended performance tests
could be performed on an even better machine using a disk array and several parallel network cards.

6.4.3 Long-Term Research Issues

Our testbed did not embody a disk array, and our tests only simulated a RAID system storing both
parity data and application data on one disk. In a future version of our system, the recovery code should
also replace the recovery scheme in the disk array driver. However, as the mean time between failure
in a single disk also increases, one might consider applying the integrated error management idea on
only the communication system where parity data is generated only with respect to the network error
model and then stored on disk to save the FEC encoding operation. Then other kinds of codes could
be more suitable, and other codes should be tested for better performance, e.g., Turbo [46, 193] or
Tornado [29, 96, 97] codes, and one might also look at adaptable schemes [86, 139], for example, giving
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priorities to packets or correcting only the most important data like the I-frames in MPEG or sending the
FEC parity data in a separate stream.

The packet sizes are so far determined only on the recovery code’s coding performance. However,
the packet size also affects performance in other components like the network itself. For example, if we
use a larger packet size than the MTU of the network, IP will split the transport level packet into smaller
fragments each transmitted as one packet. If only one of the fragments is damaged or lost, the whole
packet will be damaged because the recovery scheme is applied at the transport level. A further analysis
on an optimal packet size should be performed, especially if we also look into new codes.

Earlier in this thesis, we claimed that because all concurrent users share one single data element and
because the data rate in an MoD system is high, there is almost no gain in applying caching of data in the
buffer cache. However, in the delay-minimized broadcasting scheme, the first partition(s) will be quite
small, e.g., about 4.4 MB using the average DVD data rate of 3.5 Mbps and a startup delay of 10 seconds.
As all partitions are broadcast in rounds, the data in the first partitions will be reused quite frequently,
e.g., every tenth second, so in this case there can be a lot of disk accesses saved by pinning the data for
the first partition(s) in memory (of course depending on the amount of memory and partition size).

In INSTANCE, we have looked at optimizing resource usage and performance in an MoD scenario.
However, a hiccup free presentation of video and audio data requires a smooth data delivery, e.g., data
must be delivered within a certain delay bound. To guarantee services and a perfect data playout, each
stream must have guaranteed access to the required resources, e.g., by admission control on the number of
concurrent streams (each stream is started by the information provider) and/or by scheduling algorithms
supporting real-time tasks. This means that QoS support is important and that resources in the network
must be guaranteed and reserved using protocols like the real-time protocol (RTP) and resource reserva-
tion protocol (RSVP). One interesting approach in this area is the real-time Linux operating system [201].
A real-time executive runs in parallel with the traditional Linux operating system. Real-time processes
are executed by the real-time executive, and if no real-time processes are running, the Linux kernel will
run as one of the real-time executive tasks. Thus, the system provides hard real-time capabilities [172]
and may be a sound foundation for providing real-time guarantees. Another interesting approach is the
DROPS operating system [74, 183] which is built to remedy the lack of resource reservation support
in traditional operating systems. Resource managers are allowed to reserve CPU, memory, and driver
level resources. Since DROPS also provides some performance enhancements such as a timing-aware
streaming interface with a zero-copy application-to-network data path [18, 94], this system may provide
a nice starting point for resource reservations and reservation enforcement.

When designing our current server, we assumed that the users started a video playout and watched
it to the end without any interactions like pause, rewind, forward, or fast playout. Thus, the support
for interaction is very limited, especially with the cautious harmonic broadcasting scheme. The client
should be able to pause and immediately restart if the next broadcast partition continued to be received
by the client and rewind if previous data is cached on the client side and not discarded after playout.
However, arbitrary jumps forward and fast forward playout are not supported using the chosen broadcast
protocol. To support a true-MoD application where each client can perform arbitrary VCR-operations,
such support should be investigated where a possible approach could be to have set-aside resources
(contingency channels) for clients performing interactions [146].

So far we have concentrated on origin servers, i.e., the main data server in the distributed network
of serving machines, but our long-term goal is to provide large scale, like national-wide, continent-
wide, and even world-wide, support for MoD services. Proxies will then be used to cache data closer
to the client. However, in the current prototype, we have only optimized data retrieval. In the case
of proxies, the data upload operation is also important, and future research could focus on an efficient
upload protocol.

Going world-wide makes the network topology heterogeneous where a lot of different networks are
used. The various subnetworks can for example differ in loss rates and bandwidth capabilities. We also
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want to support different kind of receivers or data sinks. Thus, transmitting all parity data and a full
quality data stream to all clients regardless of underlying hardware capacity and client QoS requirement,
may be wasteful. Therefore, we would also need some kind of adaptation in the data stream using quality
layers, e.g., both in frame rate, color depth, resolution, and recovery capability. For example, if a client
has an error free connection, no parity data should be transmitted, or if the network cannot manage the
bandwidth of a full quality playout, the quality of the transmitted data should be reduced by dropping the
upper quality layers of the stream [88]. This adaptation could be achieved by simply adding a priority
level into the packets. All packets are then transmitted from the servers, but if a network cannot manage
the transmitted data rate, the router discards a certain number of packets according to the priorities.
Likewise, if the data sink cannot manage or the user does not want full quality playout, the data packets
are dropped according to the priority levels.

6.5 Final Remarks

By performing experimental research on our prototype design in NetBSD, we demonstrated that the
I/O performance in a multimedia server can be greatly improved by using simple techniques removing
redundant functionality, in-memory copy operations, and pre-executing operations that are performed
several times and are common for all data transfers. Our proposed mechanisms are not hardware de-
pendent and should therefore also benefit from future technology developments.

Our critical review of the claims showed that the listed bottlenecks in the operating system can be
eliminated, and compared to the performance of standard off-the-shelf hardware, we could send data
faster through the operating system than the hardware devices could handle.

It is important that special, existing mechanisms for all subsystems are integrated in a single system
to guarantee services and to optimize performance. We believe that our approach is a step towards such
an integrated system using existing and new mechanisms. However, there are many aspects not addressed
in this thesis, and there are many unsolved questions. Nevertheless, we think that our research results are
a step in the right direction and should be a sound foundation for further research activities.
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Appendix A

Detailed Testbed Description

In this appendix, we give further details about our test machine and describe the time measuring tool
including complicating issues, implementation, data extraction from the kernel, and probe overhead.

A.1 Detailed Server Machine System Description

We have performed our experiments on a Dell Precision WorkStation 620 (see Table A.1) which we have
connected to another PC using an isolated, point-to-point Gbps network [176]. This machine (Work-
Station 620) has an Intel 840i chipset [192], with two PCI buses, running an Intel PentiumIII 933 MHz
processor. We had 256 MB RDRAM [195] and had one 9.1 GB, 10.000 RPM SCSI hard disk. The in-
tegrated dual-channel Ultra160 SCSI controller is able to provide 160 MBps throughput on the primary
channel, i.e., the storage system performance is limited by the single hard disk. The disk controller was

Dell Precision WorkStation 620

Processor
Type Dual Intel Pentium III Xeon 933 MHz with a front-side (memory) bus external

speed of 133 MHz and internal math coprocessor

1st level cache 32 KB (16 KB data cache; 16 KB instruction cache)

2nd level cache 256 KB

System information
Chipset Intel 840i slot2 chipset [192]

PCI bus speeds 32-bit, 33.3 MHz and 64-bit bus running at 33.3 MHz and 66.6 MHz

Memory
Type PC800 error checking and correction RDRAM in the rambus in-line memory

module slots

Size 256 MB

Storage system
Disk 9.1 GB, 10.000 rounds-per-minute SCSI hard disk

PCI SCSI controller Integrated dual-channel Adaptec 7899 Ultra 160/M LVD (160 MB/s)

Communication system
Gbps network card 3Com EtherLink server network interface card (3C985B-SX) [176]

network card (for external
connections)

Integrated 10/100 3Com Ethernet controller (3C920 based and 3C905-TX com-
patible)

Table A.1: Server machine (DELL Precision WorkStation 620) system description [181].
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connected to the 32-bit, 33.3 MHz PCI bus whereas the network card was connected to the 64-bit, 66.6
MHz PCI bus.

A.2 Time Measurement Tool

For measuring time, both in kernel and user space, we have implemented a software probe. This probe
reads the processor cycle count in the time-stamp counter register, and returns the current cycle count
number since last register reset or machine reboot. The probe is implemented using the Intel RDTSC
instruction, described in Table A.2, and is used in a similar way as described in [187]. Below, we
discuss some issues affecting the cycle count, and we present our software probe and quantify the probe
overhead.

Instruction Description
RDTSC The RDTSC instruction [188, 189, 190], opcode 0F 31, was introduced with the Pentium

Processors. This instruction allows the programmer to access the time-stamp counter which
keeps an accurate count of every cycle that occurs on the CPU. It is a 64-bit model specific
counter that is incremented on every clock cycle. RDTSC loads the 32 high-order bits of the
cycle count register into the EDX register and the 32 low-order bits into the EAX register.

CPUID The CPUID instruction [188, 189, 190], opcode 0F A2, was introduced with the Pentium
Processors. This instruction serves primarily to identify processors providing processor iden-
tification information in the EAX, EBX, ECX, and EDX registers. Additionally, and more
important in our context, the CPUID has another function (or side-effect). CPUID works as
a serializing instruction, which means that it flushes the pipeline and waits for all pending
operations to finish before proceeding. This is useful when using the RDTSC instruction for
testing purposes on a PentiumII or Pentium Pro processor (or higher).

Table A.2: Used instructions (supported on Intel-based machines) in our time measurement tool.

A.2.1 Issues Affecting the Cycle Count

There are several issues affecting the measured cycle count for a set of instructions. In the following
subsections, we briefly discuss some of them, i.e., out-of-order execution, influence of caching, and
counter overflow.

A.2.1.1 Out-of-Order Execution

The first issue affecting the cycle count is that processors starting with Pentium Pro, Pentium II, and
above support out-of-order execution where instructions are not necessarily performed in the order that
they appear in the source code. This is an important issue when counting the number of cycles spent
on executing (parts of) a program, i.e., the RDTSC instruction is not a serializing instruction, and it
does not necessarily wait until all previous instructions have been executed before reading the counter.
Likewise, subsequent instructions may begin execution before the counter is read. This means that on
these processors, we might get a misleading cycle count. In order to keep the RDTSC instruction from
being performed out-of-order, a serializing function is required. We therefore use the CPUID instruction
(see Table A.2) in our software probe forcing every preceding instruction in the code to complete before
allowing the program to continue.

When using the CPUID instruction, the programmer must take into account the cycles it takes for the
instruction to complete. However, the time to execute CPUID varies according to the instructions in the
CPU pipeline when the instruction is called. In our performance measurements, we will use the probe
several places giving different kinds of pending instructions. Therefore, with regard to execution time,
every operation before execution of the CPUID can cause a change in execution time, and it will never
stabilize unless the code stream is exactly the same between two successive executions of the CPUID
instruction. In many of the experiments we perform on our system, two successive runs will probably
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not be the same, because we measure large operations retrieving data from disk and sending it to the
network. These operations generate their own kernel threads, i.e., the instructions to complete before
executing our probe will vary according to the scheduling of the threads and where in the source code
the probe is placed.

Our choice of using CPUID, despite it’s varying execution time (probe overhead), is based on the
following observations:

• In our system, we perform large operations including disk, memory, and network operations. This
means that the varying number of cycles spent executing CPUID will be minimal compared to the
large number of cycles used to perform the code instructions. Furthermore, as described below
in Section A.2.2, the cycle variation is relatively small compared to the average CPUID execution
time.

• The pending instructions in the CPU pipeline will (usually, unless we have a context switch) be
part of the instruction set we wish to test in the measurement.

• When not using CPUID, we risk that we measure wrong instructions and that we miss some im-
portant pieces of code in our measurements.

In our performance tests, we would like to get as accurate measurements as possible, so we have chosen
to use CPUID to get the source code serialized, i.e., all preceding operations will be finish before reading
the cycle count the first time and all our instructions will be executed before reading it the second time.
This will be at the cost of an inaccurate probe overhead, but the variance is too small to affect the results
in any great extent (see Section A.2.4).

A.2.1.2 Caching

When measuring the same piece of code several time, different results may occur. This may be due to
the influence of caching in the system. In our system, we retrieve data from disk and transmit it to the
network. Thus, using the traditional data path through the file system, this is an important issue, because
the file system keeps data in the buffer cache1. However, we have performed tests using very large files,
so all the used data should be paged out of the cache before it is reused. Nevertheless, before each test,
we have “flushed” the cache by reading another large file. Furthermore, using our new streaming system
and the MMBUF mechanism, we do not cache data in memory, because we think the benefits of caching
in our system might be minimized by high bandwidth streams and by the fact that concurrent clients
should be served by a multicast transmission and not retrieve data individually from disk. In a similar
way, the caching of code instructions affect the measured cycle count. The first time the code instructions
(or data) are brought into the cache (or even into memory from disk), a large number of cycles are used.

In order to use RDTSC effectively and later analyze the measured cycle count in a correct manner,
these caching effects must be taken into account. As mentioned above, the caching of data will probably
not be an issue in our measurements, but to be certain, we “flush” the buffer cache between consecutive
runs. The caching of code instructions is probably more important. However, as the data rates are high,
each piece of code will be executed a large number of times in a loop. Thus, the cycle count average will
take into account these varying measurements. Finally, each test is also performed several times to get
an accurate result.

A.2.1.3 Counter Overflow

As mentioned above, the RDTSC counter is divided into a lower and upper 32-bit counter. On fast
processors, the 32 low-order bits of the cycle counter may overflow, i.e., on our 933 MHz machine it

1The size of the buffer cache is an important issue. By default NetBSD used 10% of the first 2 MB of memory and 5% of
the remaining memory for bufpages, and the buffers are replaced in an least recently used fashion.
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will exceed the 32-bit value every 232 cycles / (933 ×106 cycles/second) = 4.6 second. Because our
measurement intervals are typically greater 4.6 seconds, we must use the whole 64-bit value, and since
our system supports 64-bit values, we read the whole cycle count into one unsigned long long
variable2 .

A.2.2 Software Probe

This section describes the software probe we implemented for reading the processor clock cycle count
register. The probe data is placed in a structure as shown in Figure A.1 and includes the cycle count, the
probe location, and a probe id. The probe data structure should contain a minimum of data to reduce
the amount of needed memory holding the probe data in kernel space, and the probe function is kept as
simple as possible to avoid a high probe execution overhead (see Section A.2.4) which will influence the
performance measurement results too much.

struct instance_probe {
u_int64_t cycle_count; /* The processor cycle count read by RDTSC */
int location; /* The location in the code when we read the cycle count register */
int id; /* The id of the probe, e.g., packet number */

}

Figure A.1: The instance_probe structure.

The implementation of the probe function, called probe_entry(), is shown in Figure A.2. First,
we lock the probe mechanism by changing the system interrupt priority level. We store the location and
id of the probe, and increase the index of array storing the probe data. Then, we execute the CPUID
instruction for serializing, i.e., to avoid out-of-order execution effects where previous instructions have
not been executed or where subsequent instructions may begin execution before the counter is read.
When all pending instructions have finished, we execute the RDTSC instruction, and the whole 64-bit
value is read into a u_int64_t (unsigned long long) variable as described in Section A.2.1.3.
Finally, the system interrupt priority level is reset.

A.2.3 Probe Data Extraction

We modified and used the __sysctl() system call to extract the probe data from the kernel. The probe
data array is copied out as a raw data and dumped to a file on disk. To analyze and present the data in
a more readable format, we implemented a program presenting the measurements in MATLAB format.
In addition to just retrieving probe data from the kernel, we added functionality in __sysctl() to
quantify the probe execution overhead, to clear the probe ids, and to see the number of measurements
currently made in the kernel. The latter is to see if the probe data array is overloaded, i.e., the size of the
data from the measurements in a test exceed the size of memory allocated in the kernel, and whether the
probe data must be extracted while the test is executing.

A.2.4 Probe Execution Overhead

A software probe used for measurements will also require some resources, and our probe consumes
some CPU cycles serializing the operations, retrieving the clock cycle counter, and managing the probe
identification information. The probe execution time is overhead and should be subtracted from the
recorded number of cycles. Therefore, we have performed tests to determine the probe costs. However,

2Reading the whole cycle count can be done in two different ways, because RDTSC place the 64-bit cycle counter into two
different registers. This means that we can either read each of these registers into different unsigned long variables, i.e.,
supporting only 32-bit values, or read the whole 64-bit value into a unsigned long long variable, i.e., supporting 64-bit
values.
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struct instance_probe iprobe[440000]; /* Array of probes holding measurement data */

void
probe_entry(location, id)

int location;
int id;

{
int index, pl;

pl = splimp(); /* Change the system interrupt priority level */

index = probe_index++; /* Index into the probe array to be used */
probe_index = probe_index%INSTANCE_PSIZE; /* Update the "ring buffer" index for the next

* measurement,i.e., do not exceed the
* INSTANCE_PSIZE size */

iprobe[index].location = location; /* Store the location of the probe */
iprobe[index].id = id; /* Store the id of the probe */
__asm __volatile(".byte 0x0f,0xa2"); /* CPUID */
__asm __volatile(".byte 0x0f,0x31" : "=A" (iprobe[index].cycle_count)); /* RDTSC */

splx(pl); /* Reset the system interrupt priority level */
return;

}

Figure A.2: The probe_entry() function.

as described in Section A.2.1.1, the CPUID execution time varies according to the preceding operations,
and it will not stabilize before we have made a few consecutive calls. According to [187], the best way
to measure the overhead is “to call the instruction three times, measure the elapsed time on the third call,
then subtract this measurement from all future measurements”. Thus, to follow Intel’s instructions, we
have measured the probe execution time as shown in Figure A.3.

for(i = 0 ; i < 10000 ; i++) {
probe_entry(0, 1); /* Execute probe 1 */
probe_entry(0, 2); /* Execute probe 2 */
probe_entry(0, 3); /* Execute probe 3 */
probe_entry(0, 4); /* Execute probe 4 */

/* Calculate overhead by subtracting cycle count in probe 4 from cycle count in probe 3 */
overhead[i] = iprobe[probe4].cycle_count - iprobe[probe3].cycle_count;

}

Figure A.3: Pseudo code for testing the execution overhead of the probe.

Furthermore, as we use probes in both kernel and user space, we have implemented a software probe
for use in kernel space and a software probe for use in user space, therefore we do not have any problems
accessing memory in either address space. However, the execution time may then vary slightly, and
we have tested the two versions separately. For each overhead measurement, we have collected 10000
values.

Our tests indicate an overhead of 206 cycles, 227 cycles, and 206 cycles which is average, maximum
and minimum overhead, respectively, when running the probe in the kernel (see Figure A.4A-B and Table
A.3). The results from the probe overhead experiments in user space are shown in Figure A.4C-D and
Table A.3. The test indicates an overhead of 273 cycles, 382 cycles, and 265 cycles which is average,
maximum and minimum overhead, respectively.

In the performance measurements described in this thesis, we have used a probe overhead of 206
cycles when the probe is executed in the kernel and of 273 cycles when the probe is executed in user
space, because this is the average value in both our probe execution overhead measurements. This cor-
responds to about 0.22 µs and 0.29 µs on our 933 MHz test machine, respectively. Furthermore, the
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(A) Plot of a probe overhead test (kernel space). (B) Histogram over the probe overhead test (kernel space).
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Figure A.4: Results from one of the probe overhead experiments (with 10,000 iterations).

max min avg stdev 99% ci 95% ci

Kernel space 227 206 206.00 0.24 [206 - 206] —

User space 382 265 273.05 1.85 [273 - 273] —

Table A.3: Results from one of the probe overhead experiments.

average value is equal to both the lower and upper limits of the 99% confidence interval. In most of the
performance experiments in this thesis, however, the overhead variance is negligible, because most of
the tests will consume a lot more CPU cycles than the probe itself. Only in the basic performance tests
described in Appendix B, the variance in the probe overhead might have some small influence on the
results, because we measure operations that do not last very long, i.e., making the probe overhead a con-
siderable part of the total measured time (up to about 50%) of the test. Nevertheless, each performance
test is run several times (10000) in all experiments, and the average value should therefore in any test
give a good overall result.
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Appendix B

Basic Performance Tests

This chapter describes the results from some basic performance experiments we performed to see the
overhead in traditional operating system for several operations. Several of these tests have been per-
formed earlier and presented in various papers by others, but we wanted to see if the traditional bottle-
necks still represent a degrading factor on the overall system performance. The tests have been performed
using the software probe described in Section A.2.

B.1 Disk Efficiency Versus Amount of Data Read per I/O Operation

The performance of the storage (disk) system depends on several parameters, and performance of a read
(and write) operation is highly dependent on the disk characteristics. The disk throughput is dependent
on the disk arm movement speed (seek time), the spindle speed (rotational latency and data transfer
speed), the size of the transfer request, the scheduling of the requests, etc. Furthermore, the request
model is also important, and in our high-data rate MoD system a lot of data is sent to remote clients. In
this section, we describe our evaluation of disk performance versus the I/O operation size.

To predict the disk behavior, we used a very simple analytic model calculating the disk throughput,
disk efficiency, and number of possible concurrent users in a disk array when varying the block size. We
assumed a Seagate Cheetah 36LP (ST336704LC) disk drive [202]. The disk transfer rate, disk transfer
time, and disk throughput are given by equation B.1, B.2, and B.3, respectively:

transfer_rate =
data_per_track
rotation_speed

(B.1)

transfer_time = seek_time+ rotational_latency +
data_size

transfer_rate
(B.2)

achieved_disk_throughput = transfers_per_second× data_size

=
1s

transfer_time
× data_size (B.3)

The transfer rate can typically vary according to where on the disk drive data is stored, because the
outermost tracks often contain more data than innermost tracks. However, we assume that we do not
have a zoned disk, we have an equal amount of data in all tracks, and all requests are of equal size.
Nevertheless, in our calculations, we have used the average formated transfer rate (35.5 MBps) given by
Seagate [202]. The data transfer time is also dependent on seek time and rotational speed, and in our
calculations, we used the average seek time (5.20 ms) and rotational latency (2.99 ms) of the Cheetah
disk, but in practice these values will vary depending on where the disk arm and disk head are located.

The achieved disk efficiency in percent compared to the maximum disk transfer rate is given by
equation B.4:

disk_efficiency =
achieved_disk_throughput
maximum_disk_throughput

× 100 (B.4)
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Furthermore, the number of possible concurrent users depends on the data rate each client is asking for
and how much data is read per I/O request. In our scenario, we assume that all video clips are stored at
the same playout rate (6 Mbps), and one stripe of data (eight disks) is read per request. Thus, the playout
duration per I/O request and the I/O request frequency per client is given by equation B.5:

request_frequency =
data_size× number_of_disks_containing_information_data

playout_rate
(B.5)

The average transfer rate from the disk array is given by a slightly modified version of equation B.1
multiplying the transfer rate with the number of disks (the maximum data rate is however limited by the
controller and bus bandwidth). The achieved seek time and rotational latency will usually increase as
the number of parallel disks increase, but we still assume that the average numbers per disk can be used.
The number of possible concurrent users is then given by equation B.6:

number_of_concurrent_users = request_frequency × transfers_per_second (B.6)

where transfers per second is calculated using the transfer time in equation B.2.
By using this simple analytic model and the average disk characteristics of the Seagate Cheetah

disk, we present the relationship between disk efficiency and number of consecutive data reads per I/O
operation in Figure B.1. Our results show that a few large requests usually perform better than many
small requests, because more requests result in more disk seeking and rotation latencies. In addition, if
a disk read spans several block, the request is traditionally broken into pieces such that each piece fits
within the disk block, and each piece is then scheduled to fetch the block to be read [157]. However,
improvements are available in some more modern systems where I/O requests for several contiguous
blocks on disk are clustered together making a single large I/O operation on the entire range of sequential
blocks [100]. Each disk request also introduces interrupt overhead to the system in addition to decreasing
the disk throughput by increasing the number of seeks and rotation delays. Nevertheless, disk seek and
rotation latencies are the main bottlenecks in disk I/O operations. Therefore, the larger the amount of
data read per operation, the higher the throughput. In other words, increasing disk block size increases
performance. Consequently, to reduce the overhead and increase the disk throughput, we should use a
large disk block or make large reads if contiguous blocks are read in one operation.
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Figure B.1: Disk block size versus disk efficiency.

In our analytic disk efficiency calculation, we have tested disk blocks larger than 64 KB. However,
in many operating systems, e.g., NetBSD, the maximum disk block size is 64 KB (by default 4 KB).
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Theoretically, this value can be changed, but one reason for this limit is that (most) disk controllers
use 16-bit registers, and one block is therefore not able to hold more data than 216 bytes (64 KB).
Consequently, we use in our prototype as large a disk block size as possible, i.e., 64 KB. This choice is
also in accordance with other research in this area where read requests of up to 64 KB (and even above)
are proposed for high data rate multimedia systems [135, 146].

B.2 Data Copy Performance

In Section 3.2.1, we described the traditional I/O-pipeline in UNIX-based operating systems. Com-
mon user-level applications access the file and network I/O system services for example through the
read()/recv() and write()/send() system calls for data transfers, respectively. A major bottle-
neck in high throughput systems is that these system calls copy data from the kernel memory region to
the application buffer in user space, and vice versa. This is expensive for various reasons [42]:

• The bandwidth of the main memory is limited, and every copy operation is effected by this.

• A lot of CPU cycles are consumed for every copy operation. Often, the CPU must move the data
word-by-word from the source buffer to the destination, i.e, all the data may flow through the CPU.
This means that the CPU will unavailable during the copy operation.

• Data copy operations affect the cache. Since the CPU accesses main memory through the cache,
useful information resident in the cache before the copy operation is flushed out with the data
being copied.

In NetBSD, the transfer of data between user and kernel space is done by the copyout() and copyin()
functions in the operating system kernel. To copy data within the kernel, one might use the memcpy()
function. To see the available copy throughput using these functions on our test machine, we implemen-
ted a simple system call which only copies data from user space to the kernel, copies the data inside
the kernel from one buffer to another, and finally, copies the new buffer out to user space. A test pro-
gram made 10000 calls, and the results are presented in Figure B.2, Table B.1, and Table B.2. In the
experiments, we tested different data sizes, and since these operations consume CPU cycles, we made
tests with and without interrupts, i.e., when interrupts are turned off the code is executed as an atomic
instruction which is not suspended due to another task. The test was performed with no other load than
the system itself listening on the network and performing basic tasks within the system.

Theoretically, using PC800 RDRAM and the dual memory channels on the 840 chipset, each of
which can support 12.8 Gbps of memory bandwidth, we can pump data to and from memory at 25.6
Gbps [195]. The measured average copy throughput is shown in Figure B.2 where we also have plotted
the 99% confidence interval. The throughput varies according to the size of the data element being
transferred between the buffers with best performance when the size is between 1 KB and 8 KB. Within
this interval, we experienced a throughput well above 20 Gbps, and for some data sizes, we experience
a measured throughput close to the theoretical maximum. For data sizes below 1 KB and above 8 KB,
the performance is reduced drastically towards a throughput of below 2 Gbps. Table B.1 additionally
present various statistics on the throughput measurements. If we compare the results from the tests
with and without interrupts, we see a small degradation when allowing other tasks to be executed on
the CPU. Thus, even on this minimal load, other tasks that interrupt the copy operation decreasing the
perceptual performance. A heavily loaded server will, because the copy operations are CPU dependent,
have large, indeterministic delays when data must be copied within the system before data is transmitted
onto the network. Moreover, if we look at the traditional server approach where both copyout() and
copyin() are performed, the effective throughput is approximately halved. Even if data only were to
be copied from the file system to the communication system for example using the memcpy() function,
the copy overhead would be substantial. The times to copy a data element using the tested functions is
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Figure B.2: Average throughput for the copy operations depending on data size in Gbps.

presented in Table B.2. If data copying is performed, the times for the copyout() and copyin()
functions must be added to the total execution time for a specific request in the traditional case. If data
is only copied within the kernel, only the time for the memcpy() function should be added.

The exact reason for the large peek between 1 KB and 8 KB compared to the other measured data
sizes is yet somewhat unclear. The performance of the copy operations increases up to data sizes of 4
KB and 8 KB, and then the performance drops. The results are not unique to our experiments, but are
also confirmed by two other independent measurements described in [81] (NetBSD 1.4.1) and [147, 148]
(OpenBSD). There might be a lot of reasons for these results, e.g., paging, context switches, translation-
lookaside buffer and cache flushes, page limits and buffer alignment, etc. The increase is similar to the
tests performed by Intel in [191], but they do not have any tests for larger sizes than 4 KB. The question
is therefore why the performance drops using larger sizes than 8 KB? In our tests, the buffers used for
copyout() and copyin() are in separate address spaces (user and kernel space), and the buffers
used for memcpy() are both in kernel space, i.e., our tests include buffers separated in memory and
buffers close in memory. Furthermore, we tested the buffers in kernel space using page alignment and
without page alignment. In all experiments, the results are similar – copy operations perform best using
sizes around 4 KB and 8 KB. However, one highly probable explanation is the cache. Our test machine
have a 16 KB level one data cache which means that we will have caching effects using sizes above this
limit. In [45], copy performance tests are performed using transfer sizes from 4 KB to 4 MB. The results
show that the copy performance decreases as the transfer size increases due to caching effects. Thus, the
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cache size is a plausible explanation. However, to be certain, more tests are required on other machines
having smaller and larger cache sizes.

In summary, our results demonstrate that data copy operations still represent a potential bottleneck
of the disk-to-network data path, and as the CPU is involved in the copy operations, the perceptual copy
performance will be even further decreased on heavily loaded machines. If possible, such operations
therefore should be omitted making a zero-copy data path a good solution for high throughput systems.

Table B.1: Statistics on copy operation performance in Gbps.

Operation Interrupts Data size max min avg stdev 99% ci 95% ci

copyin off 0.125 KB 4.92 2.51 4.87 0.09 [4.73 - 4.92] [4.78 - 4.92]

0.25 KB 5.91 3.22 5.81 0.13 [5.43 - 5.91] [5.46 - 5.91]

0.5 KB 10.05 1.13 9.97 0.23 [9.24 - 10.05] [9.44 - 10.05]

1 KB 15.92 3.72 15.06 0.64 [13.41 - 15.75] [13.66 - 15.75]

2 KB 21.64 6.06 20.51 0.79 [18.98 - 21.60] [19.21 - 21.41]

4 KB 22.54 1.94 18.70 1.83 [15.70 - 22.05] [16.04 - 21.70]

8 KB 12.97 0.72 10.83 0.30 [10.30 - 11.51] [10.42 - 11.31]

16 KB 7.23 0.02 2.37 0.36 [1.79 - 3.83] [1.89 - 3.15]

32 KB 6.75 0.03 1.92 0.14 [1.65 - 2.21] [1.70 - 2.17]

64 KB 6.36 0.07 1.80 0.08 [1.68 - 1.91] [1.73 - 1.89]

128 KB 3.90 0.13 1.84 0.06 [1.76 - 1.89] [1.79 - 1.88]

256 KB 2.55 0.25 1.90 0.06 [1.84 - 1.94] [1.86 - 1.94]

512 KB 2.25 0.44 1.90 0.06 [1.88 - 1.92] [1.89 - 1.92]

1024 KB 2.05 0.71 1.90 0.08 [1.88 - 1.92] [1.90 - 1.91]

on 0.125 KB 4.71 0.19 4.68 0.08 [4.61 - 4.71] -

0.25 KB 5.80 0.17 5.73 0.13 [5.41 - 5.80] -

0.5 KB 10.03 0.57 9.65 0.44 [8.49 - 10.03] [8.66 - 10.03]

1 KB 15.34 5.18 14.34 0.75 [12.53 - 15.34] [12.90 - 15.28]

2 KB 20.00 1.83 16.06 2.26 [14.07 - 19.77] [14.27 - 19.56]

4 KB 22.51 3.46 18.73 1.88 [15.91 -22.26] [15.96 - 21.87]

8 KB 12.65 3.24 10.97 0.30 [10.44 - 11.63] [10.58 - 11.43]

16 KB 7.26 0.02 2.00 0.27 [1.58 - 2.81] [1.66 - 2.62]

32 KB 6.38 0.04 1.71 0.11 [1.53 - 2.01] [1.56 - 1.93]

64 KB 5.83 0.07 1.68 0.07 [1.56 - 1.81] [1.58 - 1.79]

128 KB 3.10 0.13 1.74 0.05 [1.65 - 1.81] [1.68 - 1.80]

256 KB 1.98 0.25 1.76 0.06 [1.71 - 1.81] [1.73 - 1.80]

512 KB 1.80 0.69 1.73 0.07 [1.71 - 1.75] [1.73 - 1.74]

1024 KB 1.87 0.70 1.80 0.07 [1.78 - 1.81] [1.79 - 1.81]

copyout off 0.125 KB 4.89 0.19 4.89 0.05 [4.89 - 4.89] -

0.25 KB 5.91 0.13 5.91 0.08 [5.91 - 5.91] -

0.5 KB 10.20 0.77 10.20 0.11 [10.20 - 10.20] -

1 KB 16.00 0.49 15.96 0.22 [15.51 - 16.00] [15.78 - 16.00]

2 KB 22.35 9.00 22.12 0.32 [21.25 - 22.35] [21.51 - 22.35]

4 KB 24.38 0.30 21.68 1.30 [19.75 - 24.01] [19.75 - 23.79]

8 KB 16.44 3.46 16.21 0.21 [16.12 - 16.34] [16.16 - 16.33]

16 KB 13.47 2.66 10.71 1.82 [6.44 - 13.40] [7.20 - 13.29]

32 KB 12.20 2.86 7.12 1.36 [4.17 - 11.35] [4.77 - 10.32]

64 KB 5.49 2.50 3.81 0.29 [3.22 - 4.56] [3.31 - 4.47]

128 KB 2.54 0.13 2.30 0.06 [2.19 - 2.39] [2.22 - 2.37]

continues on next page
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continued from previous page

Statistics on copy operation performance in Gbps.

Operation Interrupts Data size max min avg stdev 99% ci 95% ci

256 KB 2.01 0.25 1.95 0.06 [1.89 - 1.99] [1.91 - 1.99]

512 KB 1.93 0.44 1.90 0.07 [1.87 - 1.92] [1.89 - 1.91]

1024 KB 1.99 0.71 1.91 0.08 [1.89 - 1.92] [1.90 - 1.92]

on 0.125 KB 4.86 4.43 4.81 0.01 [4.81 - 4.81] -

0.25 KB 5.85 1.68 5.85 0.06 [5.70 - 5.85] [5.85 - 5.85]

0.5 KB 10.11 4.04 10.11 0.06 [10.11 - 10.11] -

1 KB 15.89 1.21 15.89 0.22 [15.89 - 15.89] -

2 KB 22.07 7.47 21.97 0.15 [21.94 - 21.97] [21.97 - 21.97]

4 KB 24.40 1.67 21.72 1.37 [19.58 - 24.15] [19.62 - 23.97]

8 KB 16.44 4.15 16.20 0.19 [16.12 - 16.35] [16.13 - 16.34]

16 KB 13.32 2.93 9.71 2.26 [4.40 - 13.15] [5.11 - 12.93]

32 KB 12.23 3.15 7.10 1.41 [4.73 - 11.50] [5.27 - 10.95]

64 KB 4.00 2.06 3.58 0.25 [3.00 - 4.22] [3.10 - 4.07]

128 KB 2.27 0.13 2.09 0.07 [1.96 - 2.22] [1.99 - 2.20]

256 KB 1.88 0.25 1.82 0.06 [1.75 - 1.87] [1.77 - 1.86]

512 KB 1.81 0.69 1.74 0.07 [1.71 - 1.75] [1.73 - 1.75]

1024 KB 1.86 0.70 1.77 0.07 [1.02 - 1.78] [1.77 - 1.78]

memcpy off 0.125 KB 2.64 0.06 2.55 0.10 [1.76 - 2.63] [2.52 - 2.63]

0.25 KB 3.92 2.08 3.82 0.15 [2.87 - 3.90] [3.43 - 3.90]

0.5 KB 7.09 3.89 6.92 0.19 [5.39 - 7.06] [6.63 - 7.06]

1 KB 11.88 1.13 10.84 0.92 [8.42 - 11.80] [9.44 - 11.75]

2 KB 17.80 0.89 16.93 0.51 [14.29 - 17.53] [16.25 - 17.38]

4 KB 22.67 2.64 18.77 2.14 [14.39 - 22.30] [15.56 - 22.07]

8 KB 22.53 2.54 21.54 0.42 [20.50 - 22.24] [21.33 - 21.90]

16 KB 7.11 1.09 3.77 0.52 [2.82 - 5.68] [2.96 - 4.93]

32 KB 7.07 0.04 3.42 0.33 [2.63 - 4.19] [2.78 - 4.00]

64 KB 6.82 0.07 2.99 0.21 [2.58 - 3.56] [2.64 - 3.48]

128 KB 3.22 0.13 2.49 0.08 [2.31 - 2.63] [2.36 - 2.61]

256 KB 2.32 0.25 2.12 0.06 [2.05 - 2.17] [2.07 - 2.16]

512 KB 1.95 0.44 1.93 0.07 [1.90 - 1.94] [1.92 - 1.94]

1024 KB 1.91 0.70 1.84 0.07 [1.83 - 1.86] [1.84 - 1.85]

on 0.125 KB 3.36 0.06 3.33 0.07 [3.21 - 3.36] -

0.25 KB 4.67 0.31 4.58 0.10 [4.44 - 4.67] [4.45 - 4.67]

0.5 KB 8.30 0.26 8.04 0.30 [7.29 - 8.30] [7.40 - 8.30]

1 KB 13.56 1.36 12.58 0.93 [11.02 - 13.56] [11.21 - 13.56]

2 KB 18.35 1.93 16.62 1.46 [14.08 - 18.14] [14.35 - 18.02]

4 KB 24.09 0.38 20.04 2.48 [16.06 - 23.87] [16.17 - 23.63]

8 KB 23.08 7.23 22.03 0.25 [21.67 - 23.03] [21.88 - 22.41]

16 KB 6.34 1.64 2.85 0.33 [2.29 - 4.09] [2.36 - 3.59]

32 KB 6.61 1.75 3.05 0.27 [2.55 - 3.79] [2.65 - 3.66]

64 KB 3.90 0.07 2.77 0.14 [2.46 - 3.10] [2.52 - 3.04]

128 KB 2.65 0.13 2.29 0.09 [2.12 - 2.46] [2.16 - 2.43]

256 KB 2.11 0.25 1.91 0.06 [1.85 - 1.96] [1.86 - 1.95]

512 KB 1.74 0.69 1.73 0.07 [1.71 - 1.74] [1.72 - 1.74]

1024 KB 1.83 0.70 1.75 0.07 [1.73 - 1.76] [1.75 - 1.76]
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Table B.2: Statistics on copy operation performance in µs.

Operation Interrupts Data size max min avg stdev 99% ci 95% ci

copyin off 0.125 KB 0.38 0.19 0.20 0.00 [0.19 - 0.20] -

0.25 KB 0.59 0.32 0.33 0.00 [0.32 - 0.35] -

0.5 KB 3.39 0.38 0.38 0.00 [0.38 - 0.41] [0.38 - 0.40]

1 KB 2.05 0.48 0.51 0.00 [0.48 - 0.57] [0.48 - 0.56]

2 KB 2.52 0.71 0.75 0.00 [0.71 - 0.80] [0.71 - 0.79]

4 KB 15.74 1.35 1.65 0.00 [1.38 - 1.94] [1.41 - 1.90]

8 KB 84.21 4.70 5.65 0.01 [5.30 - 5.93] [5.40 - 5.86]

16 KB 6937.41 16.87 53.18 0.60 [31.85 - 68.09] [38.71 - 64.52]

32 KB 7021.08 36.17 128.48 0.60 [110.51 - 148.22] [112.65 - 143.95]

64 KB 7162.29 76.75 274.33 1.33 [256.13 - 290.55] [258.77 - 281.97]

128 KB 7422.10 250.28 535.90 1.57 [515.93 - 556.35] [518.92 - 546.67]

256 KB 7927.02 765.16 1036.34 1.88 [1004.46 - 1060.42] [1008.94 - 1049.74]

512 KB 8940.14 1735.35 2063.40 2.51 [2035.19 - 2082.09] [2039.59 - 2067.32]

1024 KB 10996.58 3804.18 4128.02 3.93 [4076.48 - 4155.87] [4082.05 - 4114.62]

on 0.125 KB 5.06 0.20 0.20 0.00 [0.20 - 0.21] -

0.25 KB 11.35 0.33 0.33 0.00 [0.33 - 0.35] -

0.5 KB 6.69 0.38 0.40 0.00 [0.38 - 0.45] [0.38 - 0.44]

1 KB 1.47 0.50 0.53 0.00 [0.50 - 0.61] [0.50 - 0.59]

2 KB 8.33 0.76 0.97 0.00 [0.77 - 1.08] [0.78 - 1.07]

4 KB 8.83 1.36 1.65 0.00 [1.37 - 1.92] [1.40 - 1.91]

8 KB 18.86 4.83 5.57 0.00 [5.25 - 5.85] [5.34 - 5.77]

16 KB 6891.89 16.82 62.67 0.59 [43.52 - 77.39] [46.58 - 73.78]

32 KB 6975.85 38.29 145.26 1.02 [121.59 - 160.12] [126.44 - 156.84]

64 KB 7129.82 83.82 293.34 1.02 [270.31 - 313.65] [273.61 - 308.50]

128 KB 7403.95 314.93 566.47 1.44 [540.73 - 590.98] [543.92 - 582.48]

256 KB 7939.01 987.21 1113.92 1.95 [1079.33 - 1141.82] [1084.77 - 1131.12]

512 KB 11355.92 4334.77 4527.70 3.94 [4470.48 - 4560.29] [4479.75 - 4516.30]

1024 KB 11092.79 4171.73 4367.65 3.81 [4315.40 - 4398.56] [4322.26 - 4356.48]

copyout off 0.125 KB 5.01 0.20 0.20 0.00 [0.20 - 0.20] -

0.25 KB 15.22 0.32 0.32 0.00 [0.32 - 0.32] -

0.5 KB 4.98 0.37 0.37 0.00 [0.37 - 0.37] -

1 KB 15.69 0.48 0.48 0.00 [0.48 - 0.49] [0.48 - 0.48]

2 KB 1.69 0.68 0.69 0.00 [0.68 - 0.72] [0.68 - 0.71]

4 KB 100.12 1.25 1.42 0.01 [1.27 - 1.55] [1.28 - 1.55]

8 KB 17.63 3.71 3.77 0.00 [3.73 - 3.79] [3.74 - 3.78]

16 KB 45.89 9.07 11.78 0.02 [9.11 - 18.95] [9.19 - 16.97]

32 KB 85.47 20.00 35.60 0.06 [21.52 - 58.52] [23.65 - 51.20]

64 KB 195.29 88.94 128.75 0.08 [107.13 - 151.42] [109.36 - 147.35]

128 KB 7319.08 385.02 426.93 1.03 [409.09 - 446.44] [411.56 - 439.35]

256 KB 7897.94 974.00 1007.38 1.78 [980.16 - 1034.98] [983.73 - 1022.65]

512 KB 8938.55 2029.04 2068.42 2.84 [2039.25 - 2086.83] [2042.11 - 2068.03]

1024 KB 10985.64 3925.68 4118.12 3.85 [4070.50 - 4128.20] [4074.08 - 4105.93]

on 0.125 KB 0.22 0.20 0.20 0.00 [0.20 - 0.20] -

0.25 KB 1.14 0.33 0.33 0.00 [0.33 - 0.33] -

0.5 KB 0.94 0.38 0.38 0.00 [0.37 - 0.38] -

1 KB 6.30 0.48 0.48 0.00 [0.48 - 0.48] -

continues on next page
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continued from previous page

Statistics on copy operation performance in µs.

Operation Interrupts Data size max min avg stdev 99% ci 95% ci

2 KB 2.04 0.69 0.70 0.00 [0.70 - 0.70] -

4 KB 18.27 1.25 1.41 0.00 [1.26 - 1.56] [1.27 - 1.56]

8 KB 14.70 3.71 3.77 0.00 [3.73 - 3.79] [3.74 - 3.78]

16 KB 41.69 9.16 13.46 0.03 [9.29 - 27.77] [9.44 - 23.90]

32 KB 77.62 19.96 35.57 0.05 [21.23 - 51.62] [22.30 - 46.35]

64 KB 237.46 110.98 137.10 0.09 [115.80 - 162.69] [119.87 - 157.32]

128 KB 7302.80 431.03 469.94 1.18 [439.42 - 499.34] [444.00 - 491.41]

256 KB 7919.95 1039.36 1083.54 2.13 [1044.85 - 1114.07] [1049.03 - 1102.37]

512 KB 11340.47 4326.32 4518.10 3.95 [4467.28 - 4559.20] [4471.18 - 4505.47]

1024 KB 11182.03 4201.05 4440.96 4.03 [4387.42 - 7670.08] [4391.98 - 4426.24]

memcpy off 0.125 KB 16.35 0.36 0.38 0.00 [0.36 - 0.54] [0.36 - 0.38]

0.25 KB 0.92 0.49 0.50 0.00 [0.49 - 0.66] [0.49 - 0.56]

0.5 KB 0.98 0.54 0.55 0.00 [0.54 - 0.71] [0.54 - 0.58]

1 KB 6.77 0.64 0.71 0.00 [0.65 - 0.91] [0.65 - 0.81]

2 KB 17.12 0.86 0.91 0.00 [0.87 - 1.07] [0.88 - 0.94]

4 KB 11.56 1.35 1.65 0.00 [1.37 - 2.12] [1.38 - 1.96]

8 KB 24.07 2.71 2.84 0.00 [2.74 - 2.98] [2.79 - 2.86]

16 KB 111.83 17.17 32.97 0.04 [21.49 - 43.31] [24.78 - 41.30]

32 KB 6953.79 34.51 72.63 0.60 [58.23 - 92.94] [61.01 - 87.93]

64 KB 7034.54 71.58 164.78 0.60 [137.00 - 189.16] [140.39 - 184.63]

128 KB 7282.43 302.82 394.62 1.03 [371.91 - 423.00] [374.70 - 414.33]

256 KB 7818.86 840.45 927.46 1.78 [900.71 - 953.83] [903.99 - 943.26]

512 KB 8907.75 2001.88 2036.15 2.58 [2010.02 - 2052.09] [2012.78 - 2039.17]

1024 KB 11126.93 4088.66 4257.92 3.75 [4210.94 - 4269.60] [4214.65 - 4248.50]

on 0.125 KB 15.09 0.28 0.29 0.00 [0.28 - 0.30] -

0.25 KB 6.16 0.41 0.42 0.00 [0.41 - 0.43] -

0.5 KB 14.90 0.46 0.48 0.00 [0.46 - 0.52] [0.46 - 0.52]

1 KB 5.59 0.56 0.61 0.00 [0.56 - 0.69] [0.56 - 0.68]

2 KB 7.93 0.83 0.93 0.00 [0.84 - 1.08] [0.85 - 1.06]

4 KB 80.51 1.27 1.56 0.01 [1.28 - 1.90] [1.29 - 1.89]

8 KB 8.45 2.64 2.77 0.00 [2.65 - 2.82] [2.72 - 2.79]

16 KB 74.57 19.26 43.38 0.04 [29.87 - 53.38] [33.96 - 51.72]

32 KB 139.69 36.93 80.75 0.06 [64.41 - 95.65] [66.70 - 92.05]

64 KB 700.09 125.14 178.28 0.84 [157.31 - 198.43] [160.76 - 193.62]

128 KB 7272.97 368.49 430.62 1.45 [396.90 - 460.14] [401.29 - 452.81]

256 KB 7868.76 925.00 1027.73 1.86 [994.99 - 1056.97] [999.33 - 1047.82]

512 KB 11381.01 4480.33 4543.22 4.07 [4490.15 - 4574.46] [4494.16 - 4529.57]

1024 KB 11208.39 4277.28 4484.77 3.77 [4435.63 - 4505.83] [4439.87 - 4475.31]

B.3 System Call Overhead

Accessing the operating system kernel from user space is time consuming, because a lot of different
actions are performed in order to switch between user and kernel mode. The system call interface is
called in the library. This interface sets up the arguments appropriately, e.g., selecting which system call
number to use and the parameters, and generates a trap instruction that causes the process to switch from

108



user into kernel mode. Once in kernel mode, control passes to an entry point called syscall(), which
takes the system call number passed in as part of the trap instruction, indexes into a vector of pointers
to system functions, and invokes the appropriate function. When the system call is finished, the entire
process unwinds and control is returned to the user process running in user mode.

In [73], the overhead of the system call getpid is measured on different Linux-based operating sys-
tems using the processor cycle count register (the Intel RDTSC instruction). The total costs of accessing
the kernel were measured to be 223 and 524 cycles for Linux and L4Linux, respectively. To measure the
overhead of accessing the NetBSD kernel by making a system call in a similar way, we implemented an
empty system call, i.e., just entering the kernel and then returning. A test program made 10000 calls to
the kernel and the results measured by our software probe (see Section A.2) are displayed in Figure B.3
and Table B.3. On average, about 0.4 µs (369 cycles) are used to access the kernel per system call. This
means that the overhead accessing the kernel in NetBSD is somewhere between traditional Linux and
L4Linux.

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

T
im

e 
(µ

s)

Figure B.3: Plot of system call overhead in µs.

max min avg stdev 99% ci 95% ci

0.62 0.40 0.40 0.00 [0.40 - 0.43] [0.40 - 0.40]

Table B.3: System call overhead in µs.

B.4 Pool and Memory Allocation/Deallocation Overhead

When reading data from disk, we need some memory to hold the data in the operating system kernel.
To see whether we should use a pool mechanism or traditional memory allocation/free operations, we
have measured the time to get and free a pool item, i.e., an mmbuf memory cluster from the mmclpool,
and the time to allocate and free memory using malloc() and free(). As we have implemented two
versions of the mmclpool, i.e., using the NetBSD pool mechanism and our own mmbuf memory cluster
pool, we have tested both of these implementations. The NetBSD pool mechanism uses poolget()
and poolput() to allocate and free items respectively, whereas our pool uses clusterpool_get()
and clusterpool_put(). As we read data in 64 KB blocks from disk (see Section B.1), we have
only looked at pool items of size 64 KB.

The results are shown in Figure B.4 (note that they have different y-axis) and Table B.4. The tests
indicate that it is faster to use the pool mechanisms rather than allocating new memory each time a
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(C) malloc(). (D) free().
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Figure B.4: Plot of time to get and free an mmbuf memory cluster in µs.

memory region is needed. The times to allocate a memory area using the NetBSD pool mechanism,
our own pool, and the traditional allocation mechanism are in average 0.15 µs, 0.08 µs, and 5.80 µs,
respectively. The respective operations to free the memory area consume the same proportional amount
of time on the CPU. Thus, both pool mechanisms are faster than traditional allocation/free operations.
Furthermore, our pool mechanism is slightly faster than the NetBSD pool mechanism. This is due to our
specialized cluster pool implementation. The NetBSD pool mechanism supports more functionality and
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max min avg stdev 99% ci 95% ci

poolget() 0.81 0.15 0.15 0.00 [0.15 - 0.23] [0.15 - 0.15]

poolput() 0.19 0.15 0.15 0.00 [0.15 - 0.15] —

malloc() 84.14 4.62 5.80 0.01 [4.80 - 7.09] [5.09 - 6.66]

free() 27.32 6.42 6.48 0.00 [6.43 - 6.63] [6.44 - 6.49]

clusterpool_get() 0.17 0.07 0.08 0.00 [0.08 - 0.08] —

clusterpool_put() 0.15 0.07 0.07 0.00 [0.07 - 0.07] —

Table B.4: Time to get and free a pool item and to allocate and free memory in µs.

different pools with different item sizes, item limits, allocation/free routines, etc. Our mechanism has
only one pool and only the functionality needed for our purpose, i.e., our mechanism is smaller where
the number of instructions used to retrieve and return a pool item therefore is reduced.

The above result assumes that the pool has available pool items. If the pool does not have any items
available, more memory is mapped to the pool in sizes of two pool items (128 KB)1 in our mmclpool.
As depicted in Figure B.5, the time to map memory to the pool is dependent on the amount of already
allocated memory where the time increases with the amount of used memory. This applies to both our
implementations using either the NetBSD pool mechanism or our own mmbuf cluster pool, because both
implementations use the same mechanism for allocating more memory. However, this memory may be
allocated during boot time (pool initialization) or when the element is needed, and it remains in the pool
as long there is need for it. Thus, this operation is performed once, i.e., there is no allocation/free for
each time a pool item is needed, and the overhead is therefore negligible. The time to do a malloc()
seems to be the same regardless of the amount of memory already allocated.
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Figure B.5: Plot of time to get a pool item in µs (no items available in pool).

1In this test, we have allocated more memory in sizes of two pool items. However, this is a configurable parameter and
better performance might be achieved using a larger size.

111





Appendix C

Abbreviations

Prefixes
n nano (10−9)
µ micro (10−6)
m milli (10−3)
K Kilo (210)
M Mega (220)
G Giga (230)

Acronyms and Abbreviations
ACK Acknowledgment
API Application Programming Interface
ATM Asynchronous Transfer Mode
ARQ Automatic Repeat Request
avg Average (in tables only)
bps Bits per Second
Bps Bytes per Second
BSD Berkeley Software Distribution
ci Confidence Interval (in tables only)
CoW Copy-on-Write
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DMA Direct Memory Access
DVD Digital Versatile Disk
fbufs Fast Buffers
fps Frames Per Second
GB, Gb Giga byte, Giga bit
GF Galois Field
HDTV High Definition Television
IETF Internet Engineering Task Force
I/O Input/Output
ILP Integrated Layer Processing
INSTANCE Intermediate Storage Node Concept
IP Internet Protocol
IPC Interprocess Communication
KB, Kb Kilo byte, Kilo bit

113



L/MRP Least/Most Relevant for Presentation
LoD Learning-on-Demand
max Maximum (in tables only)
MB, Mb Mega byte, Mega bit
mbuf Memory Buffer
min Minimum (in tables only)
MMBUF Multimedia M-buf mechanism
mmbuf The MMBUF data structure
MoD Media-on-Demand
MTU Maximum Transfer Unit
MPEG Moving Picture Expert Group
NLF Network Level Framing
NoD News-on-Demand
OS Operating System (in tables only)
QoS Quality-of-Service
PC Personal Computer
PCI Peripheral Component Interconnect
PIO Programmed I/O
RAID Redundant Array of Inexpensive (Independent) Disks
RDRAM Rambus Dynamic Random Access Memory
RSVP Resource Reservation Protocol
RTO Retransmission Timeout
RTP Real-Time Protocol
RTT Round-Trip Time
SCSI Small Computer Scalable Interface
stdev Standard Deviation (in tables only)
TCP Transport Control Protocol
UDP User Datagram Protocol
VCR Video Cassette Recorder
VoD Video-on-Demand
WWW World Wide Web
XOR Exclusive Or
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