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Abstract An adaptive method for approximating huge scat-
tered data sets is presented. The approximation scheme gen-
erates multilevel triangulations obtained using a subdivision
scheme known as longest edge bisection. Nested function
spaces are defined over the multilevel triangulations. The ap-
proximation problem is solved by successive refinement of
the triangulation while iterative methods are used for solv-
ing a system of linear equations at intermediate levels of the
multi-level scheme. Regularization terms are coupled with a
standard least squares formulation to guarantee uniqueness
and control smoothness of the solution.

1 Introduction

The motivation for the approximation scheme proposed in
this paper comes from surface modelling in geographic in-
formation systems (GIS) and systems for modelling geolog-
ical structures. We want the method to handle huge scattered
data sets with noise, data with uneven distribution, and han-
dle situations where the surface topography varies rapidly
over the domain.

Several multilevel methods for surface construction have
been studied and presented over the past years, although rel-
atively few deal with approximation of scattered data. In [17]
multilevel B-splines were used to generate a coarse-to-fine
sequence of tensor product B-splines whose sum approaches
the final approximation of given scattered data. The method
is local in the sense that on the finer tensor product grids each
B-spline coefficient is computed from nearby points only.
Consequently, the method is also fast. However, if the scat-
tered data are subject to noise or if the data are unevenly dis-
tributed over the domain, undesirable behaviour may occur
near data locations. Numerical examples and explanations of
these phenomena can be found in [17] and [15].
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Hierarchical B-splines were introduced in [8], and ap-
plied to approximation of data arranged on a regular grid
in [9]. Application to scattered data was discussed in [12].
Contrary to multilevel B-splines, the basic idea with hier-
archical B-splines is to refine a tensor product grid locally
where the approximation error exceeds a specified tolerance.
Thereby a global approximation problem is subdivided into
a series of local problems. Each local problem gives rise to a
(small) linear equation system. This is done recursively until
the B-spline surface approximates the scattered data within
the given tolerance. The data structure is rather complex and
implementation of the method requires considerable more
effort than for multilevel B-splines.

A scheme for constructing smooth regular grid functions
approximating scattered data was presented in [1]. In a first
local step called regularization, a subset of the grid values
are determined from nearby points using a classic scattered
data interpolation technique like Shepard’s method [25] or
the radial basis function method [21]. Then, in the next ex-
trapolation step, the grid values found in the first step are
extended to the entire grid by solving a biharmonic differen-
tial equation. The method can also handle constraints (break
lines) imposed on the surface, which makes the method suited
for modelling faulted geological structures.

An important part of the multilevel approximation scheme
presented in this paper is the construction of a nested se-
quence of semi-regular triangulations. We want to apply a
subdivision scheme that generates an adaptive triangulation
where the triangle density reflects the variation in surface
topography and distribution of the given data. A scheme
known as longest edge bisection has become popular for
view-dependent visualisation [18,23]. The scheme is also
called 4 � k meshes [26], or restricted quad-tree triangula-
tions [20]. In this paper meshes generated by longest edge
bisection are called binary triangulations since they can be
considered as the result of recursive splitting of one trian-
gle into two new triangles. One important property of the
scheme, and variations over it, is that refinement can be done
locally without the need to maintain the entire mesh at the
same resolution.
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Fig. 1 Recursive longest edge bisection. Dashed arrows indicate
parent-child relationships. The rightmost triangulation has only one ac-
tive vertex from the finest refine level.

Consider the initial triangulation on the left in Fig. 1
with four isosceles triangles. The recursive splitting starts
by inserting vertices on the longest edge of each triangle. To
maintain a valid triangulation, new edges must be introduced
as indicated by dashed arrows. The new triangulation has
eight isosceles triangles, whose longest edges are bisected
to obtain a new triangulation with 16 triangles (second from
right). Each dashed arrow represents a parent-child relation-
ship where the black bullets are parents and each circle rep-
resents a child. We say that a vertex is active when it has
been inserted into the mesh. Every vertex at a certain refine
level need not be active to obtain a valid triangulation. The
general rule is that if a vertex is active, then its parents, its
grandparents, etc. and all its ancestors at coarser levels must
also be active. The four corner vertices are active by default.
An example is shown by the rightmost binary triangulation
in Fig. 1. For the vertex drawn as a circle to be active, all
the vertices drawn as black bullets must also be active. A
unique triangulation then results with edges determined by
the parent-child relationships involved.

We have implemented an algorithm based on the fact that
the triangle vertices at any level of a binary triangulation
constitute a subset of a regular grid. Starting from the ini-
tial triangulation on the left in Fig. 1 we have a grid Ψ1 with
2 � 2 rectangular grid cells. For each grid cell in Ψ1 a cri-
terion for subdivision is examined. Criteria for subdivision
will be explained shortly. If subdivision is required within
the grid cell, the vertex in the middle of the cell, say v, be-
longing to the next finer grid Ψ2 with 4 � 4 grid cells is ac-
tivated. Then the parents of v must also be activated and a
unique triangulation results with vertices which are a subset
of those in the triangulation shown second from right. The
algorithm proceeds on finer and finer grids where each grid
Ψk is obtained by inserting grid lines halfway between the
grid lines of Ψk � 1.

We have implemented a simple data structure for the
binary triangulation similar to that used in [19] for view-
dependent visualisation. A triangulation is represented im-
plicitly only by its (active) vertices and references from each
vertex to its two parents. Algorithms operating on the data
structure also become simple and efficient, for example al-
gorithms for point localization and algorithms for generating
triangle strips for efficient visualisation.

The general scheme for computing surface triangulations
over binary triangulations can briefly be outlined as follows.
Given scattered data P �	��
 xi � yi �� with corresponding real
values � zi � . Over each triangulation ∆k in a coarse-to-fine se-

quence of binary triangulations we construct a least squares
surface approximation fk to the given data. Dependent on
the application, different subdivision criteria can be used.
For example, a prescribed tolerance may be given to control
the maximum deviation between the surface approximation
at the finest level and the given data values � zi � . Thus, the
accuracy of the approximation at one level can be used to de-
cide where to refine, hence to produce the triangulation at the
next finer level. For huge data sets it is important to reduce
the amount of data or to create a triangulation that reflects
the distribution of the scattered data. One way to achieve
this, without taking any error measure into account, is to use
a counting measure whereby ∆k is refined as long as there
is more than a prescribed number of data locations from P
within some portion of the domain, for example inside a grid
cell of Ψk. Variation over curvature measures could also be
used to decide where to refine, for example by using a thin-
plate energy measure locally over triangle edges. Since iter-
ative methods are used for computing the least squares ap-
proximations, the solution found at one level can be used to
compute a starting vector for the next level. More details on
the numerical scheme and numerical examples are given in
sections 3 and 4, respectively.

2 The Least Squares Approximation

In this paper the least squares approximation is restricted
to piecewise linear surfaces. In geographic information sys-
tems and geological modelling systems, piecewise linear sur-
faces are often sufficient and may also be preferred to higher
degree surfaces, which may cause undesirable oscillations
(e.g. Gibbs phenomena) when modelling terrain with rapidly
varying topography. Piecewise linear surfaces are also more
efficient to compute and more compliant with other software
components in such applications.

Given a set of distinct non-collinear data points
P ��
 x1 � y1 �� 
 x2 � y2 ���������� 
 xm � ym �� m � 3, in the plane and
corresponding real values z1 � z2 ��������� zm, we seek a function f
over the binary triangulation ∆ that approximates the data.
We restrict f to the finite dimensional space

S0
1 
 ∆  ��� f � C0 
 Ω  : f � ti � Π1 � �

where Π1 is the space of bivariate linear polynomials, ti is
a triangle in ∆ and Ω is a rectangular domain. As a ba-
sis for S0

1 
 ∆  we use standard compactly supported nodal
basis functions N1 
 x � y �� N2 
 x � y ���������� Nn 
 x � y  which satisfy
Ni 
 v j  � δi j � j � 1 ��������� n, where the v j ��
 x j � y j  are vertices
in the underlying triangulation. Thus, a function in S0

1 
 ∆  is
written,

f 
 x � y  � n

∑
i � 1

ciNi 
 x � y �� ci � R �
In the basic least squares problem we seek a coefficient vec-
tor c ��
 c1 ��������� cn  T that minimizes

m

∑
k � 1

 f 
 xk � yk  � zk  2 � (1)
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This classical least squares fitting problem always has a so-
lution, however the solution is not necessarily unique. Also,
the resulting surface f 
 x � y  may not be sufficiently smooth,
especially if the given data are subject to noise. We are par-
ticularly interested in different types of measured data, which
often contain noise. One may augment (1) with a regulariza-
tion term, also called smoothing term or penalty term in [27],
to guarantee uniqueness and control smoothness of the solu-
tion. Many commonly used smoothing terms can be written
on the quadratic form� 
 c  � cT Ec � (2)

where E is a symmetric and positive semidefinite n � n ma-
trix. When working with spaces of functions of higher de-
gree, the smoothing term usually involves first and second
derivatives. For the piecewise linear space S0

1 
 ∆  we may use
discrete analogues where

� 
 c  is the sum of some rough-
ness measure around each vertex or across each interior edge
of the triangulation. The functional we want to minimize is
now

I 
 c  � m

∑
k � 1

 f 
 xk � yk  � zk  2  λcT Ec ��! Bc � z ! 22  λcT Ec �

for some real value λ � 0. Here z �"
 z1 ��������� zm  T and B is
the m � n matrix

B � #$$% N1 
 x1 � y1  ����� Nn 
 x1 � y1 
N1 
 x2 � y2  ����� Nn 
 x2 � y2 

...
...

N1 
 xm � ym  ����� Nn 
 xm � ym 
&�''( � (3)

Setting the gradient of I 
 c  equal to zero leads to the normal
equations)

BT B  λE * c � BT z � (4)

The n � n matrix BT B is symmetric and positive semidef-
inite, so the solution to (4) with λ � 0 is not necessarily
unique. If E is positive definite, then the system matrix
)
BT B  λE * with λ + 0 is also positive definite, and thereby

nonsingular, which implies that (4) has a unique solution.
To justify the use of the smoothing term for controlling

the behaviour of the least square fit, we briefly go through
a result by Golitschek & Schumaker [27]. Assume for now
that

)
BT B  λE * is nonsingular for λ � 0. Let fλ 
 x � y  be

the penalized least squares fit to the given data with the
smoothing parameter λ . Then the mean square error given
by

Tz 
 λ  � 1
m

m

∑
k � 1

)
fλ 
 xk � yk  � zk * 2 (5)

is monotone increasing for λ � 0 with derivatives T ,z 
 0  � 0
and limλ - ∞ T ,z 
 λ  � 0. Thus, λ controls the trade-off be-
tween smoothness and mean square error. A best fit, best in
the sense of minimizing the mean square error, is then ob-
tained by setting the value of the smoothing parameter λ to
zero.

It can be shown that the basic least squares problem
BT Bc � BT z without a smoothing term has a unique solution
if and only if B has linearly independent columns [11]. If one
or more columns of B are zero vectors, then the columns are
not linearly independent. We observe from (3) that each ba-
sis function N j � j � 1 ��������� n makes a column. A column, say
column number l, is a zero vector if Nl 
 xi � yi  � 0 for i �
1 ��������� m. This happens if no point of P falls strictly inside
the domain Ωl of Nl , which often occurs for cartographic
data and geological data whose distribution may vary rapidly
over the domain. For instance, hypsographic data (contour
lines) in cartography and seismic data (track data) in geol-
ogy typically possess such uneven distributions. So in most
cases, when constructing surfaces from such data, we need a
smoothing parameter λ greater than zero to guarantee unique-
ness of (4).

An approximation scheme without a smoothing term,
based on refinement of arbitrary triangulations, was proposed
by Rippa [22]. Uniqueness then relied on the fact that the
vertices of the triangulation were always chosen as a subset
of the input data. Consequently, there are n rows of B that
constitute the identity matrix (with a proper ordering of the
rows), and the columns are trivially linearly independent.

The system matrix BT B of the basic least squares prob-
lem is clearly sparse. Indeed, an element)

BT B * i j � m

∑
k � 1

Ni 
 xk � yk  N j 
 xk � yk 
is non-zero only if i � j or if the domains of the basis func-
tions Ni and N j overlap so that two triangles share a common
edge. Thus, a non-zero off-diagonal element 
 BT B  i j corre-
sponds to an edge in the triangulation connecting the two
vertices vi and v j. It can be shown that the number of edges
in a triangulation with V vertices has an upper bound 3V �
6. Then the number of non-zero off-diagonal elements in
the n � n matrix BT B has an upper bound 2 
 3n � 6  , and
counting the diagonal which is also non-zero, we find that
the average number of non-zeros in each row is approxi-
mately 7.

2.1 Smoothing Terms

Smoothing terms on the quadratic form in (2) can be ob-
tained from the membrane energy,. �∇g � 2 � . g2

x
 g2

y � (6)

and from an approximation of the thin-plate energy,.
g2

xx
 2g2

xy
 g2

yy � (7)

Loosely speaking, the membrane energy prefers surfaces with
small area, while the thin-plate energy prefers surfaces with



4 Øyvind Hjelle, Morten Dæhlen

ekl

r

t1

t2

g1

g2ken

Fig. 2 Stencil for the second order divided difference operator

small overall curvature. Since functions in S0
1 
 ∆  are not

twice differentiable we will use an approximation to the thin-
plate energy based on a divided difference.

The smoothing term based on the membrane energy can
be expressed on the following quadratic form,�

1 
 c  � . �∇ f � 2 � .0///// n

∑
i � 1

ci∇Ni

///// 2� n

∑
i � 1

n

∑
j � 1

. )
∇Ni

� ∇N j * cic j � cT Ec �
Thus, the elements of the smoothing matrix are

Ei j � . ∇Ni
� ∇N j �

Matrix E is symmetric and sparse with the same sparsity
pattern as BT B, thus Ei j is non-zero when i � j or when 
 i � j 
corresponds to an edge in the triangulation.

An approximation to the thin-plate energy functional in
(7) can be based on a second order divided difference op-
erator. Fig. 2 shows a stencil with the triangles and ver-
tices involved in the construction of the divided difference.
Let gi � f � ti � i � 1 � 2, where t1 and t2 are the triangles sharing
the edge ek. Further, let nek

be a unit vector in the xy-plane
orthogonal to the projection of ek in the xy-plane, and let �EI �
be the number of interior edges in the triangulation. We de-
fine the discrete thin-plate energy as the following sum over
all interior edges,

�
2 
 c  �01EI 1∑

k � 1

.
ek 2 ∇ f � nek 3 2J

where 2 ∇ f � nek 3 J �4
 ∇g2 � ∇g1  � nek
is the jump in the deriva-

tive of f over the interior edge ek in the direction of nek
. This

measure was used in [5] for constructing data dependent
triangulations, and equivalent measures were used in [13],
and in [14] as divided difference operators in subdivision
schemes for triangulations. We obtain the following quadratic
form,

�
2 
 c  � 1EI 1∑

k � 1

.
ek

5
n

∑
i � 1

ci 
 ∇Ni
� nek 76 2

J� n

∑
i � 1

n

∑
j � 1
1EI 1∑
k � 1

.
ek 2 ∇Ni

� nek 3 J 2 ∇N j
� nek 3 J cic j � cT Ec

where

Ei j ��1EI 1∑
k � 1

.
ek 2 ∇Ni

� nek 3 J 2 ∇N j
� nek 3 J �

In general, an element Ei j is non-zero if i � j, or if i and j
correspond to vertices of the same stencil. This occurs if the
line segment 
 vi � v j  spans an edge, or if vi is the vertex on
the opposite side of an edge from v j. The latter case corre-
sponds to the vertices with indices l and r in Fig. 2. Com-
pared to the operator for the membrane energy, this operator
generates a sparsity pattern with more non-zero entries in
the system matrix.

2.2 Uniqueness

It follows from basic linear algebra that since both matri-
ces BT B and E are positive semidefinite, the system matrix
)
BT B  λE * for λ + 0 can also be positive semidefinite.

But here we show through geometric analysis that the sys-
tem matrix is strictly positive definite such that the system
of equations in (4) has a unique solution.

For 
 BT B  λE  to be positive semidefinite, we must
have

cT

)
BT B  λE * c � cT

)
BT B * c  λcT Ec � 0 � (8)

where both terms cT 
 BT B  c � 0 and cT Ec � 0 for some vec-
tor c 8� 0. We first observe that cT Ec � � 
 c  , the general
energy term.

The membrane energy generates the functional�
1 
 c  � 1 T 1∑

k � 1
Ak
//∇gk

// 2 � 1 T 1∑
k � 1

Ak 9 
 ∂ gk : ∂ x  2  
 ∂ gk : ∂ y  2 ; �
For this expression to be zero we must have ∂ gk : ∂ x � 0
and ∂ gk : ∂ y � 0 for k � 1 ��������� � T � . But then, since the trian-
gulation is connected, all coefficients must be equal. Thus,
cT Ec � 0 if and only if c1 � c2 � ����� � cn. Furthermore, for
the first term in (8) stemming from the basic least squares
problem, we must have

cT 
 BT B  c �	! Bc ! 2
2 � 0 � (9)

which implies that 
 Bc  j � ∑n
i � 1 ciNi 
 x j � y j  � f 
 x j � y j  � 0

for all j � 1 ��������� m. But since all coefficients ck are equal,
the function f must then be zero everywhere and all coef-
ficients ck must be zero. Thus, cT 
 BT B  λE  c � 0 implies
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that c � 0 and we conclude that the system matrix 
 BT B  
λE  is indeed positive definite, and therefore nonsingular.
Hence, the system of equations (4) always has a unique so-
lution when E is constructed from the membrane energy.

The discrete thin-plate operator generates the functional�
2 
 c  �01EI 1∑

k � 1

.
ek 2 
 ∇g2 � ∇g1  � nek 3 2 �

For this expression to be 0 for c 8� 0, and thus for E to be
positive semidefinite, we must have 
 ∇g2 � ∇g1  � 0 over
all interior edges in the triangulation. Then, since the trian-
gulation is connected, all the gradients of f � ti over all trian-
gles ti in ∆ are equal and f must be a linear polynomial. But
then (9) again implies that f 
 x j � y j  � 0 for j � 1 ��������� m un-
der the same assumption that BT B is positive semidefinite.
This implies, that f is zero everywhere and that all coeffi-
cients in c must be zero. Thus, we arrive at the same conclu-
sion as above that the system matrix 
 BT B  λE  is positive
definite and that (4) always has a unique solution when E is
constructed from the thin-plate energy functional.

3 Numerical Schemes

At each level k of the multilevel scheme, the system of equa-
tions in (4) is relaxed with the Gauss-Seidel method (or alter-
natively the conjugate gradient method). A nested iteration
scheme has been implemented where the resulting surface
fk � S0

1 
 ∆k  at one level is used to supply an initial guess
for fk < 1 � S0

1 
 ∆k < 1  at the next level. Since all vertices of
the triangulation ∆k are also in ∆k < 1, all coefficients from fk
are transferred directly to the next level as starting values for
the unknown coefficients of fk < 1. Moreover, each coefficient
ck < 1

i j of fk < 1 corresponding to a vertex 
 xi � y j  in ∆k < 1 that is
not in ∆k, is simply initialized as ck < 1

i j � fk 
 xi � y j  . Since the
triangulations generated by the binary subdivision scheme
are nested, the function spaces defined over them constitute
a nested sequence of subspaces, S0

1 
 ∆1 >= S0
1 
 ∆2 ?= ����� =

S0
1 
 ∆h  , where ∆h is the triangulation at the finest level. In

addition to providing fast solution of the linear equation sys-
tem, this coarse-to-fine scheme also generates a sequence of
surface approximations to the scattered data at different lev-
els of detail.

In [27] generalized cross validation is proposed for com-
puting the smoothing parameter λ . This method is rather
CPU-extensive. In our implementation we use a simpler ap-
proach adopted from [7], where the default value is set to

λd �A@@ BT B @@ F : ! E ! F � (10)

where ! � ! F denotes the Frobenius matrix norm. The idea is
that the contributions from BT B and λE to the system matrix
in (4) should have roughly the same weight. For data without
noise this value works well in most cases, but with noise
present a much larger λ , up to 1000 times λd , is necessary
to obtain a sufficiently smooth solution.

At the first levels of the multilevel scheme the system
is solved to yield an exact solution. This establishes a good
global trend of the surface as a basis for successive improve-
ments when iterating at the finer levels with more unknowns.
A combined stopping criterion based on relative improve-
ment of the solution and decrease of the residual, measured
by the l2 norm, was used for the iterative solver. The Gauss-
Seidel method performed better than the conjugate gradi-
ent method as an iterative solver, even though the conjugate
gradient method converges faster when applied on a fixed
mesh without a good initial guess. In most cases, between 10
and 20 iterations at each level were sufficient. Any further
iterations did not improve the solution significantly when
the smoothing parameter was chosen as in (10). But with
larger λ the number of iterations at each level was higher,
e.g. up to 200 when λ was between 500 and 1000 times λd .

A natural improvement of this simple coarse-to-fine as-
cending scheme is to include recursive coarse grid correc-
tion at each level and thus obtain a true geometric multigrid
solver [4]. To ease implementation we used a standard alge-
braic multigrid solver from the software library ML [16], by
which the coarse grid correction step need not be provided
explicitly by the user. This library is generic in the sense that
its algorithms can operate on any data structure for vectors
and matrices if a specified interface is provided by the user.
Both full multigrid and repeatedly V-cycles and W-cycles
are available in ML. The algorithms, which takes as input a
system of equations at the finest level only, run with a fixed
number of iterations at each level specified by the user, for
example between five and ten Gauss-Seidel iterations as in
our examples. For details on the theory of algebraic multi-
grid, see for example [3,2].

With the default smoothing parameter in (10), the alge-
braic multigrid schemes and the simple coarse-to-fine scheme
outlined above were approximately equally good. But for
larger λ the multigrid schemes were significantly faster. An
advantage with multigrid, if V-cycles or W-cycles are em-
ployed, is that an initial guess for the solution at the finest
level can be given when starting the solver. A good approx-
imation of the coefficient in each triangle vertex is easily
obtained in most cases by a fast local approximant or in-
terpolant that uses nearby scattered data only, for example
Shepard’s method [25].

Due to an ill-condition system there is no clear corre-
spondence between the residual and the error, and thus, the
number of repeated V-cycles or W-cycles might be difficult
to determine. A solution in practical applications is to exam-
ine by visual inspection if the resulting surface triangulation
is sufficiently smooth and pleasant looking, and then decide
if additional multigrid cycles should be performed.

4 Numerical examples

In this section we present numerical examples based on three
different data sources: data sampled from the well known
Franke’s test function [10]; real data from a terrain consist-
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Fig. 3 Approximation to the Franke function, and the resulting binary
triangulation imposed on the surface

Fig. 4 The same binary triangulation as in Fig. 3 together with input
data for numerical examples. The lower left corner corresponds to the
nearest corner in Fig. 3.

ing of a combination of hypsographic data (contour data)
and scattered measurements from the terrain surface; and
the last example uses parametrized 3D scattered data. The
regularization term is based on the thin-plate energy in all
examples.

Approximation of data sampled from Franke’s function.
(Consult Figs. 3, 4) The scattered data set consists of 3000
points sampled over the unit square. The points are unevenly
distributed in the domain with relatively more data in areas

Fig. 5 Approximation with huge smoothing parameter

with steep gradient or high curvature. A combined subdi-
vision criterion based on a counting measure and an error
measure is used. A grid cell is thus refined if more than two
points are inside the grid cell and the error for at least one
of the points inside the cell is greater than the prescribed
tolerance. The tolerance was 0 � 25 percent of � zmax � zmin � of
the given data, and the default value for λ was used. The
coarse-to-fine algorithm terminated after subdivision of the
grid Ψ7 and delivered a triangulation ∆8 with 1476 vertices
and 2866 triangles. The number of Gauss-Seidel iterations
at each level was between 9 and 12 to reach the stopping
criterion. As expected, there are more triangles in areas with
large curvature and high density of data due to the combined
error and counting measure used as a subdivision criterion.
Also note the nice spatial grading from small triangles to
larger triangles in Fig. 4. If the middle vertex of all grid cells
were activated when operating on Ψ7, the resulting triangu-
lation would have 33025 vertices, which also would be the
number of unknowns in the equation system at that level.
Thus, less than 4 � 5 percent of the maximum number of avail-
able vertices are used in the triangulation.

Fig. 5 demonstrates the effect of choosing a very large
λ (10 000 times λd), and thus demanding much smoothing.
The surface leaves the given data points, and for even larger
λ when the smoothing term becomes more dominant, the
surface approaches a plane. Also recall that the mean square
error given by (5) increases monotonically towards a maxi-
mum with increasing λ .

Approximation of noisy data from Franke’s function. Nor-
mally distributed noise was added to the data set used in the
previous example. Subdivision of a grid cell was performed
when there was more than two points inside the cell, but no
error measure was used. To obtain a smooth pleasant looking
surface comparable to the surface produced in the previous
example, it was necessary to increase λ to 600 times λd .
The number of Gauss-Seidel iterations at each level with the
coarse-to-fine scheme was between 73 and 207. The algo-
rithm terminated at the same level as in the previous exam-
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Fig. 6 Approximation to Franke’s function from a data set with noise

Fig. 7 Approximation of terrain data, and the given data imposed on
the surface

ple. Fig. 6 shows the approximation and the given noisy data
points.

When algebraic multigrid was used starting from the tri-
angulation produced at the finest level, 5 V-cycles with 6
Gauss-Seidel iterations at each level were necessary to ob-
tain the same residual norm. (The initial guess was simply
the mean value of all data values � zi � .) When more noise
was added to the data and λ was increased, multigrid was
even more superior.

Terrain modelling from hypsographic data and scattered data.
The terrain model shown in figures 7 and 8 was derived
from approximately 50 000 points consisting of both hyp-
sographic data and scattered data points measured from the
underlying terrain. An error measure was used as a subdivi-
sion criterion although the data contained noise. An accept-
able smooth surface was obtained with a smoothing factor
10 times λd . The number of Gauss-Seidel iterations at each
level was between 41 and 593 by the coarse-to-fine scheme.
With an error tolerance of 2 � 5 percent of � zmax � zmin � , the
algorithm terminated after subdivision at level 11 and de-
livered the triangulation ∆12 with 31204 vertices. Relatively
few subdivisions were done at the last two levels to capture

Fig. 8 Approximation of terrain data, and triangulation imposed on the
surface

Fig. 9 Approximation of parametrized 3D scattered data

remaining details in the terrain and meet the given toler-
ance. The number of vertices in ∆12 is only 1 � 5 percent of
the maximum number of available vertices at that level. Al-
gebraic multigrid (V-cycles) performed slightly better with
λ � 10λd , but when λ was increased algebraic multigrid was
superior. The triangulation shown in Fig. 8 was produced
by a larger tolerance to avoid too many triangles in the pre-
sentation. The mesh is finer in areas with rapidly varying
topography, and thereby captures the necessary details. We
also observe the natural extrapolation of the surface to ar-
eas without input data, which is due to the thin-plate energy.
Algorithms with good extrapolation properties are important
in many applications. For example, in geological modelling
faults and horizons must be extended to intersect each other
with clean cuts outside their initial domain when creating
boundary-based volume models [24].

Approximation of parametrized 3D scattered data. A use-
ful application of the adaptive properties of the multilevel
scheme is demonstrated in Fig. 9. The scattered data shown
in the parameter space on the left are parametrizations of
scattered data points sampled from the 3D object on the
right. Thus a one-to-one mapping exists between scattered
data points in 3D space and the 2D parametric space. The
mapping was computed by a method called “shape-preserving”
parametrization by Floater [6]. A characteristic of this method
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is that nearby points are mapped closer and closer together
in the parameter space as the distance between the 3D scat-
tered data and the boundary of the 3D object increases. The
samples in the example were relatively uniform distributed
on the 3D object, while the parametrized points ends up in a
cluster in the parameter space.

The approximation scheme was run by treating each of
the space dimensions x, y and z separately at each level. A
counting measure was used as a subdivision criterion (based
on number of points in the parameter space) to ensure that
the same binary triangulation was used for each space di-
mension at each level. The triangulation obtained at the finest
level is shown on the left in Fig. 9, and on the right the map-
ping of the result back to 3D space is shown. While the size
of the triangles in the 2D parameter space vary heavily, we
observe that they have approximately the same size when
mapped back to 3D space.

5 Concluding Remarks

The novelty of the method presented in this paper lies in
the use of binary triangulations as an effective tool for gen-
erating a nested sequence of triangulations used in a mul-
tilevel scheme for solving the scattered data approximation
problem. Binary triangulations give rise to extremely sim-
ple data structures. The fact that binary triangulations are
standard tools for view-dependent visualisation, also makes
the resulting surfaces well suited for fast rendering. In par-
ticular the method is efficient when fitting surfaces to huge
scattered data sets and data unevenly distributed over the do-
main. When using subdivision criteria based on error mea-
sure or counting measure, the triangle density adapts au-
tomatically to the distribution of the data with nice spatial
grading as can be seen in Fig. 3 and 8. The triangle den-
sity also reflects the variation in surface topography. Another
useful feature observed by numerical experiments is the nat-
ural extrapolation of the surface to areas without data. We
emphasize the practical relevance of these qualities in ap-
plications like geological modelling and approximation of
cartographic data.

Even though the simple coarse-to-fine scheme works well
for data without noise, convergence is significantly improved
by using a standard algebraic multigrid solver when a large
smoothing parameter λ is necessary for noisy data. We would
probably benefit even more from a geometric multigrid solver
based on the triangular grids produced by our coarse-to-fine
scheme. Another interesting topic for further research is to
study methods for computing a good λ when approximating
data with noise.
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